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What is probabilistic programming?



Randomized Algorithms Cryptography Protocols

Cognitive ModelsBayesian Modeling
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Probabilistic Programming

x !:= 1; 
while x > 0 do 
  r ~ Uniform(0,2); 
  if prob(0.75) then 
    x !:= x - r 
  else 
    x !:= x + r 
  fi 
od

• An example: an asymmetric 1d random walk
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Probabilistic Programming

x !:= 1; 
while x > 0 do 
  r ~ Uniform(0,2); 
  if prob(0.75) then 
    x !:= x - r 
  else 
    x !:= x + r 
  fi 
od

Data Randomness

Control-flow Randomness

• An example: an asymmetric 1d random walk



Why is static analysis useful?



Bayesian Inference

What is the probability that I am poorly prepared but end up with a good mood?



Bayesian Inference

repeat do 
  D !:= 0 [0.6] D !:= 1; 
  P !:= 0 [0.7] P !:= 1; 
  if D !== 0 !&& P !== 0 then 
    G !:= 0 [0.95] G !:= 1 
  else if D !== 1 !&& P !== 1 then 
    G !:= 0 [0.05] G !:= 1 
  else if D !== 0 !&& P !== 1 then 
    G !:= 0 [0.5] G !:= 1

  else 
    G !:= 0 [0.6] G !:= 1 
  fi; 
  if G !== 0 then 
    M !:= 0 [0.9] M !:= 1 
  else 
    M !:= 0 [0.3] M !:= 1 
  fi 
until P !== 0 !&& M !== 1



Sampling-base Techniques

• Rejection Sampling, Markov Chain Monte Carlo, etc. 

• sample multiple times to approximate the distribution 



Sampling-base Techniques

• Rejection Sampling, Markov Chain Monte Carlo, etc. 

• sample multiple times to approximate the distribution 

• Two concerns: 

• not a sound guarantee — only suggests some property 

• may sample incredibly many times to get a good precision



Bayesian Inference

• The probability that I am poorly prepared but end up with a 
good mood is about 0.15 

• Rejection sampling needs 1/0.15=6.7 rounds to obtain an 
accepting sample 

• For some networks, the expectation is incredibly large (>1018)
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• Formally prove a program satisfies some properties 

• Eg: 

• Bayesian inference on general probabilistic programs 

• expected running time analysis 

• lower bound analysis for probability of post-conditions

Safe & Sound



Contributions

• Developed an algebraic framework for dataflow analysis of 
first-order probabilistic programs 

• Reformulated Bayesian inference & Markov decision problem 
in the framework 

• Developed a novel expectation-invariant analysis by 
instantiating the framework 

• Implemented an effective prototype



Example: Expectation Invariants
x !:= 1; 
while x > 0 do 
  r ~ Uniform(0,2); 
  if prob(0.75) then 
    x !:= x - r 
  else 
    x !:= x + r 
  fi 
od
x !:= 1; t !:= 0; 
while x > 0 do 
  r ~ Uniform(0,2); 
  if prob(0.75) then 
    x !:= x - r 
  else 
    x !:= x + r 
  fi; 
  t !:= t + 1 
od

• Want to know its expected 
termination time 

• Analyze expectation invariants of the 
loop body 

• E[r’]=1, E[t’]=t+1, E[x’]=x-0.5 

• E[2x’+t’]=2x+t 

• Martingales
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Data & Control-flow Randomness

• One can actually simulate control-flow randomness using 
data randomness 

• p ~ Uniform(0,1); if p < 0.75 then … else … fi 

• Design choice: flexibility for analysis designer 

• only keeping track of expectation still produces 
meaningful results
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Control-flow Graphs

• A traditional approach to separate data and control-flow

• Semantics could be defined as collections of paths

• What about probabilistic programs?
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Probabilistic Programs

• Paths are not independent

• A program specifies probability distributions over paths

• Need to reason about collections of paths!



Hyper-Graphs
x !:= 1; 
while x > 0 do 
  r ~ Uniform(0,2); 
  if prob(0.75) then 
    x !:= x - r 
  else 
    x !:= x + r 
  fi 
od

• Edges have one source and 
multiple destinations 

• cond. choices & prob. choices 
are modeled by hyper-edges 
with two destinations
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Hyper-Paths
• A hyper-path is made up of hyper-edges 

• A hyper-path represents a collection of paths 

• Distribution w.r.t. a hyper-path 

• Nondeterminism — sets of hyper-paths
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Forward Assertions
• Traditional static analyses can compute either forward or 

backward assertions

• Hyper-edges have one source and multiple destinations

• Asymmetry!

• Hyper-graphs prefer forward assertions 
• the semantics of a node v represents the computation 

that can continue from v
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Forward Assertions
x !:= 1; t !:= 0; 
while x > 0 do 
  r ~ Uniform(0,2); 
  if prob(0.75) then 
    x !:= x - r 
  else 
    x !:= x + r 
  fi; 
  t !:= t + 1 
od

• Assertions assigned to v6: 
• E[x’]=x, E[r’]=r, E[t’]=t

• Assertions assigned to v1: 
• E[2x’+t’]=2x+t, E[x’]>=-2

• Assertions assigned to v0: 
• E[t’]<=t+6



Backward Analysis

• The meaning of v4: E[2x’+t’]=2(x-1)+(t+1)=2x+t-1
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Backward Analysis

• The meaning of v4: E[2x’+t’]=2(x-1)+(t+1)=2x+t-1

• The meaning of v5: E[2x’+t’]=2(x+1)+(t+1)=2x+t+3

• We can compute the meaning of v3 by “combining” two: 

• E[2x’+t’]=0.75(2x+t-1)+0.25(2x+t+3)=2x+t 

• A hyper-edge is a transformer that computes properties of 
source as a function of properties of destinations
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Interprocedural Analysis
• Two-vocabulary program properties 

• P[x=5]=0.3 is a one-vocabulary property 

• E[2x’+t’]=2x+t is a two-vocabulary expectation invariant

• One-vocabulary properties specify states
• Two-vocabulary properties specify state transformers

• Two-vocabulary properties can be used as procedure 
summaries
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An Algebraic Approach
• Any static analysis method performs reasoning in some 

space of program properties and property operations; such 
property operations should obey algebraic laws 

• skip should be interpreted as the identity element

Property universe
Approx. order

Seq. Cond.-choice Prob.-choice

Nondet.-choice
Bottom

Identity



An Algebraic Approach

Semantic 
Algebra

Sequencing 
Cond. choices 
Prob. choices 

Nondet. choices

Data 
Actions

skip 
x !:= x + 5 

r ~ Uniform(0,2) 
…

Semantic 
Function
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Approximation

Concrete 
Semantics Concrete 

Operators
Data 

Actions

skip 
x !:= x + 5 

r ~ Uniform(0,2) 
…

Concrete

Abstract 
Semantics

Abstract
Abstract 

Operators

Approximate



General Analysis Algorithm
• Solve an equation system 

extracted from the control-
flow hyper-graph 

• Chaotic-iteration strategy 

• Widening 

• The framework furnishes the 
analysis implementation

S[v0]!>=seq[x!:=1](S[v1]) 
S[v1]!>=cond[x>0](S[v2],S[v6]) 
S[v2]!>=seq[r~U(0,2)](S[v3]) 
S[v3]!>=prob[0.75](S[v4],S[v5]) 
S[v4]!>=seq[x!:=x-r](S[v1]) 
S[v5]!>=seq[x!:=x+r](S[v1]) 
S[v6]!>=1



Technical Summary
• A blending of ideas from prior work on 

• static analysis of single-procedure probabilistic programs 

• interprocedural dataflow analysis of standard programs 

• Especially 

• the separation of data & control-flow randomness 

• backward analysis on control-flow hyper-graphs 

• two-vocabulary program properties 

• an algebraic approach



Instantiations
• Bayesian inference: compute the posterior distribution 

• abstract programs as distribution transformers matrices 

• Markov decision problem: compute the optimal expected 
reward 

• abstract programs as real numbers (reward gain) 

• Linear expectation-invariant analysis 

• abstract programs as pairs of polyhedra (relational domain)



Future Work

• Design more efficient analysis algorithms to exploit all 
algebraic laws 

• Find useful coarser abstractions for Bayesian inference by 
analogy with the techniques for predicate abstraction 

• Use the framework to design new analysis for expected 
resource analysis and side-channel attack analysis


