Re”: A Type System for Refinements and Resources

Tristan Knoth ' Di Wang > Nadia Polikarpova ' Jan Hoffmann ?

1University of California, San Diego

2Carnegie Mellon University

Refinements: Functional Specification

Dependent Types

® Martin-Lof’s Type Theory (underlying NuPRL)

® Calculus of Inductive Constructions (underlying Coq)

Refinements: Functional Specification

Dependent Types

® Martin-Lo6f’s Type Theory (underlying NuPRL)

® Calculus of Inductive Constructions (underlying Coq)

Some Restricted Forms of Dependent Types

Features

FP91] Regular-tree based refinements for datatypes.

HPS96] Sized types. Only support “primitive” recursion.

XP99] Dependent ML. Indexed types with refinement sorts.

VHO04] Sized types. Support general recursion.

RKJ08] Liquid types. Predicate-abstraction refinements for base types.

[
[
[
[CW00] Indexed types with inductive kinds and type-level computation.
[
[
[

WWC17] | TiML. Indexed types with refinement kinds. Proved in Coq.

Resources: Complexity Specification

Automatic Amortized Resource Analysis (AARA)

® Introduced by Hofmann and Jost in 2003 [H]03].
® Extended to OCaml by Hoffmann et al. in 2017 [HDW17].

Resources: Complexity Specification

Automatic Amortized Resource Analysis (AARA)

® Introduced by Hofmann and Jost in 2003 [H]03].
® Extended to OCaml by Hoffmann et al. in 2017 [HDW17].

Some Restricted Forms of Dependent Types

Features
[CW00] Indexed types with inductive kinds and type-level computation.
[VHo04] Sized types. Support general recursion.
[WWC17] | TiML. Indexed types with refinement kinds. Proved in Cogq.

Re”: Liquid Types + AARA

Features

® Polymorphic refinement types over logical qualifiers.
* Affine types with linear potential annotations.

® Potentials are expressed in the same refinement language.

Re”: Liquid Types + AARA

Features

® Polymorphic refinement types over logical qualifiers.
* Affine types with linear potential annotations.

® Potentials are expressed in the same refinement language.

Limitations

® Limited by the capability of liquid types and AARA.
® Liquid types: Rely on decidable refinement logic.
® AARA: Currently limited to polynomial (and exponential) complexity.

A Running Example: List Append

append = Ya.L(a) — L(a) — L(a)
append £; £, = match ¢; with

[l — &
| x = xs — let ys = append xs £, in (x = ys)

® Functionality: size of append(¢;)(£;) is the sum of sizes of £, and ¢,

® Complexity: append(;)(£;) makes 2 - |£;| function calls

Review of Liquid Types

B = bool
L(T)
a
T:={v:B|y}
x: Ty > T
S=T
Ya.S
Yri=x<v|v<x|v<size(x) |-

Y1 A2

base type of Booleans
base type of lists

type variable
refinement type
dependent arrow type
monomorphic type
polymorphic type
logical qualifier

conjunction

Review of Liquid Types

append = NVa.ty:L(a) — f:L(a) — {v:L(a) | size(v) = size(#;) + size(£2)}
append ¢, 2 = match £ with
[l -
{6 : L(@);size(f1) = 0}
&

| x = xs —
{ty : L(a),x: a,xs: L();size(f;) = size(xs) + 1}
let ys = append xs £, in
{x:a ys:{v:L(a) | size(v) = size(xs) + size(f2)};size(f1) = size(xs) + 1}

(x 3 y9)

Review of AARA

B = bool
L(R)
T:=8B
Ri = Ry
R:=T1

base type of Booleans
base type of lists

base type

arrow type

resource-annotated type

Review of AARA

append = L(bool*) — L(bool®) — L(bool’)
append t; £, = match ¢; with
Il —
{¢, : L(bool®); 0}
b

| x = xs —
{£, : L(bool®), x : bool, xs : L(bool?); 2}
let ys = append xs £, in
{x : bool, ys : L(bool®); 0}
(x = ys)

Liquid Types + AARA

Liquid Types AARA
B:= bool B:= bool
L(T) L(R)
a
T:= A{v:B|y} | Tz= B
x:To, =T Ri - R,
R:= T1
Sx= T
Ya.S
Y= e
Y1 Ay

Re”: Liquid Types + AARA

B = bool
L(R)
a
T:={v:B|y}
x:Ry > R
R:=T?
S:=R
Ya.S

Y=k k<v|v<x|v<size(x) |-

U1 Ay

¢ =v|x|size(x)|---

P1+ @2

base type of Booleans
base type of lists

type variable
refinement type
dependent arrow type
resource-annotated type
monomorphic type
polymorphic type
logical qualifier
conjunction

numeric qualifier

addition

Re”: Liquid Types + AARA

append = Va.t; (L(a®) = 6 :L(a®) = {v:L(a°) | size(v) = size(y) + size(£2)}
append {1 > = match £; with
-
(£ : L(a°); size(£1) = 0;0}
&

| x = xs —
{6 : L(a®), x : &, x5 : L(ar®); size(£;) = size(xs) + 1;2}
let ys = append xs £ in
{x:a, ys: {v:L(a®) | size(v) = size(xs) + size(£z)}; size(£;) = size(xs) + 1;0}

(x 3 9)

Re”: Liquid Types + AARA

append = Va.ty : L(a®) — € :L(a®) — {v:L(a®) | size(v) = size(#;) + size(f)}
append = Yoty : L(c)* 7€) — fy: L(ar) — {v:L() | size(v) = size(f;) + size(f2)}

append = Va.t;: L(a) — £ L(a)?sizeth) {v:L(a) | size(v) = size(t1) + size(f2)}

Dynamic Semantics: Resource-Aware, Small-Step

(e,p)y = (e, p)

Dynamic Semantics: Resource-Aware, Small-Step

(e,p)y = (e, p)

(E:Tick)
p=0 p—c>0

(tick cine p) — (e,p—¢)

Static Semantics

Language Design

Expressions in Re” are in A-Normal-Form, i.e., syntactic forms in non-tail
positions allow only variables and values.

Static Semantics

Language Design

Expressions in Re” are in A-Normal-Form, i.e., syntactic forms in non-tail
positions allow only variables and values.

Ii¥v;dre:S

Static Semantics

Language Design

Expressions in Re” are in A-Normal-Form, i.e., syntactic forms in non-tail
positions allow only variables and values.

Ii¥v;dre:S

(T:NiL)
(T:TRUE) TCrR type

;9 true: {v:bool | v=T} [0+ nil: {v:L(R) | size(v) = 0}

Static Semantics

(T:ConD)
I'(x) = bool PAx;PFe R IYA-x;OFe: R

I9,0F if x thene; else e, : R

Static Semantics

(T:ConD)
I'(x) = bool PAx;PFe R IYA-x;OFe: R

I9,0F if x thene; else e, : R

(T:APPFO)
T(x)=x:{v:B|y}¥ >R T(x)={v:B|y}

T;T; [x/v]g F x1(x2) : R

Static Semantics

(T:ConD)
I'(x) = bool PAx;PFe R IYA-x;OFe: R

I9,0F if x thene; else e, : R

(T:APPFO)
T(x)=x:{v:B|y}¥ >R T(x)={v:B|y}

T;T; [x/v]g F x1(x2) : R

(T:MaTL)
I'(x) = L(T?) ;¥ Asize(x) =0;®F e : R
T,xi: T, % : L(T?); ¥ A size(x) = size(xy) + 1;® + [x1/vlpFe: R

;9,0 Fmatch xwith {[] > e | x; 2 x < e} : R’

Meta Theory

Progress

If 559+ e:Sandp > g, then either e is a value or there exist ¢’ and p’ such

that (e, p) — (€, p’).

Meta Theory

Progress

If 559+ e:Sandp > g, then either e is a value or there exist ¢’ and p’ such

that (e, p) — (€, p’).

Preservation

If 559Fe:S, p>q,and (e p)— (e,p), then;;p e :8S.

Meta Theory

Progress

If 559+ e:Sandp > g, then either e is a value or there exist ¢’ and p’ such

that (e, p) — (€, p’).

Preservation

If 559Fe:S, p>q,and (e p)— (e,p), then;;p e :8S.

Consistency

If ;-;qF e:Sand eis avalue, then e satisfies the conditions indicated by S
and q is greater than or equal to the potential stored in v with respect to S.

Interpretation into Refinement Logic

Ideas

® Reflect interpretable values in the refinement logic.
® Booleans are interpreted as {T, L}. Lists are interpreted as sizes.

® Develop a denotational semantics for the refinement and resource
annotations.

Interpretation into Refinement Logic

Z(true) =T Z(nil)=0
Z(false) = L Z(cons(v,v2)) =Z(w) +1

Interpretation into Refinement Logic

Z(true) =T Z(nil)=0
Z(false) = L Z(cons(v,v2)) =Z(w) +1

® + b:{v:bool | ¢} indicates that = [Z(b)/v].
® by, -, byl : {v:L({v:bool | ¢'}) | ¥} indicates that
F [n/size(v)]y A AL LZ(B) V1Y

Interpretation into Refinement Logic

Consistency: Intuition

If ;-;q+ e: Sand eis avalue, then v satisfies the conditions indicated by S
and q is greater than or equal to the potential stored in v with respect to S.

Interpretation into Refinement Logic

Consistency: Intuition

If ;-;q+ e: Sand eis avalue, then v satisfies the conditions indicated by S
and q is greater than or equal to the potential stored in v with respect to S.

Consistency: Formalization

If ;-;q + e: Sand eis a value, the logical refinement of S is ¢/, and the
resource annotation of Sis ¢, then |= [Z(e)/v]y and also = q > [Z(e)/v]¢.

