
PMAF: An Algebraic Framework for
Static Analysis of Probabilistic Programs

Di Wang1, Jan Hoffmann1, Thomas Reps2

1 Carnegie Mellon University

2 University of Wisconsin; GrammaTech, Inc.
PLDI 2018

What is probabilistic programming?

Randomized Algorithms Cryptography Protocols

Cognitive ModelsBayesian Modeling

Probabilistic Programming

• Deterministic programs with:

Probabilistic Programming

• Deterministic programs with:

• the ability to draw random
data from distributions

Probabilistic Programming

• Deterministic programs with:

• the ability to draw random
data from distributions

Probabilistic Programming

• Deterministic programs with:

• the ability to draw random
data from distributions

• the ability to condition
control-flow at random

Probabilistic Programming

• Deterministic programs with:

• the ability to draw random
data from distributions

• the ability to condition
control-flow at random

Probabilistic Programming

x !:= 1;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi
od

• An example: an asymmetric 1d random walk

Probabilistic Programming

x !:= 1;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi
od

Data Randomness

• An example: an asymmetric 1d random walk

Probabilistic Programming

x !:= 1;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi
od

Data Randomness

Control-flow Randomness

• An example: an asymmetric 1d random walk

Why is static analysis useful?

Bayesian Inference

What is the probability that I am poorly prepared but end up with a good mood?

Bayesian Inference

repeat do
 D !:= 0 [0.6] D !:= 1;
 P !:= 0 [0.7] P !:= 1;
 if D !== 0 !&& P !== 0 then
 G !:= 0 [0.95] G !:= 1
 else if D !== 1 !&& P !== 1 then
 G !:= 0 [0.05] G !:= 1
 else if D !== 0 !&& P !== 1 then
 G !:= 0 [0.5] G !:= 1

 else
 G !:= 0 [0.6] G !:= 1
 fi;
 if G !== 0 then
 M !:= 0 [0.9] M !:= 1
 else
 M !:= 0 [0.3] M !:= 1
 fi
until P !== 0 !&& M !== 1

Sampling-base Techniques

• Rejection Sampling, Markov Chain Monte Carlo, etc.

• sample multiple times to approximate the distribution

Sampling-base Techniques

• Rejection Sampling, Markov Chain Monte Carlo, etc.

• sample multiple times to approximate the distribution

• Two concerns:

• not a sound guarantee — only suggests some property

• may sample incredibly many times to get a good precision

Bayesian Inference

• The probability that I am poorly prepared but end up with a
good mood is about 0.15

• Rejection sampling needs 1/0.15=6.7 rounds to obtain an
accepting sample

• For some networks, the expectation is incredibly large (>1018)

Static Analysis

• Formally prove a program satisfies some properties

• Eg:

• Bayesian inference on general probabilistic programs

• expected running time analysis

• lower bound analysis for probability of post-conditions

Static Analysis

• Formally prove a program satisfies some properties

• Eg:

• Bayesian inference on general probabilistic programs

• expected running time analysis

• lower bound analysis for probability of post-conditions

Safe & Sound

Contributions

• Developed an algebraic framework for dataflow analysis of
first-order probabilistic programs

• Reformulated Bayesian inference & Markov decision problem
in the framework

• Developed a novel expectation-invariant analysis by
instantiating the framework

• Implemented an effective prototype

Example: Expectation Invariants
x !:= 1;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi
od
x !:= 1; t !:= 0;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi;
 t !:= t + 1
od

• Want to know its expected
termination time

• Analyze expectation invariants of the
loop body

• E[r’]=1, E[t’]=t+1, E[x’]=x-0.5

• E[2x’+t’]=2x+t

• Martingales

Data & Control-flow Randomness

• Data randomness

• r ~ Uniform(0,2)

• Control-flow randomness

• if prob(0.75) then … else … fi

Data & Control-flow Randomness

• Data randomness

• r ~ Uniform(0,2)

• Control-flow randomness

• if prob(0.75) then … else … fi

• Design choice: explicit separation

Data & Control-flow Randomness

• One can actually simulate control-flow randomness using
data randomness

• p ~ Uniform(0,1); if p < 0.75 then … else … fi

Data & Control-flow Randomness

• One can actually simulate control-flow randomness using
data randomness

• p ~ Uniform(0,1); if p < 0.75 then … else … fi

• Design choice: flexibility for analysis designer

• only keeping track of expectation still produces
meaningful results

Control-flow Graphs

• A traditional approach to separate data and control-flow

• Semantics could be defined as collections of paths

Control-flow Graphs

• A traditional approach to separate data and control-flow

• Semantics could be defined as collections of paths

• What about probabilistic programs?

Probabilistic Programs

Probabilistic Programs

• Paths are not independent

Probabilistic Programs

• Paths are not independent

• A program specifies probability distributions over paths

Probabilistic Programs

• Paths are not independent

• A program specifies probability distributions over paths

• Need to reason about collections of paths!

Hyper-Graphs
x !:= 1;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi
od

• Edges have one source and
multiple destinations

• cond. choices & prob. choices
are modeled by hyper-edges
with two destinations

Hyper-Graphs
x !:= 1;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi
od

• Edges have one source and
multiple destinations

• cond. choices & prob. choices
are modeled by hyper-edges
with two destinations

Hyper-Paths
• A hyper-path is made up of hyper-edges

• A hyper-path represents a collection of paths

• Distribution w.r.t. a hyper-path

• Nondeterminism — sets of hyper-paths

Forward Assertions

Forward Assertions
• Traditional static analyses can compute either forward or

backward assertions

Forward Assertions
• Traditional static analyses can compute either forward or

backward assertions

• Hyper-edges have one source and multiple destinations

Forward Assertions
• Traditional static analyses can compute either forward or

backward assertions

• Hyper-edges have one source and multiple destinations

• Asymmetry!

Forward Assertions
• Traditional static analyses can compute either forward or

backward assertions

• Hyper-edges have one source and multiple destinations

• Asymmetry!

• Hyper-graphs prefer forward assertions
• the semantics of a node v represents the computation

that can continue from v

Forward Assertions
x !:= 1; t !:= 0;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi;
 t !:= t + 1
od

Forward Assertions
x !:= 1; t !:= 0;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi;
 t !:= t + 1
od

• Assertions assigned to v6:
• E[x’]=x, E[r’]=r, E[t’]=t

Forward Assertions
x !:= 1; t !:= 0;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi;
 t !:= t + 1
od

• Assertions assigned to v6:
• E[x’]=x, E[r’]=r, E[t’]=t

• Assertions assigned to v1:
• E[2x’+t’]=2x+t, E[x’]>=-2

Forward Assertions
x !:= 1; t !:= 0;
while x > 0 do
 r ~ Uniform(0,2);
 if prob(0.75) then
 x !:= x - r
 else
 x !:= x + r
 fi;
 t !:= t + 1
od

• Assertions assigned to v6:
• E[x’]=x, E[r’]=r, E[t’]=t

• Assertions assigned to v1:
• E[2x’+t’]=2x+t, E[x’]>=-2

• Assertions assigned to v0:
• E[t’]<=t+6

Backward Analysis

• The meaning of v4: E[2x’+t’]=2(x-1)+(t+1)=2x+t-1

• The meaning of v5: E[2x’+t’]=2(x+1)+(t+1)=2x+t+3

Backward Analysis

• The meaning of v4: E[2x’+t’]=2(x-1)+(t+1)=2x+t-1

• The meaning of v5: E[2x’+t’]=2(x+1)+(t+1)=2x+t+3

• We can compute the meaning of v3 by “combining” two:

• E[2x’+t’]=0.75(2x+t-1)+0.25(2x+t+3)=2x+t

Backward Analysis

• The meaning of v4: E[2x’+t’]=2(x-1)+(t+1)=2x+t-1

• The meaning of v5: E[2x’+t’]=2(x+1)+(t+1)=2x+t+3

• We can compute the meaning of v3 by “combining” two:

• E[2x’+t’]=0.75(2x+t-1)+0.25(2x+t+3)=2x+t

• A hyper-edge is a transformer that computes properties of
source as a function of properties of destinations

Interprocedural Analysis

Interprocedural Analysis
• Two-vocabulary program properties

• P[x=5]=0.3 is a one-vocabulary property

• E[2x’+t’]=2x+t is a two-vocabulary expectation invariant

Interprocedural Analysis
• Two-vocabulary program properties

• P[x=5]=0.3 is a one-vocabulary property

• E[2x’+t’]=2x+t is a two-vocabulary expectation invariant

• One-vocabulary properties specify states

Interprocedural Analysis
• Two-vocabulary program properties

• P[x=5]=0.3 is a one-vocabulary property

• E[2x’+t’]=2x+t is a two-vocabulary expectation invariant

• One-vocabulary properties specify states
• Two-vocabulary properties specify state transformers

Interprocedural Analysis
• Two-vocabulary program properties

• P[x=5]=0.3 is a one-vocabulary property

• E[2x’+t’]=2x+t is a two-vocabulary expectation invariant

• One-vocabulary properties specify states
• Two-vocabulary properties specify state transformers

• Two-vocabulary properties can be used as procedure
summaries

An Algebraic Approach

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe
Approx. order

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe
Approx. order

Seq.

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe
Approx. order

Seq. Cond.-choice

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe
Approx. order

Seq. Cond.-choice Prob.-choice

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe
Approx. order

Seq. Cond.-choice Prob.-choice

Nondet.-choice

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe
Approx. order

Seq. Cond.-choice Prob.-choice

Nondet.-choice
Bottom

An Algebraic Approach
• Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

• skip should be interpreted as the identity element

Property universe
Approx. order

Seq. Cond.-choice Prob.-choice

Nondet.-choice
Bottom

Identity

An Algebraic Approach

Semantic
Algebra

Sequencing
Cond. choices
Prob. choices

Nondet. choices

Data
Actions

skip
x !:= x + 5

r ~ Uniform(0,2)
…

Semantic
Function

Approximation

Concrete
Semantics Concrete

Operators
Data

Actions

skip
x !:= x + 5

r ~ Uniform(0,2)
…

Concrete

Approximation

Concrete
Semantics Concrete

Operators
Data

Actions

skip
x !:= x + 5

r ~ Uniform(0,2)
…

Concrete

Abstract
Semantics

Abstract
Abstract

Operators

Approximation

Concrete
Semantics Concrete

Operators
Data

Actions

skip
x !:= x + 5

r ~ Uniform(0,2)
…

Concrete

Abstract
Semantics

Abstract
Abstract

Operators

Approximation

Concrete
Semantics Concrete

Operators
Data

Actions

skip
x !:= x + 5

r ~ Uniform(0,2)
…

Concrete

Abstract
Semantics

Abstract
Abstract

Operators

Approximate

General Analysis Algorithm
• Solve an equation system

extracted from the control-
flow hyper-graph

• Chaotic-iteration strategy

• Widening

• The framework furnishes the
analysis implementation

S[v0]!>=seq[x!:=1](S[v1])
S[v1]!>=cond[x>0](S[v2],S[v6])
S[v2]!>=seq[r~U(0,2)](S[v3])
S[v3]!>=prob[0.75](S[v4],S[v5])
S[v4]!>=seq[x!:=x-r](S[v1])
S[v5]!>=seq[x!:=x+r](S[v1])
S[v6]!>=1

Technical Summary
• A blending of ideas from prior work on

• static analysis of single-procedure probabilistic programs

• interprocedural dataflow analysis of standard programs

• Especially

• the separation of data & control-flow randomness

• backward analysis on control-flow hyper-graphs

• two-vocabulary program properties

• an algebraic approach

Instantiations
• Bayesian inference: compute the posterior distribution

• abstract programs as distribution transformers matrices

• Markov decision problem: compute the optimal expected
reward

• abstract programs as real numbers (reward gain)

• Linear expectation-invariant analysis

• abstract programs as pairs of polyhedra (relational domain)

Future Work

• Design more efficient analysis algorithms to exploit all
algebraic laws

• Find useful coarser abstractions for Bayesian inference by
analogy with the techniques for predicate abstraction

• Use the framework to design new analysis for expected
resource analysis and side-channel attack analysis

