
2024.07.02

Di Wang and Thomas Reps
OOPSLA'24

Newtonian Program Analysis of
Probabilistic Programs

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

X = (p(1/3) ⊗ skip)
⊕ (p(2/3) ⊗ X ⊗ X)

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

X = (p(1/3) ⊗ skip)
⊕ (p(2/3) ⊗ X ⊗ X)

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

X = (p(1/3) ⊗ skip)
⊕ (p(2/3) ⊗ X ⊗ X)

 = "termination
probability is 1/2"
X

A Pipeline of Program Analysis

2

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

X = (p(1/3) ⊗ skip)
⊕ (p(2/3) ⊗ X ⊗ X)

 = "termination
probability is 1/2"
X

Also a procedure
summary for X

The Functional Approach
[Sharir and Pnueli 1981]

3

The Functional Approach
[Sharir and Pnueli 1981]

• Given possibly recursive procedures and an abstract semantics, i.e.,{Pi}

3

The Functional Approach
[Sharir and Pnueli 1981]

• Given possibly recursive procedures and an abstract semantics, i.e.,{Pi}

• a transformer on each control-flow edge, e.g., skip

3

The Functional Approach
[Sharir and Pnueli 1981]

• Given possibly recursive procedures and an abstract semantics, i.e.,{Pi}

• a transformer on each control-flow edge, e.g., skip

• extend () and combine () operations⊗ ⊕

3

The Functional Approach
[Sharir and Pnueli 1981]

• Given possibly recursive procedures and an abstract semantics, i.e.,{Pi}

• a transformer on each control-flow edge, e.g., skip

• extend () and combine () operations⊗ ⊕

• Find a procedure summary for each Pi

3

The Functional Approach
[Sharir and Pnueli 1981]

4

s x

φ[s, s] = Id

The Functional Approach
[Sharir and Pnueli 1981]

4

s x

φ[s, s] = Id

φ[s, s] = Id

The Functional Approach
[Sharir and Pnueli 1981]

4

s x

φ[s, s] = Id

s x

m1

mk
n

φ[s, n]φ[s,m
1]

φ[s,m
k]

f [m
1 , n]

f [mk, n]
⊕

φ[s, s] = Id

The Functional Approach
[Sharir and Pnueli 1981]

4

s x

φ[s, s] = Id

s x

m1

mk
n

φ[s, n]φ[s,m
1]

φ[s,m
k]

f [m
1 , n]

f [mk, n]
⊕

φ[s, s] = Id
φ[s, n] = (φ[s, m1] ⊗ f[m1, n])

⊕ …
⊕ (φ[s, mk] ⊗ f[mk, n])

The Functional Approach
[Sharir and Pnueli 1981]

4

s x

φ[s, s] = Id

s x

m1

mk
n

φ[s, n]φ[s,m
1]

φ[s,m
k]

f [m
1 , n]

f [mk, n]
⊕

s x

c r

φ[s, c]

φ[s, r]

s′ x′

φ[s′ , x′]

Inc,s′ Outx′ ,r

φ[s, s] = Id
φ[s, n] = (φ[s, m1] ⊗ f[m1, n])

⊕ …
⊕ (φ[s, mk] ⊗ f[mk, n])

The Functional Approach
[Sharir and Pnueli 1981]

4

s x

φ[s, s] = Id

s x

m1

mk
n

φ[s, n]φ[s,m
1]

φ[s,m
k]

f [m
1 , n]

f [mk, n]
⊕

s x

c r

φ[s, c]

φ[s, r]

s′ x′

φ[s′ , x′]

Inc,s′ Outx′ ,r

φ[s, s] = Id
φ[s, n] = (φ[s, m1] ⊗ f[m1, n])

⊕ …
⊕ (φ[s, mk] ⊗ f[mk, n])

φ[s, r] = φ[s, c] ⊗ Inc,s′

⊗ φ[s′ , x′] ⊗ Outx′ ,r

The Functional Approach
[Sharir and Pnueli 1981]

4

s x

φ[s, s] = Id

s x

m1

mk
n

φ[s, n]φ[s,m
1]

φ[s,m
k]

f [m
1 , n]

f [mk, n]
⊕

s x

c r

φ[s, c]

φ[s, r]

s′ x′

φ[s′ , x′]

Inc,s′ Outx′ ,r

φ[s, s] = Id
φ[s, n] = (φ[s, m1] ⊗ f[m1, n])

⊕ …
⊕ (φ[s, mk] ⊗ f[mk, n])

φ[s, r] = φ[s, c] ⊗ Inc,s′

⊗ φ[s′ , x′] ⊗ Outx′ ,r

procedure
summary

The Functional Approach
[Sharir and Pnueli 1981]

5

The Functional Approach
[Sharir and Pnueli 1981]

• Let represent the procedure summary of , i.e., Xi Pi φ[si, xi]

5

The Functional Approach
[Sharir and Pnueli 1981]

• Let represent the procedure summary of , i.e., Xi Pi φ[si, xi]

X1 = f1(X1, X2, …, XN)
X2 = f2(X1, X2, …, XN)

⋮
XN = fN(X1, X2, …, XN)

5

The Functional Approach
[Sharir and Pnueli 1981]

• Let represent the procedure summary of , i.e., Xi Pi φ[si, xi]

• Solve the equation system using successive approximation (Kleene or chaotic)

X1 = f1(X1, X2, …, XN)
X2 = f2(X1, X2, …, XN)

⋮
XN = fN(X1, X2, …, XN)

5

The Functional Approach
[Sharir and Pnueli 1981]

• Let represent the procedure summary of , i.e., Xi Pi φ[si, xi]

• Solve the equation system using successive approximation (Kleene or chaotic)

X1 = f1(X1, X2, …, XN)
X2 = f2(X1, X2, …, XN)

⋮
XN = fN(X1, X2, …, XN)

5⃗⊥

The Functional Approach
[Sharir and Pnueli 1981]

• Let represent the procedure summary of , i.e., Xi Pi φ[si, xi]

• Solve the equation system using successive approximation (Kleene or chaotic)

X1 = f1(X1, X2, …, XN)
X2 = f2(X1, X2, …, XN)

⋮
XN = fN(X1, X2, …, XN)

5⃗⊥

Termination-Probability Analysis

6

Termination-Probability Analysis

• Abstract semantics: Termination probability on [0,1]

6

Termination-Probability Analysis

• Abstract semantics: Termination probability on [0,1]

6

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)

Termination-Probability Analysis

• Abstract semantics: Termination probability on [0,1]

• Transformers: = 1, = 1/3skip prob(1/3)

6

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)

Termination-Probability Analysis

• Abstract semantics: Termination probability on [0,1]

• Transformers: = 1, = 1/3skip prob(1/3)

• Extend (): Multiplication⊗

6

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)

Termination-Probability Analysis

• Abstract semantics: Termination probability on [0,1]

• Transformers: = 1, = 1/3skip prob(1/3)

• Extend (): Multiplication⊗

• Combine (): Addition⊕

6

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)

Termination-Probability Analysis

• Abstract semantics: Termination probability on [0,1]

• Transformers: = 1, = 1/3skip prob(1/3)

• Extend (): Multiplication⊗

• Combine (): Addition⊕

6

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)

X =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X

Termination-Probability Analysis

• Abstract semantics: Termination probability on [0,1]

• Transformers: = 1, = 1/3skip prob(1/3)

• Extend (): Multiplication⊗

• Combine (): Addition⊕

6

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)

X =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X

κ(0) = 0

κ(1) =
1
3

⋅ 1 +
2
3

⋅ κ(0) ⋅ κ(0) =
1
3

κ(2) =
1
3

⋅ 1 +
2
3

⋅ κ(1) ⋅ κ(1) =
11
27

⋮

κ(∞) =
1
2

Newton's Method for Finding Roots

7

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

7

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

7

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

7

xi

f(xi)

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

7

xi

f(xi)

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

7

xi

f(xi)

xi+1

f(xi+1)

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

7

xi

f(xi)

xi+1

f(xi+1)

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

7

xi

f(xi)

xi+1

f(xi+1)

xi+2

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

• Given a function , its derivative and an initial

, repeatedly perform

f f′

x0 xi+1 = xi −
f(xi)
f′ (xi)

7

xi

f(xi)

xi+1

f(xi+1)

xi+2

Newton's Method for Finding Roots

• A way to find successively better
approximations of a root a function

• Given a function , its derivative and an initial

, repeatedly perform

f f′

x0 xi+1 = xi −
f(xi)
f′ (xi)

7

xi

f(xi)

xi+1

f(xi+1)

xi+2

Create a linear model to find
a better approximation

Termination-Probability Analysis
via Newton's Method

X =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X

8

Termination-Probability Analysis
via Newton's Method

• Reformulate the problem as root-finding: X =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X

f(X) =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X − X

f′ (X) =
4
3

⋅ X − 1

8

Termination-Probability Analysis
via Newton's Method

• Reformulate the problem as root-finding:

• Newton's method:

v(i+1) = ν(i) −
f(ν(i))
f′ (ν(i))

=
2ν(i)2 − 1
4ν(i) − 3

X =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X

f(X) =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X − X

f′ (X) =
4
3

⋅ X − 1

8

Termination-Probability Analysis
via Newton's Method

• Reformulate the problem as root-finding:

• Newton's method:

v(i+1) = ν(i) −
f(ν(i))
f′ (ν(i))

=
2ν(i)2 − 1
4ν(i) − 3

X =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X

f(X) =
1
3

⋅ 1 +
2
3

⋅ X ⋅ X − X

f′ (X) =
4
3

⋅ X − 1

ν(0) = 0

ν(1) =
2ν(0)2 − 1
4ν(0) − 3

=
1
3

ν(2) =
2ν(1)2 − 1
4ν(1) − 3

=
7
15

⋮

ν(∞) =
1
2

8

Kleene vs Newton
which converges faster?

9

Kleene vs Newton
which converges faster?

9

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

10

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Kleene iteration

⃗κ(0) = ⃗⊥
⃗κ(i+1) = ⃗f(⃗κ(i))

10

⃗⊥

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Kleene iteration

⃗κ(0) = ⃗⊥
⃗κ(i+1) = ⃗f(⃗κ(i))

• Newton iteration

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗f(⃗ν(i)) ⊕ LinearCorrectionTerm(⃗f , ⃗ν(i))

10

⃗⊥

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Kleene iteration

⃗κ(0) = ⃗⊥
⃗κ(i+1) = ⃗f(⃗κ(i))

• Newton iteration

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗f(⃗ν(i)) ⊕ LinearCorrectionTerm(⃗f , ⃗ν(i))

10

⃗⊥

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

11

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Esparza et al. had to tackle several issues:

11

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Esparza et al. had to tackle several issues:

• Real-valued equations → Algebraic semiring

• Numeric multiplication → Extend ()⊗

• Numeric addition → Combine ()⊕

11

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Esparza et al. had to tackle several issues:

• Real-valued equations → Algebraic semiring

• Numeric multiplication → Extend ()⊗

• Numeric addition → Combine ()⊕

• Root finding vs fixed-point finding?

11

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Esparza et al. had to tackle several issues:

• Real-valued equations → Algebraic semiring

• Numeric multiplication → Extend ()⊗

• Numeric addition → Combine ()⊕

• Root finding vs fixed-point finding?

• Derivatives?

11

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

12

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

12

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

Leibniz product rule

12

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Leibniz product rule

12

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Leibniz product rule

12 is some such
that

a ⊖ b c
b ⊕ c = a

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Linear correction term

Leibniz product rule

12 is some such
that

a ⊖ b c
b ⊕ c = a

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Linear correction term

Leibniz product rule
Really a differential: f(X) ν f′ (ν) ⊗ Y

12 is some such
that

a ⊖ b c
b ⊕ c = a

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Linear correction term

Leibniz product rule
Really a differential: f(X) ν f′ (ν) ⊗ Y

D 𝖼𝗈𝗇𝗌𝗍 |ν (Y) = 0
D X |ν (Y) = Y

D(g(X) ⊕ h(X)) |ν (Y) = Dg(X) |ν (Y) ⊕ Dh(X) |ν (Y)
D(g(X) ⊗ h(X)) |ν (Y) = (Dg(X) |ν (Y) ⊗ h(ν))

⊕ (g(ν) ⊗ Dh(X) |ν (Y))

12 is some such
that

a ⊖ b c
b ⊕ c = a

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Linear correction term

Leibniz product rule
Really a differential: f(X) ν f′ (ν) ⊗ Y

D 𝖼𝗈𝗇𝗌𝗍 |ν (Y) = 0
D X |ν (Y) = Y

D(g(X) ⊕ h(X)) |ν (Y) = Dg(X) |ν (Y) ⊕ Dh(X) |ν (Y)
D(g(X) ⊗ h(X)) |ν (Y) = (Dg(X) |ν (Y) ⊗ h(ν))

⊕ (g(ν) ⊗ Dh(X) |ν (Y))

Semiring constant 0

12 is some such
that

a ⊖ b c
b ⊕ c = a

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Linear correction term

Leibniz product rule
Really a differential: f(X) ν f′ (ν) ⊗ Y

D 𝖼𝗈𝗇𝗌𝗍 |ν (Y) = 0
D X |ν (Y) = Y

D(g(X) ⊕ h(X)) |ν (Y) = Dg(X) |ν (Y) ⊕ Dh(X) |ν (Y)
D(g(X) ⊗ h(X)) |ν (Y) = (Dg(X) |ν (Y) ⊗ h(ν))

⊕ (g(ν) ⊗ Dh(X) |ν (Y))

X ⊗ X ν (Y ⊗ ν) ⊕ (ν ⊗ Y)

Semiring constant 0

12 is some such
that

a ⊖ b c
b ⊕ c = a

Newton's Method for Program Analysis
[Esparza, Kiefer, and Luttenberger 2008]

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)

• Newton iteration for program analysis:

⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where is the least solution to⃗Y (i)

⃗Y = (⃗f(⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) (⃗Y)

Linear correction term

Leibniz product rule
Really a differential: f(X) ν f′ (ν) ⊗ Y

D 𝖼𝗈𝗇𝗌𝗍 |ν (Y) = 0
D X |ν (Y) = Y

D(g(X) ⊕ h(X)) |ν (Y) = Dg(X) |ν (Y) ⊕ Dh(X) |ν (Y)
D(g(X) ⊗ h(X)) |ν (Y) = (Dg(X) |ν (Y) ⊗ h(ν))

⊕ (g(ν) ⊗ Dh(X) |ν (Y))

X ⊗ X ν (Y ⊗ ν) ⊕ (ν ⊗ Y)

b ⊗ X ⊗ X ⊗ c ν (b ⊗ Y ⊗ ν ⊗ c) ⊕ (b ⊗ ν ⊗ Y ⊗ c)

Semiring constant 0

12 is some such
that

a ⊖ b c
b ⊕ c = a

Termination-Probability Analysis
via Newton's Method for Program Analysis

13

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)

13

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)
where

Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

δ = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ ν ⊗ ν) ⊖ ν

Linearization at ν

13

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)
where

Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

δ = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ ν ⊗ ν) ⊖ ν

Linearization at ν

xi

f(xi)

13

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)
where

Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

δ = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ ν ⊗ ν) ⊖ ν

Linearization at ν

xi

f(xi)

13

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)
where

Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

δ = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ ν ⊗ ν) ⊖ ν

Linearization at ν

xi

f(xi)

13

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)
where

Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

δ = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ ν ⊗ ν) ⊖ ν

Linearization at ν

xi

f(xi)
Each summand has only one variable

→
The equation becomes linear!

13

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

14

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

p(1/3) p(2/3)

skip
call X

call X
14

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

p(1/3) p(2/3)

skip
call X

call X

p(2/3)

call Y

call Yδ

p(2/3)

ν

ν

14

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

p(1/3) p(2/3)

skip
call X

call X

p(2/3)

call Y

call Yδ

p(2/3)

ν

ν

• At 1st call, perform
exploration; at 2nd call,
use the summary ()ν

14

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

p(1/3) p(2/3)

skip
call X

call X

p(2/3)

call Y

call Yδ

p(2/3)

ν

ν

• At 1st call, perform
exploration; at 2nd call,
use the summary ()ν

• At 1st call, use ; at 2nd
call, perform
exploration

ν

14

Termination-Probability Analysis
via Newton's Method for Program Analysis

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

p(1/3) p(2/3)

skip
call X

call X

p(2/3)

call Y

call Yδ

p(2/3)

ν

ν

• At 1st call, perform
exploration; at 2nd call,
use the summary ()ν

• At 1st call, use ; at 2nd
call, perform
exploration

ν

• Combine via ⊕
14

Termination-Probability Analysis
via Newton's Method for Program Analysis

15

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

Termination-Probability Analysis
via Newton's Method for Program Analysis

15

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

Y = (
1
3

+
2
3

ν2 − ν) + (
2
3

⋅ Y ⋅ ν) + (
2
3

⋅ ν ⋅ Y)

Y =
−2ν2 + 3ν − 1

4ν − 3

Use the abstract
semantics

Termination-Probability Analysis
via Newton's Method for Program Analysis

15

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

Y = (
1
3

+
2
3

ν2 − ν) + (
2
3

⋅ Y ⋅ ν) + (
2
3

⋅ ν ⋅ Y)

Y =
−2ν2 + 3ν − 1

4ν − 3

Newton iteration for program analysis:

ν(i+1) = ν(i) ⊕ Y(i) =
2ν(i)2 − 1
4ν(i) − 3

Use the abstract
semanticsSolve the linear

equation

So far so good?

16

So far so good?

• Each Newton iteration generates a system of linear equations:

16

Y1 = g1(Y1, Y2, …, YN)
Y2 = g2(Y1, Y2, …, YN)

⋮
YN = gN(Y1, Y2, …, YN)

So far so good?

• Each Newton iteration generates a system of linear equations:

16

Y1 = g1(Y1, Y2, …, YN)
Y2 = g2(Y1, Y2, …, YN)

⋮
YN = gN(Y1, Y2, …, YN)

Each has the form: g
a ⊕ (b1 ⊗ Yi1 ⊗ c1) ⊕ (b2 ⊗ Yi2 ⊗ c2) ⊕ … ⊕ (bk ⊗ Yik ⊗ ck)

So far so good?

• Each Newton iteration generates a system of linear equations:

• However, Newton's method is efficient only if one can solve linear equations efficiently

16

Y1 = g1(Y1, Y2, …, YN)
Y2 = g2(Y1, Y2, …, YN)

⋮
YN = gN(Y1, Y2, …, YN)

Each has the form: g
a ⊕ (b1 ⊗ Yi1 ⊗ c1) ⊕ (b2 ⊗ Yi2 ⊗ c2) ⊕ … ⊕ (bk ⊗ Yik ⊗ ck)

So far so good?

• Each Newton iteration generates a system of linear equations:

• However, Newton's method is efficient only if one can solve linear equations efficiently

• [Reps, Turetsky, and Prabhu 2016] proposed a general solution that uses tensor products
16

Y1 = g1(Y1, Y2, …, YN)
Y2 = g2(Y1, Y2, …, YN)

⋮
YN = gN(Y1, Y2, …, YN)

Each has the form: g
a ⊕ (b1 ⊗ Yi1 ⊗ c1) ⊕ (b2 ⊗ Yi2 ⊗ c2) ⊕ … ⊕ (bk ⊗ Yik ⊗ ck)

Probabilistic Programs

17

Probabilistic Programs

• We have already seen probabilistic branching

17

if
| prob(1/3) → cc := 1
| prob(1/3) → cc := 2
| prob(1/3) → cc := 3
fi

cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)

Probabilistic Programs

• We have already seen probabilistic branching

• True randomness

17

if
| prob(1/3) → cc := 1
| prob(1/3) → cc := 2
| prob(1/3) → cc := 3
fi

cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)

Probabilistic Programs

• We have already seen probabilistic branching

• True randomness

• A distribution of execution paths

17

if
| prob(1/3) → cc := 1
| prob(1/3) → cc := 2
| prob(1/3) → cc := 3
fi

cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)

Probabilistic Programs

• We have already seen probabilistic branching

• True randomness

• A distribution of execution paths

• Probabilistic nondeterminism

17

if
| prob(1/3) → cc := 1
| prob(1/3) → cc := 2
| prob(1/3) → cc := 3
fi

cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)

Probabilistic Programs

18

if
| true → pc := 1
| true → pc := 2
| true → pc := 3
fi

pc :∈ {1,2,3}

Probabilistic Programs

• There are also other kinds of branching

18

if
| true → pc := 1
| true → pc := 2
| true → pc := 3
fi

pc :∈ {1,2,3}

Probabilistic Programs

• There are also other kinds of branching

• Dijkstra's Guarded Command Language (GCL)

18

if
| true → pc := 1
| true → pc := 2
| true → pc := 3
fi

pc :∈ {1,2,3}

Probabilistic Programs

• There are also other kinds of branching

• Dijkstra's Guarded Command Language (GCL)

• A set of execution paths

18

if
| true → pc := 1
| true → pc := 2
| true → pc := 3
fi

pc :∈ {1,2,3}

Probabilistic Programs

• There are also other kinds of branching

• Dijkstra's Guarded Command Language (GCL)

• A set of execution paths

• Demonic nondeterminism

18

The Monty-Hall Puzzle
as a probabilistic program

19

The Monty-Hall Puzzle
as a probabilistic program

• Programs can use multiple kinds of branching

19

pc :∈ {1,2,3};
cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3);
ac :∈ {1,2,3} \ {pc,cc};
if switch then
 cc :∈ {1,2,3} \ {cc,ac}
fi

The Monty-Hall Puzzle
as a probabilistic program

• Programs can use multiple kinds of branching

• McIver and Morgan's probabilistic Guarded
Command Language (pGCL)

19

pc :∈ {1,2,3};
cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3);
ac :∈ {1,2,3} \ {pc,cc};
if switch then
 cc :∈ {1,2,3} \ {cc,ac}
fi

The Monty-Hall Puzzle
as a probabilistic program

• Programs can use multiple kinds of branching

• McIver and Morgan's probabilistic Guarded
Command Language (pGCL)

• Combine three kinds of branching:

• Probabilistic

• Demonic

• Conditional

19

Termination-Probability Analysis
of Boolean programs

20

Termination-Probability Analysis
of Boolean programs

• Problem: A semiring has only one combine () operation⊕

20

proc X begin
 if b
 then skip
 else
 if prob(1/3)
 then b := true
 else b := false
 fi;
 call X
 fi
end

Termination-Probability Analysis
of Boolean programs

• Problem: A semiring has only one combine () operation⊕

20

proc X begin
 if b
 then skip
 else
 if prob(1/3)
 then b := true
 else b := false
 fi;
 call X
 fi
end

proc Xtrue begin
 skip
end

proc Xfalse begin
 if prob(1/3)
 then call Xtrue
 else call Xfalse
 fi
end

A workaround

Termination-Probability Analysis
of Boolean programs

• Problem: A semiring has only one combine () operation⊕

20

proc X begin
 if b
 then skip
 else
 if prob(1/3)
 then b := true
 else b := false
 fi;
 call X
 fi
end

proc Xtrue begin
 skip
end

proc Xfalse begin
 if prob(1/3)
 then call Xtrue
 else call Xfalse
 fi
end

A workaround

• Introduce extra procedures to
encode different states

Termination-Probability Analysis
of Boolean programs

• Problem: A semiring has only one combine () operation⊕

20

proc X begin
 if b
 then skip
 else
 if prob(1/3)
 then b := true
 else b := false
 fi;
 call X
 fi
end

proc Xtrue begin
 skip
end

proc Xfalse begin
 if prob(1/3)
 then call Xtrue
 else call Xfalse
 fi
end

A workaround

• Introduce extra procedures to
encode different states

• Cannot handle infinite state
spaces

Towards Multiple Combine Operations

21

Towards Multiple Combine Operations

21

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

Towards Multiple Combine Operations

21

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

Towards Multiple Combine Operations

21

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

• Confluence is interpreted by , implicitly⊕

Towards Multiple Combine Operations

21

Program Control-flow graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

• Confluence is interpreted by , implicitly⊕
• To support multiple combine operations, we need to
first distinguish different confluences in the graph

Control-flow Hyper-graph

22

Control-flow Hyper-graph

22

if
| true → x :∈ (1 @ 1/2 | 2 @ 1/2)
| true → x :∈ (3 @ 1/2 | 4 @ 1/2)
fi

Control-flow Hyper-graph

22

if
| true → x :∈ (1 @ 1/2 | 2 @ 1/2)
| true → x :∈ (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Control-flow Hyper-graph

22

if
| true → x :∈ (1 @ 1/2 | 2 @ 1/2)
| true → x :∈ (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Hyper-edge
(for confluence)

Control-flow Hyper-graph

22

if
| true → x :∈ (1 @ 1/2 | 2 @ 1/2)
| true → x :∈ (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Hyper-edge
(for confluence)

x'=1 x'=2 x'=3 x'=4

{ , }p(1/2) p(1/2) p(1/2) p(1/2)

Control-flow Hyper-graph

22

if
| true → x :∈ (1 @ 1/2 | 2 @ 1/2)
| true → x :∈ (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Hyper-edge
(for confluence)

x'=1 x'=2 x'=3 x'=4

{ , }p(1/2) p(1/2) p(1/2) p(1/2)

Hyper-path
(like a tree)

Tree Expression

23

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Control-flow
hyper-graph

Tree Expression

23

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

x ≔ 1

true true

p(1/2) p(1/2) p(1/2)p(1/2)

x ≔ 2 x ≔ 3 x ≔ 4

Control-flow
hyper-graph Tree expression

(graphic)

Tree Expression

23

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

x ≔ 1

true true

p(1/2) p(1/2) p(1/2)p(1/2)

x ≔ 2 x ≔ 3 x ≔ 4

ndet(prob[1/2](seq[x:=1](ε), seq[x:=2](ε)),
prob[1/2](seq[x:=3](ε), seq[x:=4](ε)))

Control-flow
hyper-graph Tree expression

(graphic)

Tree expression
(literal)

Tree Expression

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

24

Tree Expression

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

Control-flow
hyper-graph

24

Tree Expression

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

p(1/3) p(2/3)

skip call X

call X

Control-flow
hyper-graph

Tree expression
(graphic)

24

Tree Expression

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

p(1/3) p(2/3)

skip call X

call X

X = prob[1/3](seq[skip](ε), call[X](call[X](ε)))

Control-flow
hyper-graph

Tree expression
(graphic)

Tree expression
(literal)

24

Towards Multiple Combine Operations

25

Program
Control-flow

hyper-graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

Towards Multiple Combine Operations

25

Program
Control-flow

hyper-graph
System of

dataflow equations
Solution

(dataflow facts)

Abstraction
engine

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

How to interpret tree expressions, algebraically?

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

26

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

26

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩
A semiring for the
abstract semantics

26

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩
A semiring for the
abstract semantics

Conditional &
probabilistic
branching

26

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩
A semiring for the
abstract semantics

Conditional &
probabilistic
branching

nondeterministic
branching

26

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩
A semiring for the
abstract semantics

Conditional &
probabilistic
branching

nondeterministic
branching • interprets abort0

26

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩
A semiring for the
abstract semantics

Conditional &
probabilistic
branching

nondeterministic
branching • interprets abort0

• interprets skip1

26

Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩
A semiring for the
abstract semantics

Conditional &
probabilistic
branching

nondeterministic
branching • interprets abort0

• interprets skip1

• Algebraic laws:

• ap⊕ b = b1−p⊕ a
• aφ⊕ b = b¬φ⊕ a
• …… 26

Interpretation of Tree Expressions
using a Markov Algebra

27

Interpretation of Tree Expressions
using a Markov Algebra

ℐ(prob[p](E1, E2)) = ℐ(E1)p⊕ ℐ(E2)
ℐ(cond[φ](E1, E2)) = ℐ(E1)φ⊕ ℐ(E2)

ℐ(ndet(E1, E2)) = ℐ(E1) ⊓ ℐ(E2)
ℐ(seq[act](E)) = act ⊗ ℐ(E)
ℐ(call[Xi](E)) = Xi ⊗ ℐ(E)

ℐ(ε) = 1

27

Interpretation of Tree Expressions
using a Markov Algebra

ℐ(prob[p](E1, E2)) = ℐ(E1)p⊕ ℐ(E2)
ℐ(cond[φ](E1, E2)) = ℐ(E1)φ⊕ ℐ(E2)

ℐ(ndet(E1, E2)) = ℐ(E1) ⊓ ℐ(E2)
ℐ(seq[act](E)) = act ⊗ ℐ(E)
ℐ(call[Xi](E)) = Xi ⊗ ℐ(E)

ℐ(ε) = 1

X = prob[1/3](seq[skip](ε), call[X](call[X](ε)))

27

Interpretation of Tree Expressions
using a Markov Algebra

ℐ(prob[p](E1, E2)) = ℐ(E1)p⊕ ℐ(E2)
ℐ(cond[φ](E1, E2)) = ℐ(E1)φ⊕ ℐ(E2)

ℐ(ndet(E1, E2)) = ℐ(E1) ⊓ ℐ(E2)
ℐ(seq[act](E)) = act ⊗ ℐ(E)
ℐ(call[Xi](E)) = Xi ⊗ ℐ(E)

ℐ(ε) = 1

X = prob[1/3](seq[skip](ε), call[X](call[X](ε)))

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)

27

Interpretation of Tree Expressions
using a Markov Algebra

ℐ(prob[p](E1, E2)) = ℐ(E1)p⊕ ℐ(E2)
ℐ(cond[φ](E1, E2)) = ℐ(E1)φ⊕ ℐ(E2)

ℐ(ndet(E1, E2)) = ℐ(E1) ⊓ ℐ(E2)
ℐ(seq[act](E)) = act ⊗ ℐ(E)
ℐ(call[Xi](E)) = Xi ⊗ ℐ(E)

ℐ(ε) = 1

X = prob[1/3](seq[skip](ε), call[X](call[X](ε)))

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)

For the termination-probability analysis:

a ⊕ b = a + b
a ⊗ b = a ⋅ b
ap⊕ b = p ⋅ a + (1 − p) ⋅ b

⋯ 27

Interpretation of Tree Expressions
using a Markov Algebra

ℐ(prob[p](E1, E2)) = ℐ(E1)p⊕ ℐ(E2)
ℐ(cond[φ](E1, E2)) = ℐ(E1)φ⊕ ℐ(E2)

ℐ(ndet(E1, E2)) = ℐ(E1) ⊓ ℐ(E2)
ℐ(seq[act](E)) = act ⊗ ℐ(E)
ℐ(call[Xi](E)) = Xi ⊗ ℐ(E)

ℐ(ε) = 1

X = prob[1/3](seq[skip](ε), call[X](call[X](ε)))

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)

X =
1
3

⋅ (1 ⋅ 1) +
2
3

⋅ (X ⋅ X ⋅ 1)

For the termination-probability analysis:

a ⊕ b = a + b
a ⊗ b = a ⋅ b
ap⊕ b = p ⋅ a + (1 − p) ⋅ b

⋯ 27

Towards Multiple Combine Operations

28

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

Towards Multiple Combine Operations

28

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)

Towards Multiple Combine Operations

28

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Equation
solver

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)

How to solve such equations, algebraically?

Linearization of Tree Expressions
for Newton's Method

29

Linearization of Tree Expressions
for Newton's Method

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)
D(gϕ⊕ h) = Dgϕ⊕ Dh
D(g ⊓ h) = ((g ⊕ Dg) ⊓ (h ⊕ Dh)) ⊖ (g ⊓ h)

29

Linearization of Tree Expressions
for Newton's Method

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)
D(gϕ⊕ h) = Dgϕ⊕ Dh
D(g ⊓ h) = ((g ⊕ Dg) ⊓ (h ⊕ Dh)) ⊖ (g ⊓ h)

29

Carefully developed to render
Newton's method sound

Linearization of Tree Expressions
for Newton's Method

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)
D(gϕ⊕ h) = Dgϕ⊕ Dh
D(g ⊓ h) = ((g ⊕ Dg) ⊓ (h ⊕ Dh)) ⊖ (g ⊓ h)

29

Carefully developed to render
Newton's method sound

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)

Linearization of Tree Expressions
for Newton's Method

• Syntactic linearization:
D(g ⊕ h) = Dg ⊕ Dh
D(g ⊗ h) = (Dg ⊗ h) ⊕ (g ⊗ Dh)
D(gϕ⊕ h) = Dgϕ⊕ Dh
D(g ⊓ h) = ((g ⊕ Dg) ⊓ (h ⊕ Dh)) ⊖ (g ⊓ h)

29

Carefully developed to render
Newton's method sound

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)
where

Y = δ ⊕ (01/3⊕ ((Y ⊗ ν) ⊕ (ν ⊗ Y)))

δ = ((skip ⊗ 1)1/3⊕ (ν ⊗ ν ⊗ 1)) ⊖ ν

Linearization at ν

Linearization of Tree Expressions
for Newton's Method

30

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1) Y = δ ⊕ (01/3⊕ ((Y ⊗ ν) ⊕ (ν ⊗ Y)))

Linearization at ν

Linearization of Tree Expressions
for Newton's Method

30

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1) Y = δ ⊕ (01/3⊕ ((Y ⊗ ν) ⊕ (ν ⊗ Y)))

Linearization at ν

p(1/3) p(2/3)

skip call X

call X

Linearization of Tree Expressions
for Newton's Method

30

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1) Y = δ ⊕ (01/3⊕ ((Y ⊗ ν) ⊕ (ν ⊗ Y)))

Linearization at ν

p(1/3) p(2/3)

skip call X

call X

p(1/3)
p(2/3)

0

call Y

call Y

δ

ν

ν

Linearization of Tree Expressions
for Newton's Method

30

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1) Y = δ ⊕ (01/3⊕ ((Y ⊗ ν) ⊕ (ν ⊗ Y)))

Linearization at ν

p(1/3) p(2/3)

skip call X

call X

p(1/3)
p(2/3)

0

call Y

call Y

δ

ν

ν

Every root-to-leaf path has
at most one call!

Towards Multiple Combine Operations

31

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Newton's
method

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

Towards Multiple Combine Operations

31

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Newton's
method

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

For Newton's method to be efficient, we require
an analysis-supplied strategy for solving
linearized equations

Towards Multiple Combine Operations

31

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Newton's
method

proc X begin
 if prob(1/3)
 then skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

skip
call X

call X

For Newton's method to be efficient, we require
an analysis-supplied strategy for solving
linearized equations

For example, termination-probability analysis:
• LP solvers
• BDD/ADD-based solvers

Case Studies (Selected)

32

Case Studies (Selected)

32Termination-probability analysis

Case Studies (Selected)

32Termination-probability analysis Moment-of-reward analysis

Summary

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Newton's
method

33

Summary

• Key takeaway: Extend Newtonian Program Analysis to support more combine operations

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Newton's
method

33

Summary

• Key takeaway: Extend Newtonian Program Analysis to support more combine operations

• enabling analysis of programs with probabilistic, demonic, and conditional branching

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Newton's
method

33

Summary

• Key takeaway: Extend Newtonian Program Analysis to support more combine operations

• enabling analysis of programs with probabilistic, demonic, and conditional branching

• More in the paper:

• Support of loops and unstructured control-flow

• More case studies (e.g., expectation-invariant analysis)

Program
Control-flow
hyper-graph

System of
dataflow equations

Solution
(dataflow facts)

Markov
algebra

Newton's
method

33

