PMAF: An Algebraic Framework for
Static Analysis of Probabilistic Programs

Di Wang?,]an Hoffmann', Thomas Reps?

1Carnegie Mellon University
2University of Wisconsin; GrammaTech, Inc.

PLDI 2018

What is probabilistic programming?

Randomized Algorithms Cryptography Protocols

LONG-TERM MEMORY
e - "
Mow -t

- - Semanse

WORKING MEMORY

0.6 04 Difficulty Intelligence

i%d® 03 0.7
il,d* 005 095
& 09 o1 IR
it,d* 05 0.5 i° 095 0.05
il 0.2 0.8

T
g° 09 01
g 04 06

Bayesian Modeling Cognitive Models

Probabilistic Programming

e Deterministic programs with:

Probabilistic Programming

e Deterministic programs with:

e the ability to draw random
data from distributions

Probabilistic Programming

e Deterministic programs with:

e the ability to draw random
data from distributions

Probabilistic Programming

e Deterministic programs with:

e the ability to draw random
data from distributions

e the ability to condition
control-flow at random

Probabilistic Programming

e Deterministic programs with:

e the ability to draw random
data from distributions

e the ability to condition
control-flow at random

Probabilistic Programming

e An example: an asymmetric 1d random walk

X = 1;
while x > 0 do
r ~ Uniform(0,2);

X = X - 7r
X = X +7r

od

Probabilistic Programming

e An example: an asymmetric 1d random walk

X = 1;
while x > 0 do
r ~ Uniform(0,2);

Data Randomness

X = X - 7r
X = X +7r

od

Probabilistic Programming

e An example: an asymmetric 1d random walk

X = 1;
while x > 0 do
r ~ Uniform(0,2);

Data Randomness

X = X - 7r
X = X +7r

od

Why is static analysis useful?

G =

D=0, P=0| 0.95

D=1, P=1| 0.05

D=0,FP=1| 0.5

D=1, P=0| 0.6

What is the probability that | am poorly prepared but end up with a

Bayesian Inference

Preparation

mood?

G=0G=1
do
0 [0.6] D := 1;
0 [0.7] P = 1;
— 0 &8 P = 0 th
=0 [0.95] G := 1
1if D = 1 68 P =
=0 [0.05] G := 1
if D = 0 &§ P =
=0 [0.5] G :=1

Baye5|an Inference

s =i o
else

G := 0 [0.6] G :=1
fi;
if G = 0 then

M:=0 [0.9] M := 1
else

M:=0 [0.3] M :=1
fi

until P =0 & M = 1

Sampling-base Techniques

e Rejection Sampling, Markov Chain Monte Carlo, etc.

e sample multiple times to the distribution

Sampling-base Techniques

e Rejection Sampling, Markov Chain Monte Carlo, etc.

e sample multiple times to the distribution

e [Two concerns:
e not a sound guarantee — only suggests some property

e may sample incredibly many times to get a good precision

Baye5|an Inference

G=0
0.95 .
0.05 .
0.5
0.6

el v Bav av)
Iy
ol=lI=|0O

OIo|T|T
gy
Ll Rl Ranll o

~ M=0[M=1
Mood G =0] 0.9 0.1
G=1| 03 | 0.7

e The probability that | am poorly prepared but end up with a
mood is about 0.15

e Rejection sampling needs 1/0.15=6.7 rounds to obtain an
accepting sample

e For some networks, the expectation is incredibly large (>1078)

Static Analysis

e Formally prove a program satisfies some properties

o Eg:
e Bayesian inference on general probabilistic programs
e expected running time analysis

e lower bound analysis for probability of post-conditions

Static AnalVS

e Formally prove a program satisfies some properties
o Eg:
e Bayesian inference on general probabilistic programs
e expected running time analysis

e lower bound analysis for probability of post-conditions

Contributions

Developed an algebraic framework for dataflow analysis of
first-order probabilistic programs

Reformulated Bayesian inference & Markov decision problem
in the framework

Developed a novel expectation-invariant analysis by
instantiating the framework

Implemented an effective prototype

Example: Expectation Invariants

X = 1;
while x > 0 do
r ~ Uniform(0,2); .
if prob(0.75) then ©® Wantto know its expected

X =X -7T termination time
else
X == X +7r . . .
£1 e Analyze expectation invariants of the
od loop body
X = 1; t = 0;
while x > 0 do e E[r']=1, E[t']=t+1, E[x']=x-0.5

r ~ Uniform(0,2);
if prob(0.75) then

X 1= X - T o E[2x'+t']=2x+t
else

X ¢= X + 7T .
Fi. e Martingales
t =t + 1

od

Data & Control-flow Randomness

e Datarandomness
e r ~ Uniform(0,2)

e Control-flow randomness

e if prob(0.75) then .. else .. fi

Data & Control-flow Randomness

e Datarandomness
e r ~ Uniform(0,2)

e Control-flow randomness

e if prob(0.75) then .. else .. fi

e Design choice: explicit separation

Data & Control-flow Randomness

e One can actually simulate control-flow randomness using
data randomness

* p ~ Uniform(0,1); if p < 0.75 then .. else .. fi

Data & Control-flow Randomness

e One can actually simulate control-flow randomness using
data randomness

* p ~ Uniform(0,1); if p < 0.75 then .. else .. fi

e Design choice: flexibility for analysis designer

e only keeping track of expectation still produces
meaningful results

Control-flow Graphs

e A traditional approach to separate data and control-flow

?‘ [n = 1]
while(n # 1){ I £ 1] >0
if(n % 2 == 0) 4
n :=n/2; ?
else [n%2=0] "[n%2# 0]
n := 3xn+l; il @ ™~
I

e
i = i+1; ~
} n := n/2 n := 3*n + 1
‘/

e Semantics could be defined as collections of paths

Control-flow Graphs

e A traditional approach to separate data and control-flow

?‘ [n = 1]
while(n # 1){ I £ 1] >0
if(n % 2 == 0) 4
n :=n/2; ?
else [n%2=0] "[n%2# 0]
N := 3%n+l; il @ ™~
I

e
i = i+1; ~
n := n/2 n := 3*n + 1
} ‘/

e Semantics could be defined as collections of paths

e What about probabilistic programs?

Probabilistic Programs

Probabilistic Programs

e Paths are not independent

Probabilistic Programs

e Paths are not independent

e A program specifies probability distributions over paths

Probabilistic Programs

e Paths are not independent
e A program specifies probability distributions over paths

e Need to reason about collections of paths!

Hyper-Graphs

X = 1;
' e Edges have one source and

while x > 0 do

r ~ Uniform(e,2); multiple destinations
if prob(0.75) then

=l e cond. choices & prob. choices
else

X = X + T are modeled by hyper-edges
fi with two destinations

od

vo

X = 1;

while x > 0 do
r ~ Uniform(0,2);

if prob(0.75) then

X = X - r
else

X = X +r
f1i

od

Hyper-Graphs

e Edges have one source and
multiple destinations

e cond. choices & prob. choices
are modeled by hyper-edges
with two destinations

seqlx :=x — 7]

seqlz := 1] =m\%<
Y T
\ ®

/

seq[r ~ U(0,2)] (030 prob[O.75L<
—

seqlx :=x + 1]

Hyper-Paths

e A hyper-path is made up of hyper-edges
e A hyper-path represents a collection of paths

e Distribution w.r.t. a hyper-path

e Nondeterminism — sets of hyper-paths

seqlr ;= x — r|

& @-sei= o/“< o
\ © seqlr ~ U(0,2)] © probl0.75]

seqlr ;= x + r|

t =

Forward Assertions

Forward Assertions

e Traditional static analyses can compute either forward or
backward assertions

Forward Assertions

e Traditional static analyses can compute either forward or
backward assertions

e Hyper-edges have one source and multiple destinations

seqlx := x — 1]

t =

T =

fv

- seq(x = 1] =® cond|z > Q<
\ @ seq[r ~ U(0.2)] =® probl0.7

seqlx = x + 7]

Forward Assertions

e Traditional static analyses can compute either forward or
backward assertions

e Hyper-edges have one source and multiple destinations
e Asymmetry!

seqlx := x — 1]

t =

T

.
= T

iy

- seq(x = 1] =® cond|z > Q<
\ @ seq[r ~ U(0. 2)] =® prob[0.75]

seqlx = x + 7]

Forward Assertions

e Traditional static analyses can compute either forward or
backward assertions

e Hyper-edges have one source and multiple destinations
e Asymmetry!

e Hyper-graphs prefer forward assertions

e the semantics of a node v represents the computation
that can continue fromv

seqlx :=x — 7]

@ seq(x = 1] ;@{M{
\ (») seq[r ~ U(0,2)] -(vs) prob[o.75L‘<

seqlx = x + 7]

/

y

Forward Assertions

X = 1; t = 0;

while x > 0 do
r ~ Uniform(0,2);

if prob(0.75) then
X t= X - T

else
X = X + T
fi;
t ==t + 1
od

seqlx :=x — 1]

Vo 86(][.7} = 1] :®{T>Q<
\ @ seqr ~ U(0, 2)] ,® DTOb[O.75L

seqlx == x 4 7]

/

X = 1; t == 0;

while x > 0 do
r ~ Uniform(0,2);

if prob(0.75) then
X = X - r

else
X = X + T
fi;
t ==t + 1
od

Forward Assertions

e Assertions assigned to v6:
o E[Xx']=x, E[r']=r, E[t']=t

seqlx :=x — 1]

- %%ﬁﬂ=gj<;;;:;i<:§:::

@ seq[r ~ U(0.2)] @ pmb[O.75L

seqlx == x 4 7]

/

Forward Assertions

X = 1; t = 0;

while x > 0 do e Assertions assighed to v6:
r ~ Uniform(0,2); e E[x']=x, E[r']=r, E[t']=t
if prob(0.75) then . .
X i= X - T e Assertions assighed to v1:
else o E[2x'+t']=2x+t, E[x']>=-2
X = X +7r
fi;
t :=t+1
od

seqle :=x — r]

oo)seqlz = 1] :®%<
\ @ seqlr ~ U(0,2)] ,@ prob[().75L</.

seqlx == x 4 7]

/

X = 1; t = 0;

while x > 0 do
r ~ Uniform(0,2);

if prob(0.75) then

X = X - T
else

X = X + T
fi;
t .=t + 1

od

Forward Assertions

e Assertions assigned to v6:
o E[Xx']=x, E[r']=r, E[t']=t

e Assertions assighed to v1:
o E[2Xx'+t']=2x+t, E[x']>=-2

e Assertions assighed to vO:
o E[t']<=t+6

seqle :=x — r]

Vo 88(][.’13 = 1] :®ﬁ<

@ seqlr ~ U(0,2)] ;@ D7‘()I)[O.75L</.

seqlx == x 4 7]

/

Yo

Backward Analysis

e The meaning of v4: E

e The meaning of v5: E

2x'+t'

2x'+t

=2(x-1)+(t+1)=2x+t-1
=2(x+1)+(t+1)=2x+t+3

seqlx :=x — 7]

-

seqle :=1] X cond|x > Q<
N/ T
\ @ seqlr ~ U(0,2)] ,® DTOb[O.75L</.

seqlx == x 4 7]

/

Yo

Backward Analysis

e The meaning of v4: E

e The meaning of v5: E

2x'+t'

2x'+t

=2(x-1)+(t+1)=2x+t-1
=2(x+1)+(t+1)=2x+t+3

e \We can compute the meaning of v3 by “combining” two:
o E[2x'+t']=0.75(2x+t-1)+0.25(2x+t+3)=2x+t

seqlx :=x — 7]

-

seqle :=1] X cond|x > Q<
N/ T
\ @ seqlr ~ U(0,2)] ,® DT’Ob[O.75L</.

seqlx == x 4 7]

/

Yo

Backward Analysis

e The meaning of v4: E

e The meaning of v5: E

2x'+t']

2x'+t]

=2(x-1)+(t+1)=2x+t-1
=2(x+1)+(t+1)=2x+t+3

e \We can compute the meaning of v3 by “combining” two:
o E[2x'+t']=0.75(2x+t-1)+0.25(2x+t+3)=2x+t

e A hyper-edge is a transformer that computes properties of
source as a function of properties of destinations

seqlx :=x — 7]

-

seqle :=1] X cond|x > Q<
N/ T
\ @ seqlr ~ U(0,2)] ,® DT’Ob[O.75L</.

seqlx == x 4 7]

/

Interprocedural Analysis

Interprocedural Analysis

e Two-vocabulary program properties

e P[x=5]=0.3isa property

o E[2x'+t']=2x+tis a two-vocabulary expectation invariant

Interprocedural Analysis

e Two-vocabulary program properties

e P[x=5]=0.3isa property

o E[2x'+t']=2x+tis a two-vocabulary expectation invariant

e One-vocabulary properties specify

Interprocedural Analysis

e Two-vocabulary program properties

e P[x=5]=0.3isa property
o E[2x'+t']=2x+tis a two-vocabulary expectation invariant

e One-vocabulary properties specify
e Two-vocabulary properties specify state transformers

Interprocedural Analysis

e Two-vocabulary program properties

e P[x=5]=0.3isa property

o E[2x'+t']=2x+tis a two-vocabulary expectation invariant

e One-vocabulary properties specify
e Two-vocabulary properties specify state transformers

e Two-vocabulary properties can be used as procedure
summaries

An Algebraic Approach

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

<M9 ;9 ®9 €009 p@9 @9 £9 l)

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

éM, ;9 ®9 €009 p@9 @9 £9 l)

Property universe

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

éM, ;9 ®9 €009 p@9 @9 £9 l)

Property universe

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

éM, ;9 ®9 €009 p@9 @9 £9 l)

Property universe

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

éM, ;9 ®9 €009 p@9 @9 £9 l)

Property universe

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

Property universe

(M,C,®,,¢,,8,U, 1,1)

Prob.-choice

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

Property universe

(M,C,®,,¢,,8,U, 1,1)

Prob.-choice

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

Property universe

(M,C,®,,0,,0,U,L,1)

& Bottom

Prob.-choice

An Algebraic Approach

e Any static analysis method performs reasoning in some

space of program properties and property operations; such
property operations should obey algebraic laws

e skip should be interpreted as the identity element

Property universe

(M,C,®,,0,,0,U,L,1)

& Bottom

Prob.-choice

An Algebraic Approach

Semantic
Function

Data
Actions

Sequencing
Cond. choices
Prob. choices

Nondet. choices

Semantic
Algebra

skip
X = X + 5
r ~ Uniform(0,2)

Approximation

e

Concrete

Concrete
Semantics

Data
Actions

Concrete
Operators

skip
X = X + 5
r ~ Uniform(0,2)

Approximation

Concrete

Data

° Concrete
Actions Concrete Semantics Operators
skip
X == X + 5
r ~ Uniform(0,2)
Abstract
Abstract

Abstract Qperators
Semantics

Approximation

Concrete

Data

° Concrete
Actions Concrete Semantics Operators
skip O
X == X + 5
r ~ Uniform(0,2)
Abstract
Abstract

Abstract
Semantics

]Operators

Approximation

e

Concrete

Concrete
Semantics

(D

Data
Actions

Concrete
Operators

skip
X = X + 5
r ~ Uniform(0,2)

Approximate

Abstract
Operators

Abstract

-

Abstract
Semantics

General Analysis Algorithm

e Solve an equation system
extracted from the control-
flow hyper-graph

e Chaotic-iteration strategy
e Widening

e The frameworlk furnishes the
analysis implementation

S[vO] >seq[x:=1](S[v1])

S[vl] >cond[x>0](S[v2],S[v6])
S[v2] >seq[r~U(0,2)]1(S[v3])
S[v3] >prob[0.75]1(S[v4],S[v5])
S[v4] >seq[x:=x-r](S[v1])
S[v5] >seq[x:=x+r](S[v1])
S{ve] >1

seqlx :=x — 1]

ol

/

oo)seqlz = 1] =® cond[x > Q<
\ @ seq[r ~ U(0,2)] ,@ D7‘01)[0.75L</.

seqlx == x 4 7]

Technical Summary

e A blending of ideas from prior work on

e static analysis of single-procedure probabilistic programs

e interprocedural dataflow analysis of standard programs

e Especially

e the separation of data & control-flow randomness
e backward analysis on control-flow hyper-graphs
e two-vocabulary program properties

e an algebraic approach

Instantiations

Bayesian inference: compute the posterior distribution
e abstract programs as distribution transformers matrices

Markov decision problem: compute the optimal expected
reward

e abstract programs as real numbers (reward gain)
Linear expectation-invariant analysis

e abstract programs as pairs of polyhedra (relational domain)

Future Work

e Design more efficient analysis algorithms to exploit all
algebraic laws

e Find useful coarser abstractions for Bayesian inference by
analogy with the techniques for predicate abstraction

e Use the framework to design new analysis for expected
resource analysis and side-channel attack analysis

