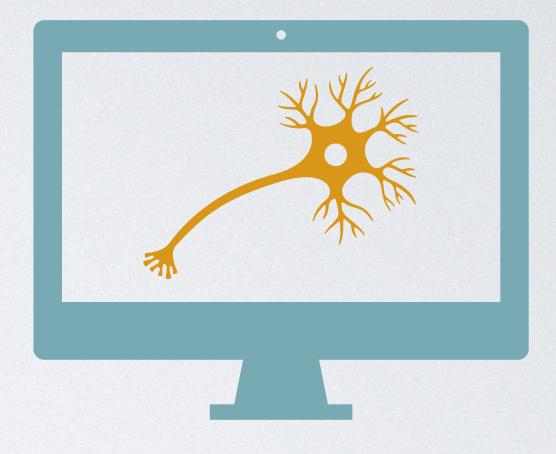
Algebraic Program Analysis of Probabilistic Programs

Joint Work with Jan Hoffmann and Thomas Reps

Di Wang Peking University wangdi95@pku.edu.cn Apr 10, 2024

Probabilistic Systems are Becoming Pervasive

Randomized Algorithms (improve efficiency)



Cyber-Physical Systems (model uncertainty)

Artificial Intelligence (describe statistical models)

Application: Randomized Quicksort

- Improve efficiency
- From $\Theta(n^2)$ to $\Theta(n \log n)$ (expected)
- Samplesort
 - Use >1 random samples as pivots

Image source: https://geekfactorial.blogspot.com/2016/08/randomized-quick-sort-algorithm.html.

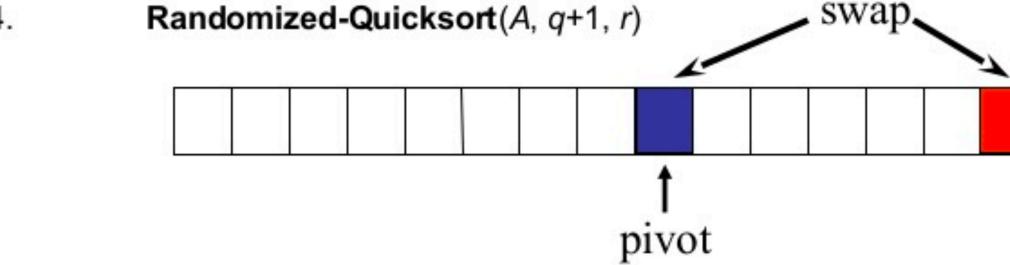
Randomized Quicksort

Randomized-Partition(A, p, r)

- 1. $i \leftarrow Random(p, r)$
- 2. exchange $A[r] \leftrightarrow A[i]$
- 3. return Partition(A, p, r)

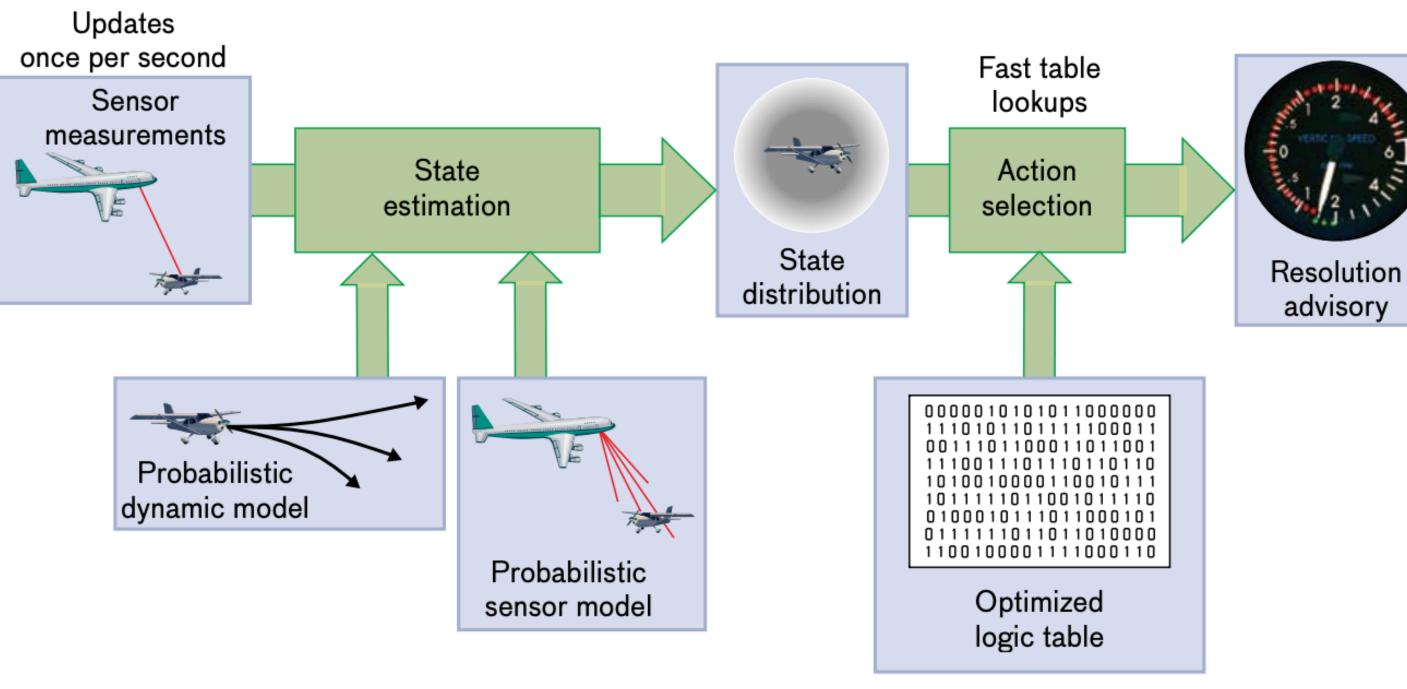
Randomized-Quicksort(A, p, r)

- 1. if p < r
- then $q \leftarrow \text{Randomized-Partition}(A, p, r)$
- **Randomized-Quicksort**(*A*, *p* , *q*-1) 3.
- **Randomized-Quicksort**(A, q+1, r) 4.



Application: Airborne Collision Avoidance

- Model uncertainty
- Probabilistic dynamics
- Probabilistic sensors
- High-confidence system



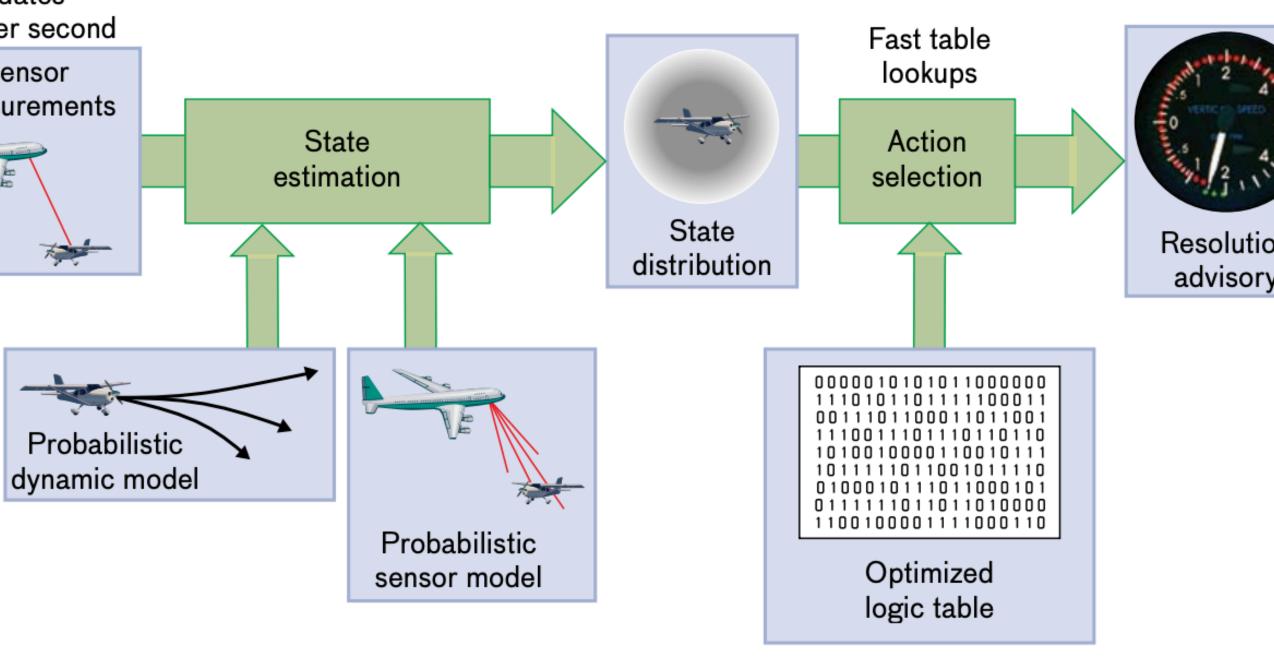
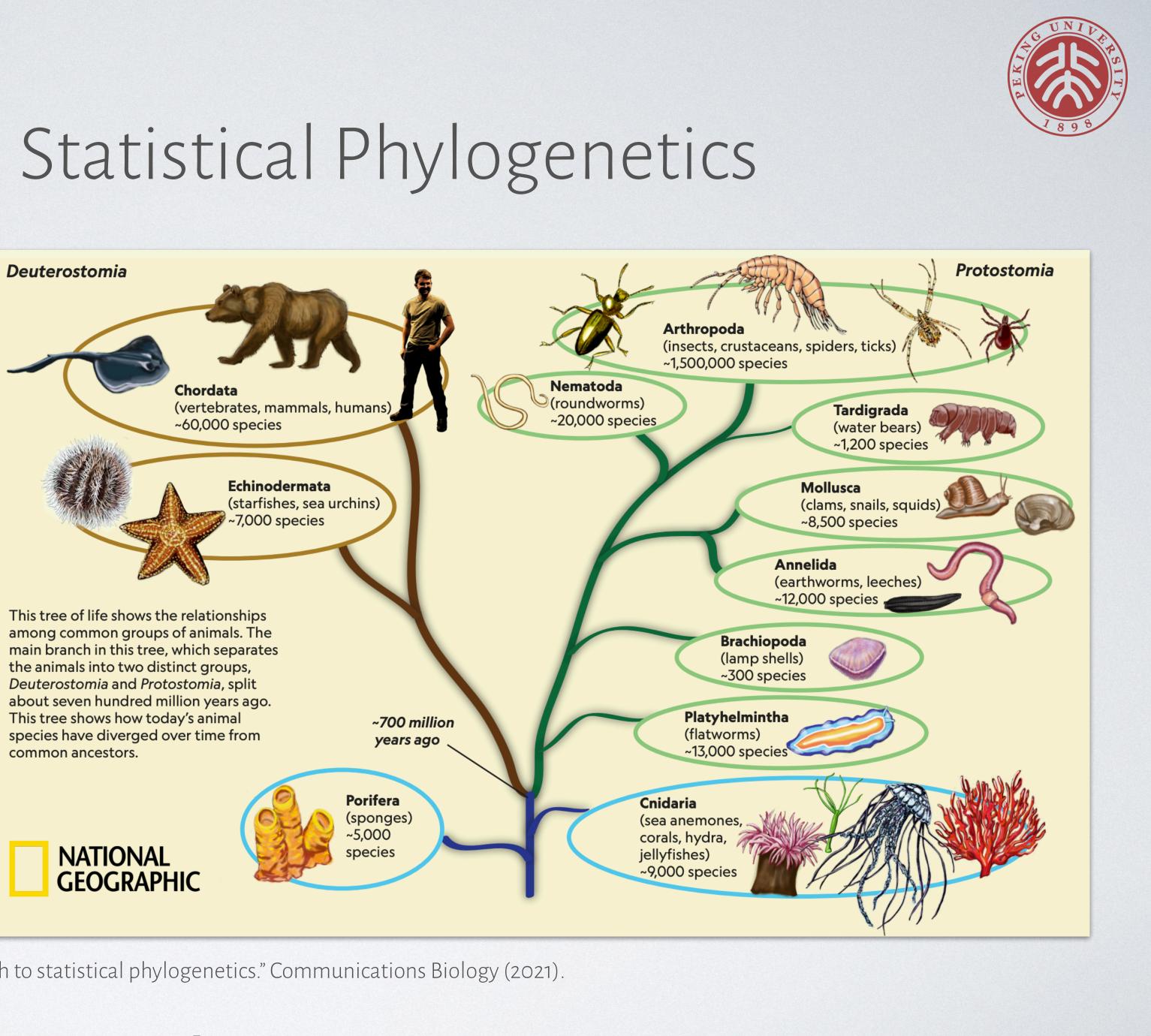
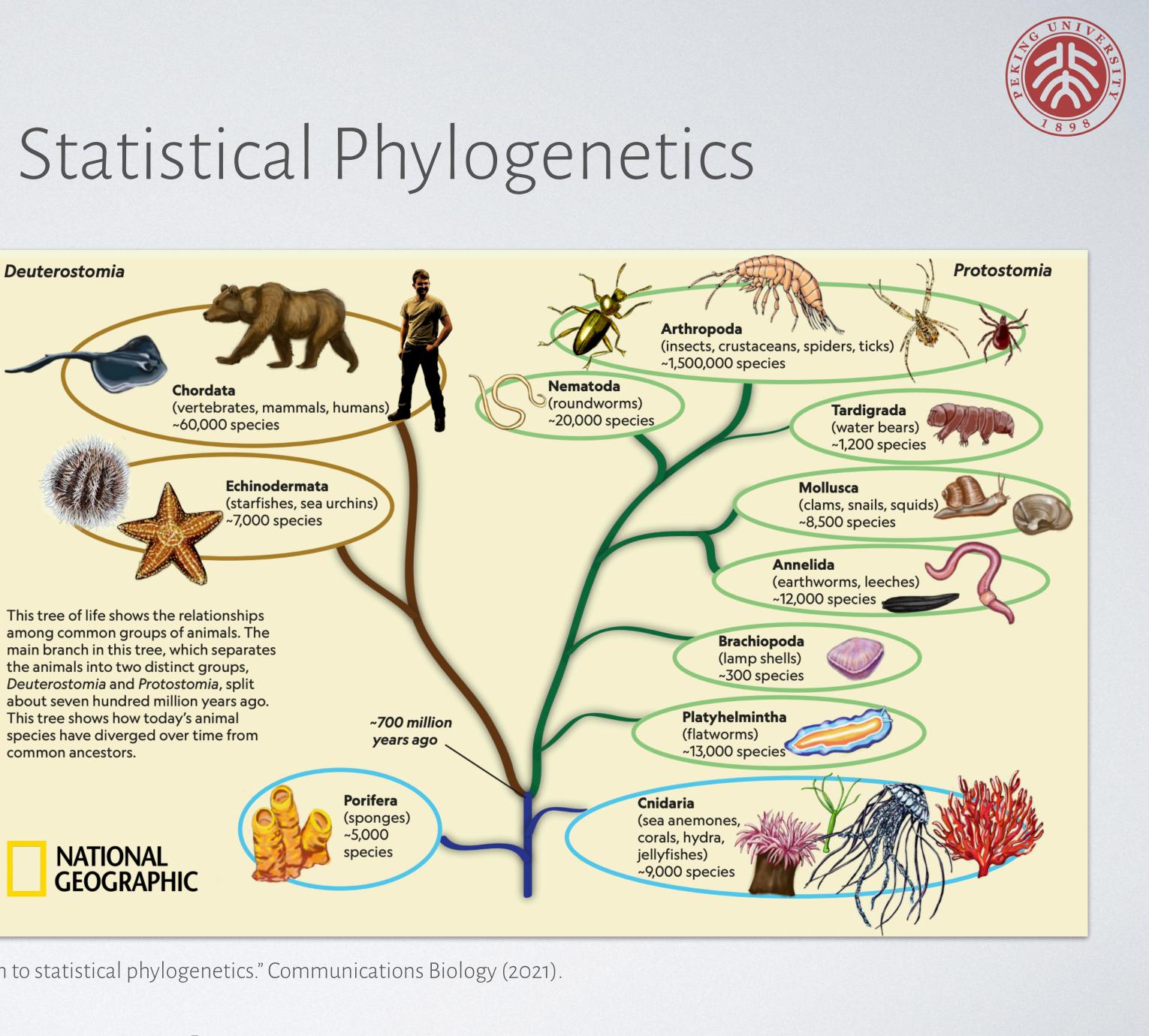


Image source: Kochenderfer, et al. "Next-Generation Airborne Collision Avoidance System." Lincoln Laboratory Journal (2012).

Application: Statistical Phylogenetics

- Describe statistical models
- Automated reasoning
- Apply Bayesian inference to infer evolutionary history
- Solve previously intractable problems





Ronquist, et al. "Universal probabilistic programming offers a powerful approach to statistical phylogenetics." Communications Biology (2021). Image source: https://www.nationalgeographic.org/media/tree-life/.

Probabilistic Programs

Draw random **data** from distributions

Image sources: https://www.libertystorch.info/2022/02/21/the-grab-bag/; https://www.stockvault.net/photo/179872/at-a-crossroads-decisions-and-choices-concept-with-large-arrow-signs.

Change **control-flow** at random

Probabilistic Programs

- True randomness
- A distribution on execution paths
- Probabilistic nondeterminism

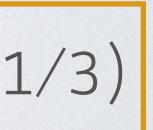
if | prob(1/3) → choice = 1 | prob(1/3) → choice = 2 | prob(1/3) → choice = 3 fi

Probabilistic Programs

- True randomness
- A distribution on execution paths
- Probabilistic nondeterminism

if $prob(1/3) \rightarrow choice = 1$ $prob(1/3) \rightarrow choice = 2$ | $prob(1/3) \rightarrow choice = 3$ fi

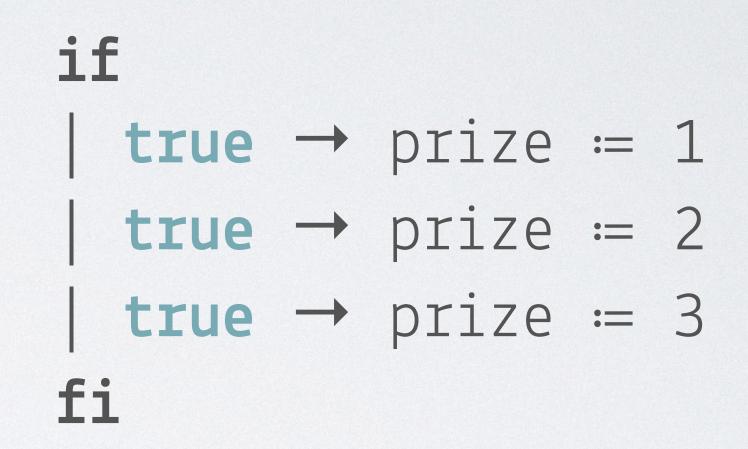
choice :∈_p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)



Demonic Programs

• Dijkstra's Guarded Command Language (GCL)

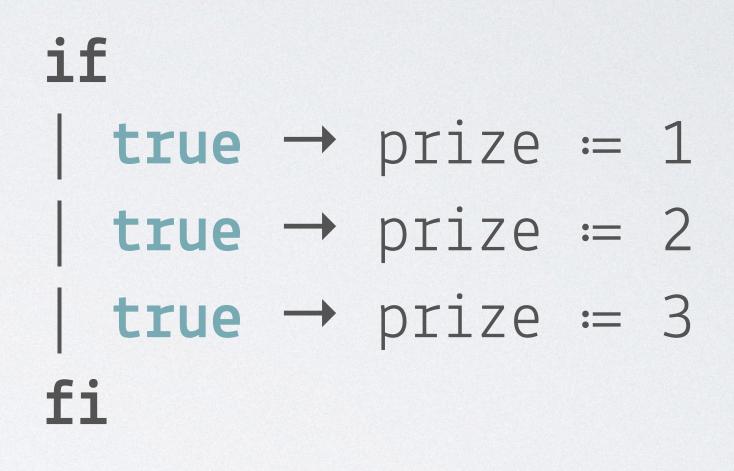
- A set of execution paths
- Demonic nondeterminism



Demonic Programs

• Dijkstra's Guarded Command Language (GCL)

- A set of execution paths
- Demonic nondeterminism



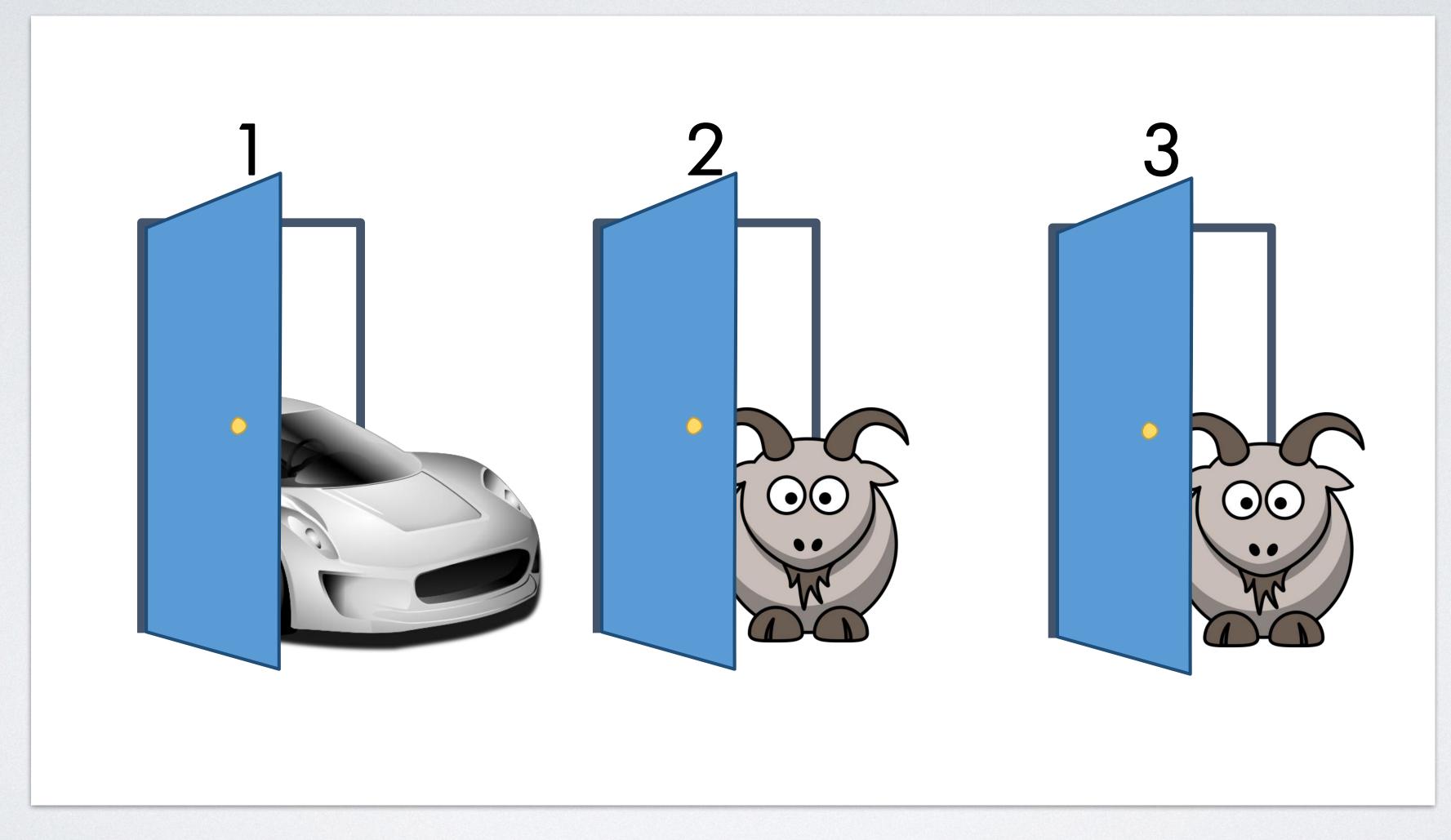
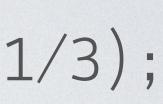


Image source: Maria Gorinova's Advances in Programming Languages (Guest Lecture) slides on Probabilistic Programming.

Mclver and Morgan's probabilistic Guarded Command Language (pGCL)

- Combine two forms of nondeterminism:
 - Probabilistic
 - Demonic

prize : $\in_d \{1, 2, 3\};$ choice :∈_p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3); host : $\in_d \{1, 2, 3\} \setminus \{\text{prize, choice}\};$ if switch then choice : $\in_d \{1, 2, 3\} \setminus \{choice, host\}$ fi

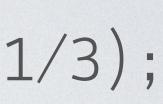


Mclver and Morgan's probabilistic Guarded Command Language (pGCL)

- Combine two forms of nondeterminism:
 - Probabilistic
 - Demonic

prize : $\in_d \{1, 2, 3\};$ choice :∈_p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3); host : $\in_d \{1, 2, 3\} \setminus \{\text{prize, choice}\};$ if switch then choice : $\in_d \{1, 2, 3\} \setminus \{choice, host\}$ fi

 $\mathbb{P}(choice = prize) = ?$

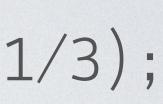


Mclver and Morgan's probabilistic Guarded Command Language (pGCL)

- Combine two forms of nondeterminism:
 - Probabilistic
 - Demonic
- "Demons" minimize the probability

prize : $\in_d \{1, 2, 3\};$ choice :∈_p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3); host : $\in_d \{1, 2, 3\} \setminus \{\text{prize, choice}\};$ if switch then choice : $\in_d \{1, 2, 3\} \setminus \{choice, host\}$ fi

 $\mathbb{P}(choice = prize) = ?$



Example: Failure Modeling

Example: Failure Modeling

- An example of **probabilistic modeling** checking
- Send c messages, each with a failure probability 0.1

fail := FALSE; $C :\in_d \{0,1,2\};$ while not(fail) and c > 0 do fail :∈_p (TRUE @ 0.1 | FALSE @ 0.9); c := c - 1od

Example: Failure Modeling

- An example of **probabilistic modeling** checking
- Send c messages, each with a failure probability 0.1
- What is the probability of success?

fail := FALSE; $C :\in_d \{0,1,2\};$ while not(fail) and c > 0 do fail :∈_p (TRUE @ 0.1 | FALSE @ 0.9); c := c - 1od

 $\mathbb{P}(fail = FALSE) = ?$

• Program analysis introduces abstraction

Predicate Abstraction

• [c=0] is a Boolean variable

fail := FALSE; $[c=0] :\in_d {TRUE, FALSE};$ while not(fail) and not([c=0]) do fail :∈p (TRUE @ 0.1 | FALSE @ 0.9); $[c=0] : \in_a \{TRUE, FALSE\}$ od;

Program analysis introduces abstraction

Predicate Abstraction

• [c=0] is a Boolean variable

fail := FALSE; $[c=0] :\in_d {TRUE, FALSE};$ while not(fail) and not([c=0]) do fail :∈p (TRUE @ 0.1 | FALSE @ 0.9); $[c=0] : \in_a \{TRUE, FALSE\}$ od;

 $\mathbb{P}(fail = FALSE) = ?$

- Program analysis introduces **abstraction**
- Predicate Abstraction
 - [c=0] is a Boolean variable
- Abstraction nondeterminism
 - Maximize —> Upper bound
 - Minimize —> Lower bound

fail := FALSE; $[c=0] :\in_d {TRUE, FALSE};$ while not(fail) and not([c=0]) do fail :∈p (TRUE @ 0.1 | FALSE @ 0.9); $[c=0] : \in_a \{TRUE, FALSE\}$ od;

 $\mathbb{P}(fail = FALSE) = ?$

What is the probability that an assertion holds?

Examples

What is the probability that an assertion holds?

What is the expected value of an expression?

Examples

- What is the probability that an assertion holds?
 - What is the expected value of an expression?
- What is the expected time complexity of a program?

Examples

Challenge I: How to support multiple confluence operations?

- ... : Ep ...
- ... :Ed ...
 - : Ea ...

...

Semantic Algebras

• Kleene Algebras: A compositional and flexible framework for program semantics

Program Construct

A program S Branching between A and B Sequencing of A and B Iteration (i.e., loop) of A "abort", "skip"

Algebraic Representation

An interpretation \mathbb{S} of S into the algebra

 $A \oplus B$ $A \otimes B$

<u>0</u>, <u>1</u>

if				
tru	e →	Х	:=	1
tru	e →	Х	:=	2
tru	e →	Х	:=	3
fi				

if				
tru	e →	Х	:=	1
tru	e →	Х	:=	2
tru	e →	Х	:=	3
fi				

 $([true] \otimes x \coloneqq 1)$ $\bigoplus ([true] \otimes x \coloneqq 2)$ $\bigoplus ([true] \otimes x \coloneqq 3)$

if				
true	\rightarrow	Х	:=	1
true	\rightarrow	Х	:=	2
true	\rightarrow	Х	:=	3
fi				

if
 | prob(1/3) → x = 1
 | prob(1/3) → x = 2
 | prob(1/3) → x = 3
fi

 $([true] \otimes x \coloneqq 1)$ $\bigoplus ([true] \otimes x \coloneqq 2)$ $\bigoplus ([true] \otimes x \coloneqq 3)$

if				
true	\rightarrow	Х	:=	1
true	\rightarrow	Х	:=	2
true	\rightarrow	Х	:=	3
fi				

if
 | prob(1/3) → x = 1
 | prob(1/3) → x = 2
 | prob(1/3) → x = 3
fi

 $([true] \otimes x \coloneqq 1)$ $\bigoplus ([true] \otimes x \coloneqq 2)$ $\bigoplus ([true] \otimes x \coloneqq 3)$

 $([\operatorname{prob}(1/3)] \otimes x \coloneqq 1)$ $\bigoplus ([\operatorname{prob}(1/3)] \otimes x \coloneqq 2)$ $\bigoplus ([\operatorname{prob}(1/3)] \otimes x \coloneqq 3)$

Do Kleene Algebras Suffice? if $| true \rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2)$ | **true** → x :∈_p (3 @ 1/2 | 4 @ 1/2) fi

Do Kleene Algebras Suffice? if $| true \rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2)$ | true $\rightarrow x : \in_p (3 @ 1/2 | 4 @ 1/2)$ fi $(([\operatorname{prob}(1/2)] \otimes x \coloneqq 1) \oplus ([\operatorname{prob}(1/2)] \otimes x \coloneqq 2))$ $\bigoplus \left(([\operatorname{prob}(1/2)] \otimes x \approx 3) \bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 4) \right)$

if fi

 $= ([\operatorname{prob}(1/2)] \otimes x \approx 1)$

 $\bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 2)$

 $\bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 3)$

 $\bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 4)$

- $true \rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2)$ $| true \rightarrow x : \in_p (3 @ 1/2 | 4 @ 1/2)$
- $([\operatorname{prob}(1/2)] \otimes x \coloneqq 1) \oplus ([\operatorname{prob}(1/2)] \otimes x \coloneqq 2))$ $\bigoplus \left(([\operatorname{prob}(1/2)] \otimes x \approx 3) \bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 4) \right)$

Do Kleene Algebras Suffice?

if fi

 $= ([\operatorname{prob}(1/2)] \otimes x \approx 1)$

 $\bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 2)$

 $\bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 3)$

 $\bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 4)$

- | true $\rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2)$ | true $\rightarrow x : \in_p (3 @ 1/2 | 4 @ 1/2)$
- $([\operatorname{prob}(1/2)] \otimes x = 1) \oplus ([\operatorname{prob}(1/2)] \otimes x = 2))$ $\bigoplus \left(([\operatorname{prob}(1/2)] \otimes x \approx 3) \bigoplus ([\operatorname{prob}(1/2)] \otimes x \approx 4) \right)$
 - Probabilities sum up to 2!

Key observation: Probabilistic programs have multiple confluence operations

$\langle M, \sqsubseteq, \otimes, \phi \oplus, \Pi, 0, 1 \rangle$

Key observation: Probabilistic programs have multiple confluence operations

Program denotations form a CPO

$\left(M,\sqsubseteq,\otimes,_{\phi}\oplus,\Pi,\underline{0},\underline{1}\right)$

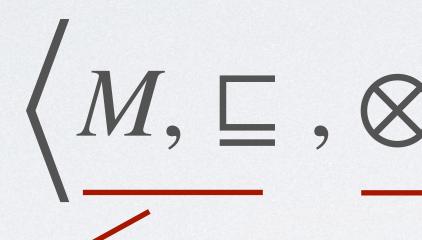
Key observation: Probabilistic programs have multiple confluence operations

Program denotations form a CPO

Sequencing, branching, and nondeterministic-choice

$\left\langle M, \sqsubseteq, \bigotimes, \phi \oplus, \Pi, \underline{0}, \underline{1} \right\rangle$

Key observation: Probabilistic programs have multiple confluence operations



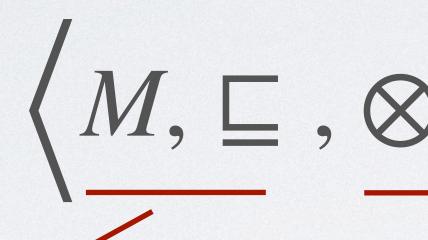
Program denotations form a CPO

Sequencing, branching, and nondeterministic-choice

Easy to extend with more confluence operations!

$\left\langle M, \sqsubseteq, \bigotimes, \phi \oplus, \Pi, \underline{0}, \underline{1} \right\rangle$

Key observation: Probabilistic programs have multiple confluence operations



Program denotations form a CPO

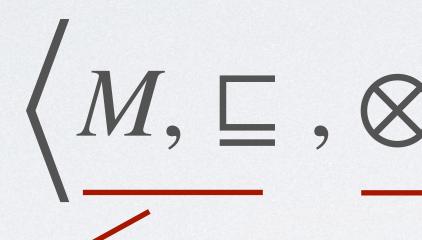
Sequencing, branching, and nondeterministic-choice

Easy to extend with more confluence operations!

 $M, \sqsubseteq, \otimes, \phi \oplus, \Pi, \underline{0}, \underline{1}$

0 interprets abort 1 interprets **skip**

Key observation: Probabilistic programs have multiple confluence operations



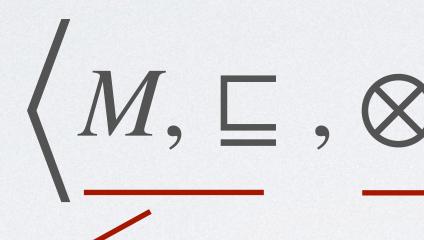
Program denotations form a CPO

Sequencing, branching, and nondeterministic-choice

Easy to extend with more confluence operations!

$\left\langle M, \sqsubseteq, \bigotimes, \phi \oplus, \Pi, \underline{0}, \underline{1} \right\rangle$

Key observation: Probabilistic programs have multiple confluence operations



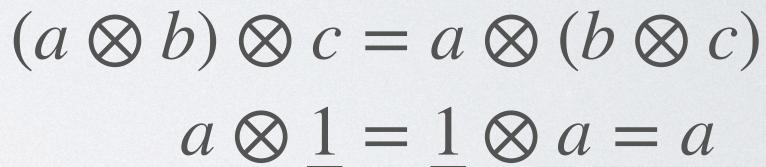
Program denotations form a CPO

Sequencing, branching, and nondeterministic-choice

Easy to extend with more confluence operations!

$\langle M, \sqsubseteq, \otimes, \phi \oplus, \Pi, \underline{0}, \underline{1} \rangle$

18



 $a_{\phi} \oplus b = b_{\overline{\phi}} \oplus a$

...

 $a \sqcap a = a$

if $| true \rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2)$ | true $\rightarrow x : \in_p (3 @ 1/2 | 4 @ 1/2)$ fi

if $| true \rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2)$ | true $\rightarrow x : \in_p (3 @ 1/2 | 4 @ 1/2)$ fi

$(x \coloneqq 1_{1/2} \bigoplus x \coloneqq 2) \prod (x \coloneqq 3_{1/2} \bigoplus x \coloneqq 4)$

if $| true \rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2)$ | true → x :∈_p (3 @ 1/2 | 4 @ 1/2) fi

while x>0 do $x : \in_p (x+1 @ 1/2 | x-1 @ 1/2)$ **0**d

$(x \coloneqq 1_{1/2} \bigoplus x \coloneqq 2) \prod (x \coloneqq 3_{1/2} \bigoplus x \coloneqq 4)$

if | **true** → x : \in_p (1 @ 1/2 | 2 @ 1/2) | **true** → x : \in_p (3 @ 1/2 | 4 @ 1/2) **fi**

while x>0 do x :∈_p (x+1 @ 1/2 | x-1 @ 1/2) od

$\mu S.((x \coloneqq x+1_{1/2} \bigoplus x \coloneqq x-1) \bigotimes S)_{[X>O]} \bigoplus skip$

if | true → x :∈_p (1 @ 1/2 | 2 @ 1/2) | true → x :∈_p (3 @ 1/2 | 4 @ 1/2) fi

while x>0 do x :∈p (x+1 @ 1/2 | x-1 @ 1/2) od

$(x \coloneqq 1_{1/2} \bigoplus x \coloneqq 2) \sqcap (x \coloneqq 3_{1/2} \bigoplus x \coloneqq 4)$

$\mu S.((x \coloneqq x+1_{1/2} \bigoplus x \coloneqq x-1) \bigotimes S)_{[X>O]} \bigoplus skip$

Recursive Program Scheme



Standard: *State* \rightarrow *State*

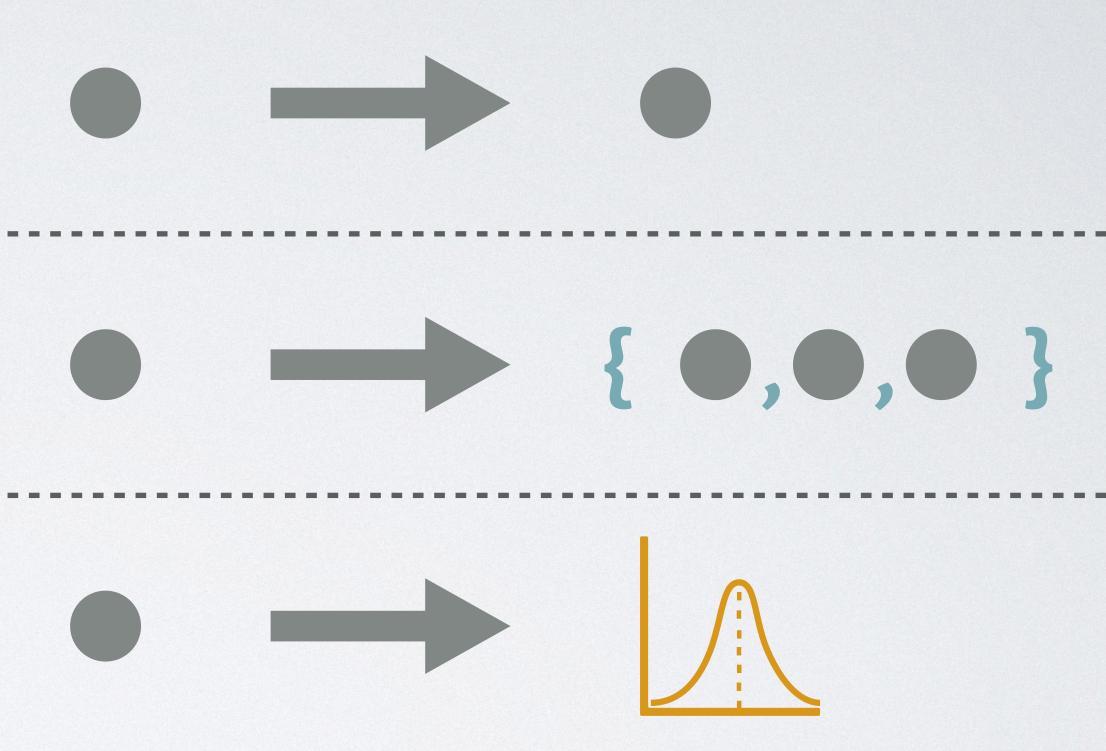
Standard: *State* \rightarrow *State*

 $GCL: State \rightarrow \mathscr{D}(State)$

Standard: State \rightarrow State

GCL: State $\rightarrow \mathscr{D}(State)$

Probabilistic: State $\rightarrow \mathbb{D}(State)$

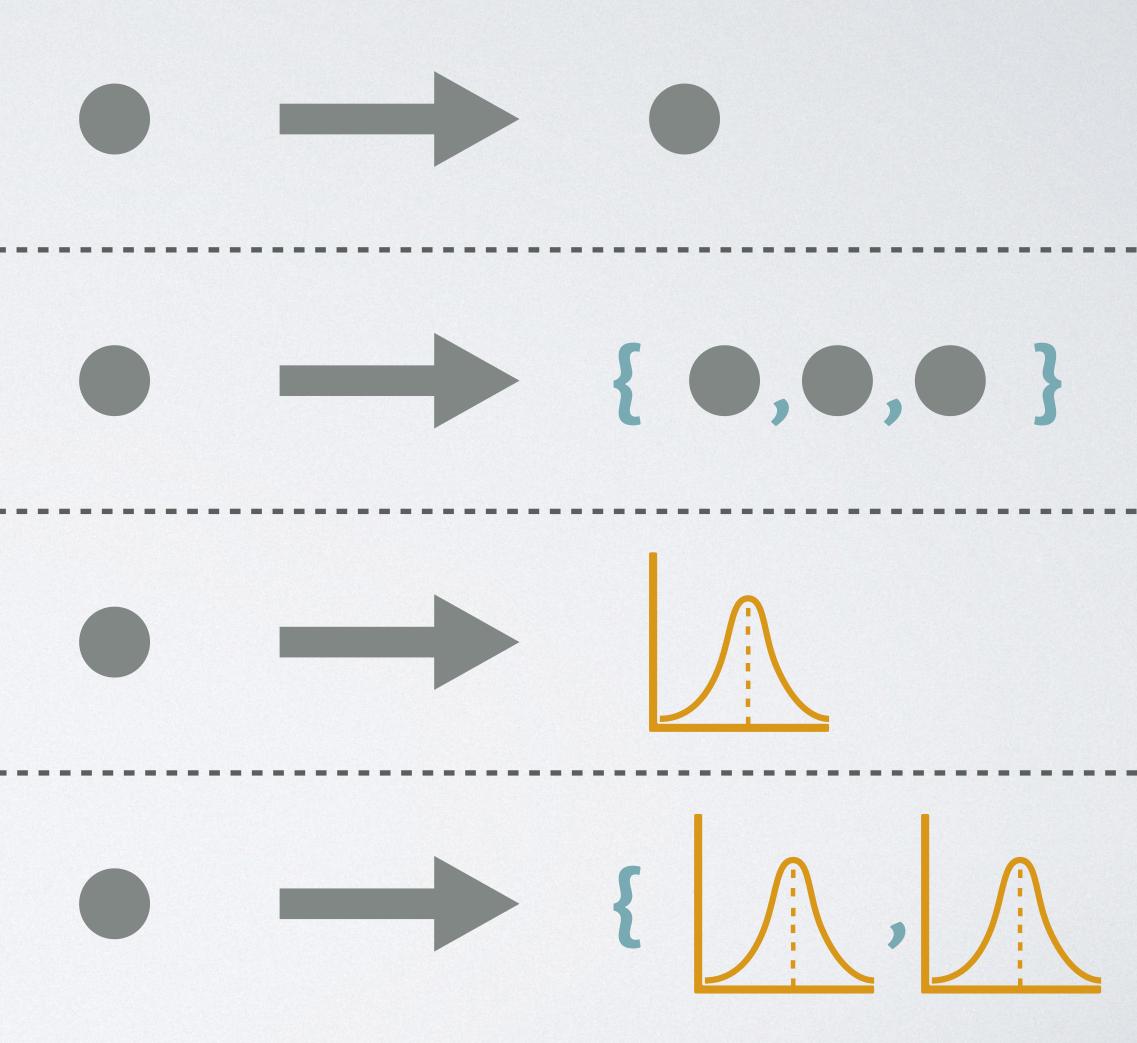


Standard: *State* \rightarrow *State*

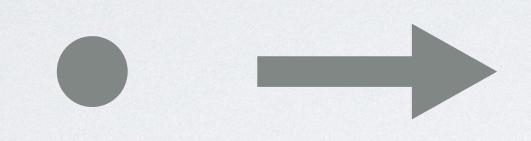
$GCL: State \rightarrow \wp(State)$

Probabilistic: State $\rightarrow \mathbb{D}(State)$

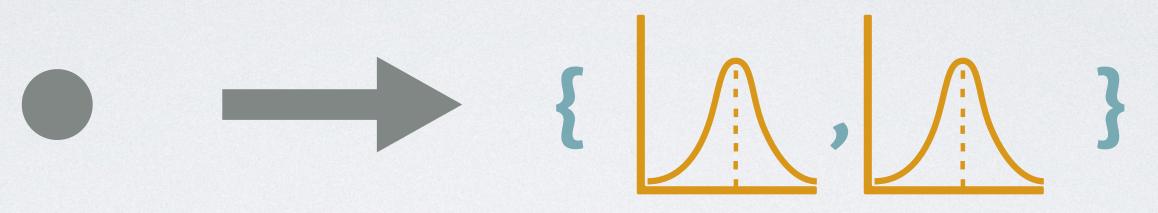
 $pGCL: State \rightarrow \mathcal{D}(\mathbb{D}(State))$

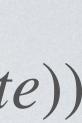


pGCL:



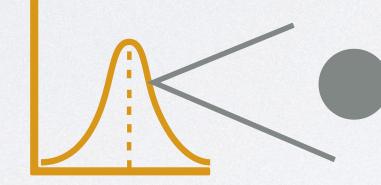
State $\rightarrow \mathscr{D}(\mathbb{D}(State))$

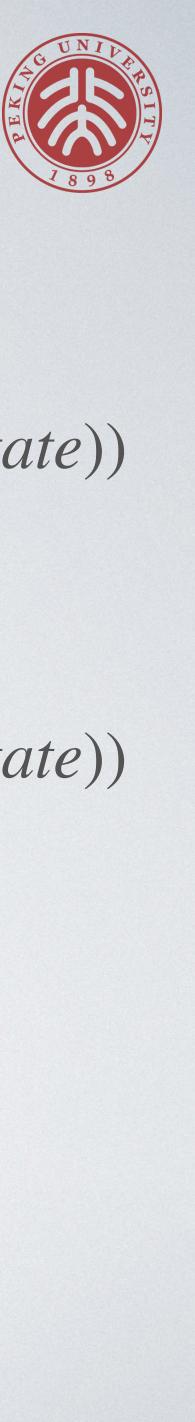




pGCL:

Cousot's Probabilistic Abstract Interpretation (PAI):





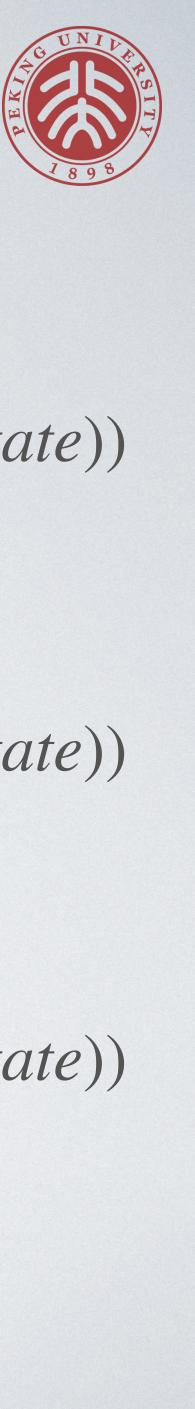
State $\rightarrow \mathscr{D}(\mathbb{D}(State))$

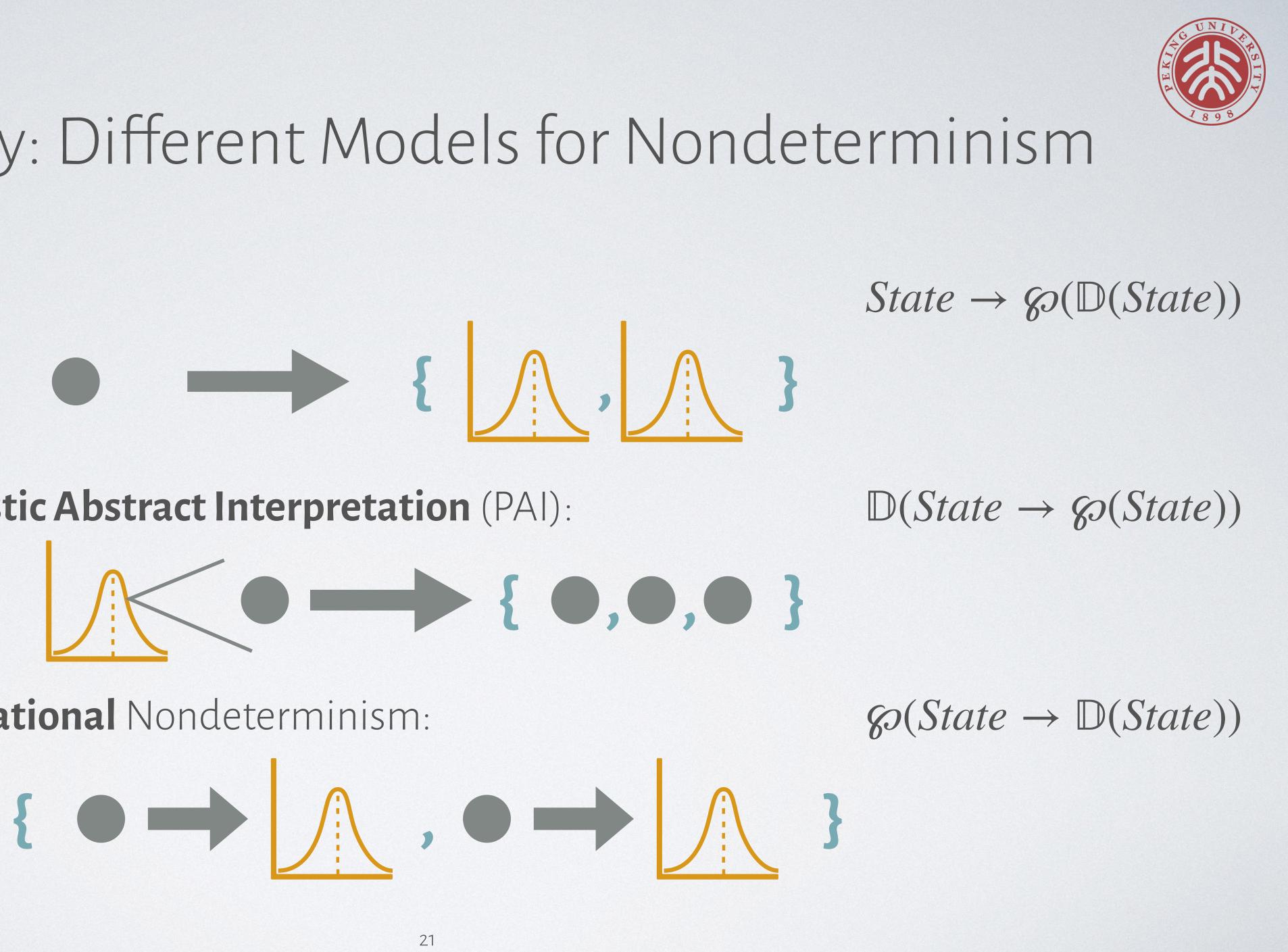
 $\mathbb{D}(State \rightarrow \mathscr{D}(State))$

• pGCL:

Cousot's Probabilistic Abstract Interpretation (PAI):

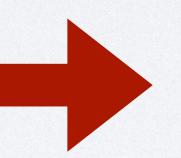
Compile-Time/Relational Nondeterminism:





Challenge II: How to construct recursive program schemes?

ile x>0 do
x :∈p (x+1 @ 1/2 | x-1 @ 1/2) while x>0 do od



 $\mu S.((x \coloneqq x+1_{1/2} \bigoplus x \coloneqq x-1) \bigotimes S)_{[X>O]} \bigoplus \mathbf{skip}$

A Control-Flow-Graph's Perspective

Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct

A program S The **control-flow graph** of *S*

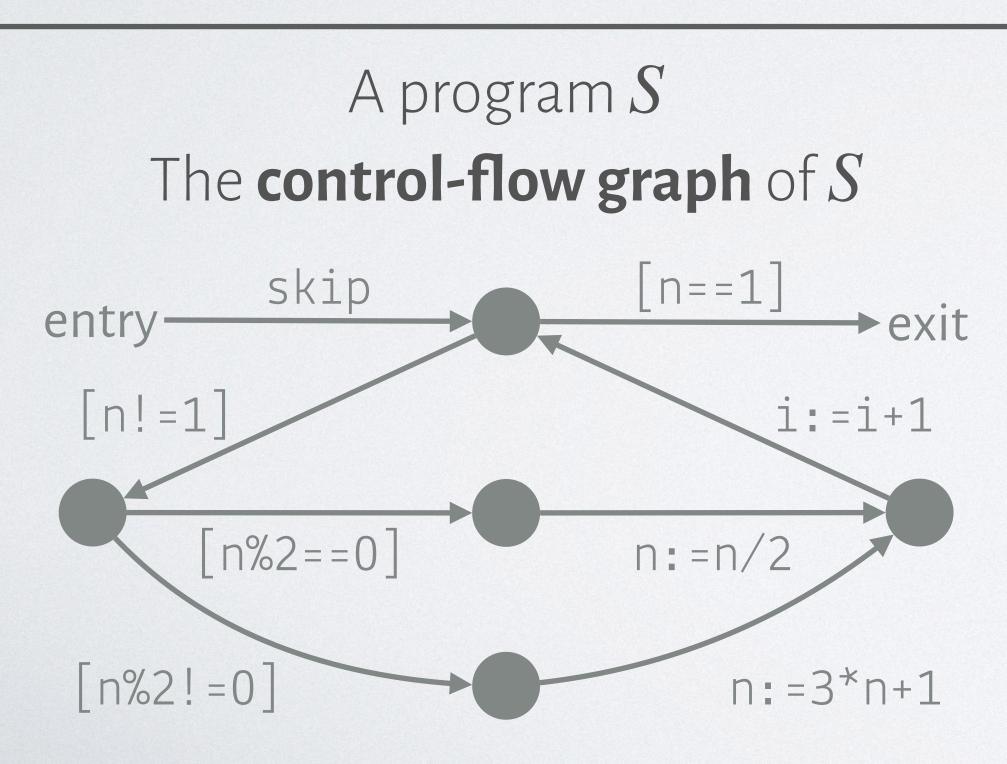
Algebraic Representation

An interpretation \mathbb{S} of S into the algebra A regular expression over $0, 1, \bigoplus, \otimes$, and *

A Control-Flow-Graph's Perspective

Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct



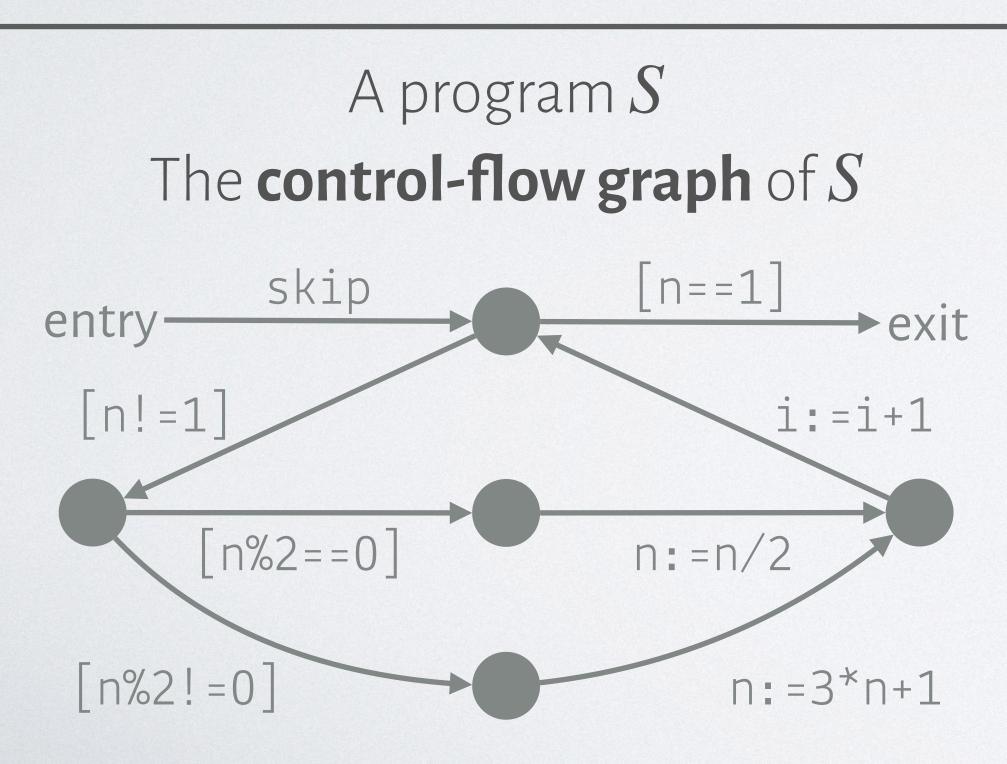
Algebraic Representation

An interpretation \mathbb{S} of S into the algebra A regular expression over $0, 1, \bigoplus, \otimes$, and *

A Control-Flow-Graph's Perspective

• Kleene Algebras are compatible with control-flow graphs via regular expressions

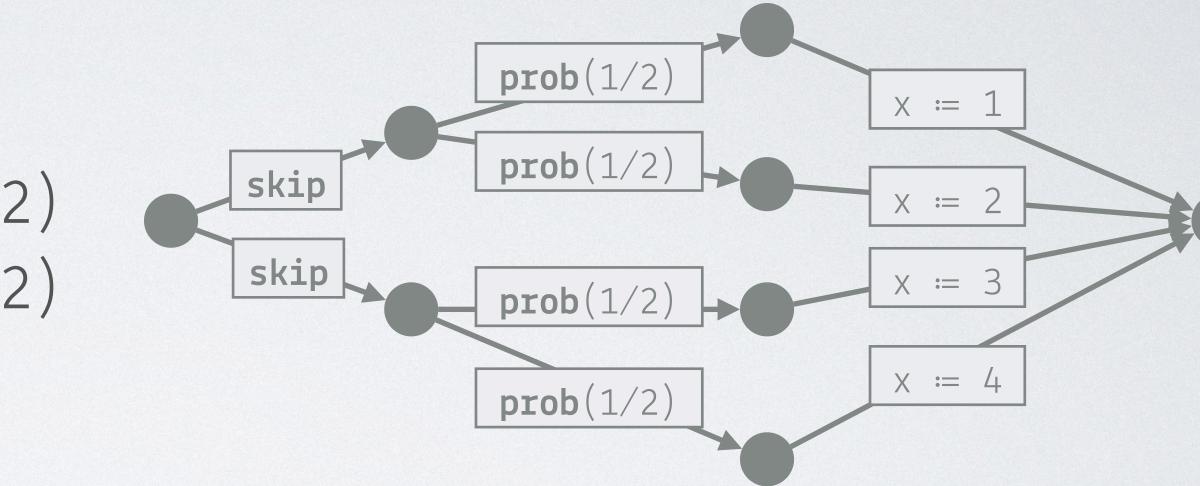
Program Construct

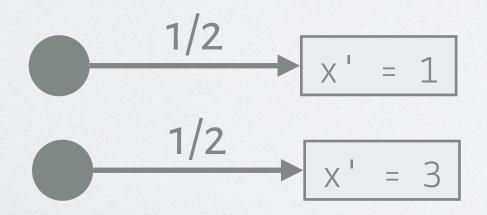


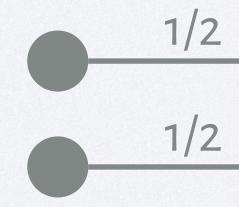
Algebraic Representation

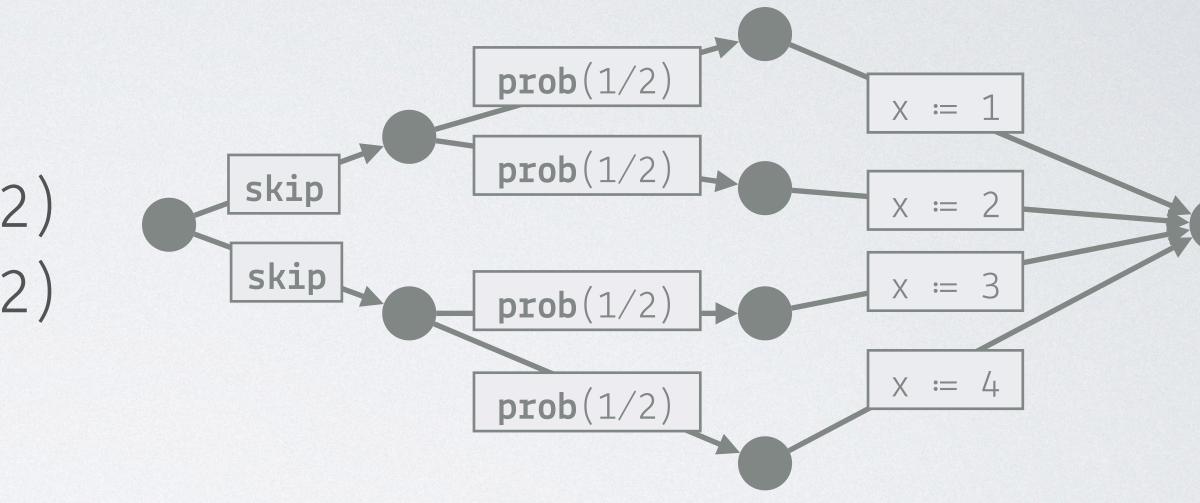
An interpretation \mathbb{S} of *S* into the algebra A **regular expression** over $\underline{0}, \underline{1}, \bigoplus, \bigotimes$, and *

if $| true \rightarrow x : \in_p (1 @ 1/2 | 2 @ 1/2) |$ $| true \rightarrow x : \in_p (3 @ 1/2 | 4 @ 1/2) |$ fi





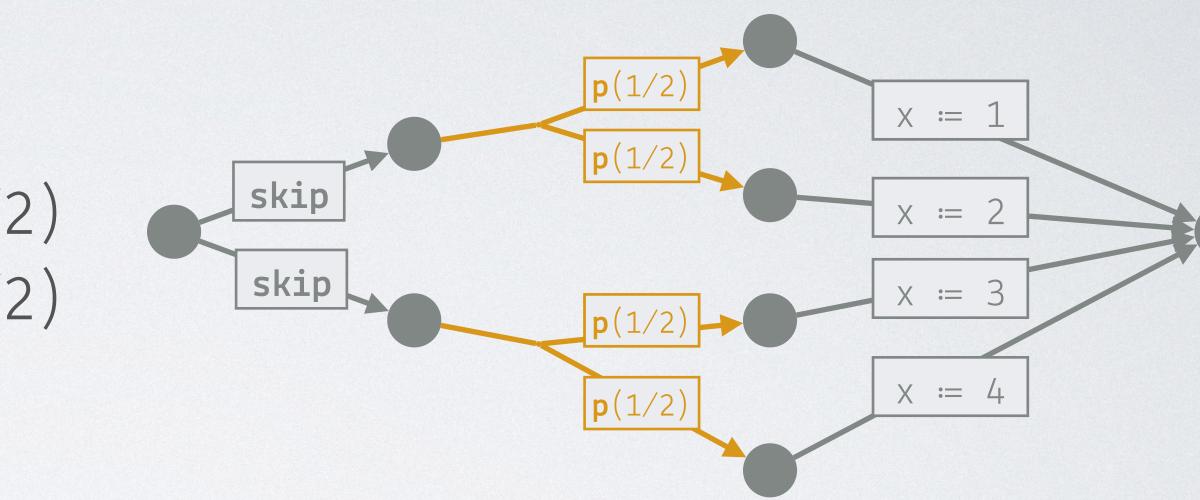


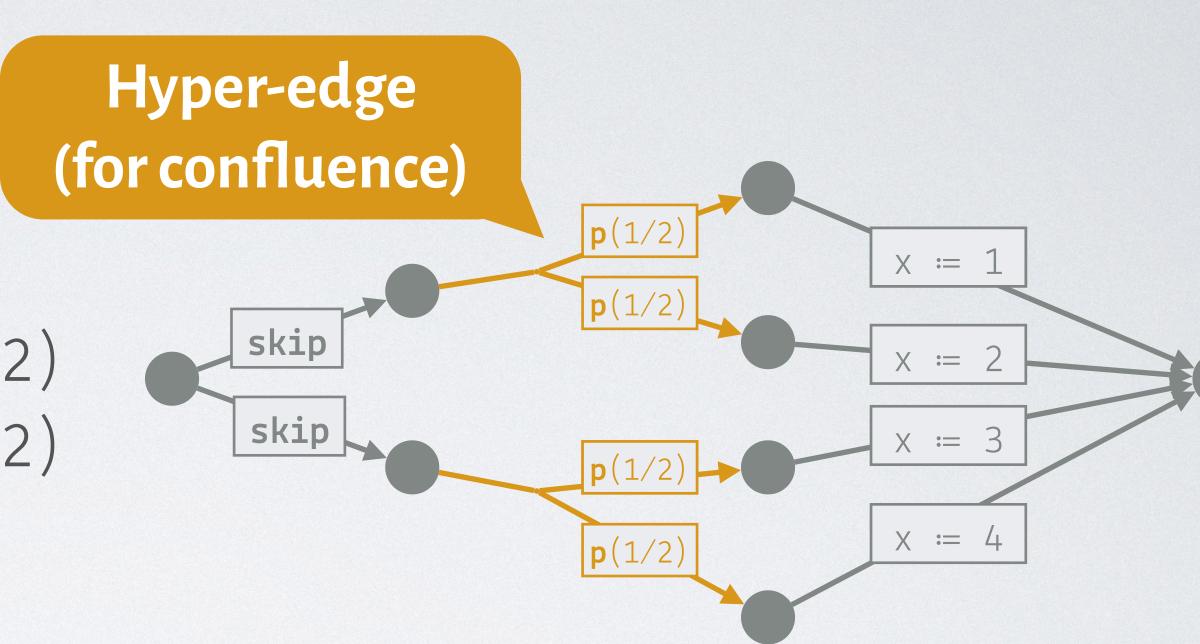


$$\mathbf{x}^{T} = 2$$

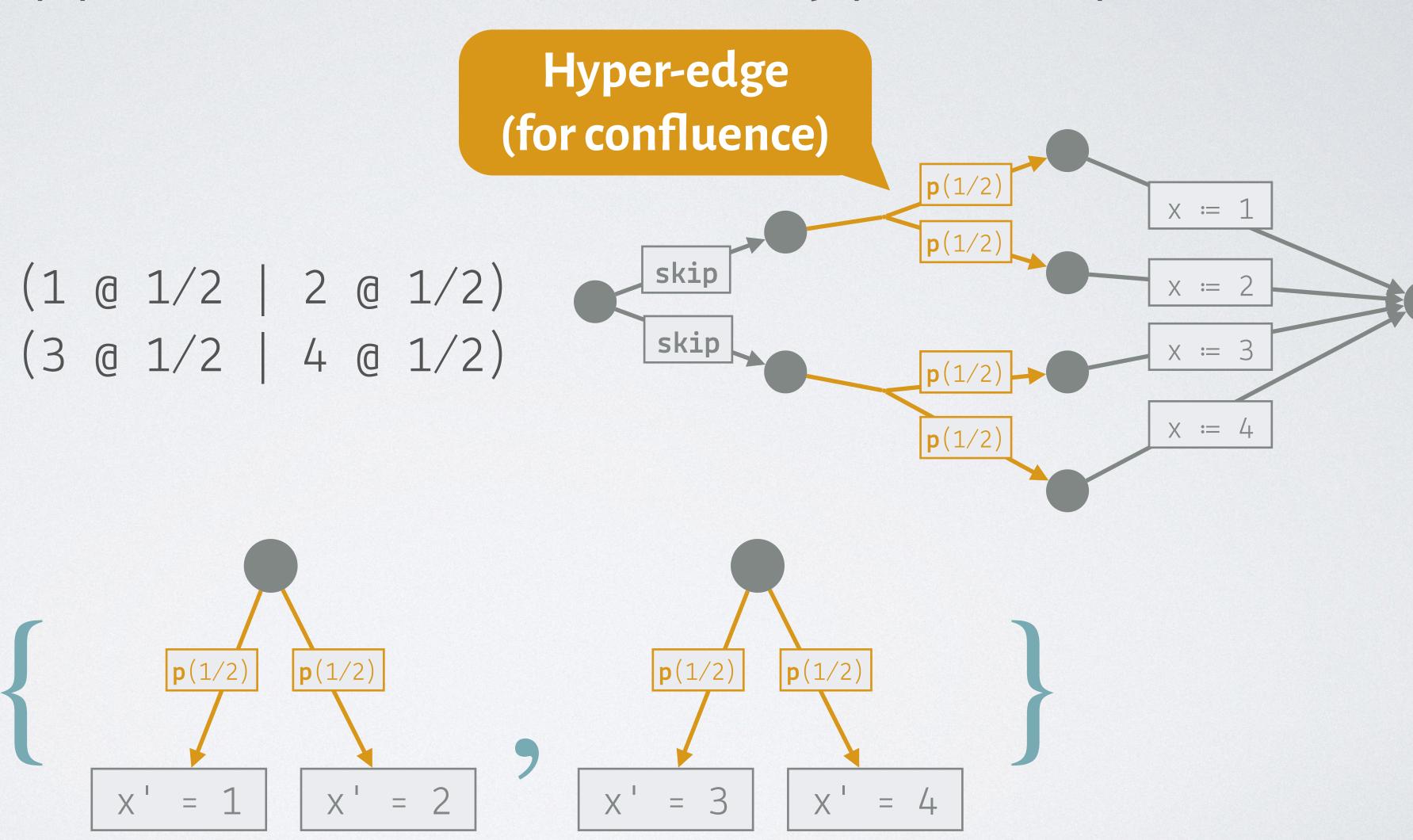
$$\mathbf{Probabilities sum up to 2!}$$

$$\mathbf{x}^{T} = 4$$





if true → x :∈_p (1 @ 1/2 | 2 @ 1/2) **true** \rightarrow x : \in_{p} (3 @ 1/2 | 4 @ 1/2) fi



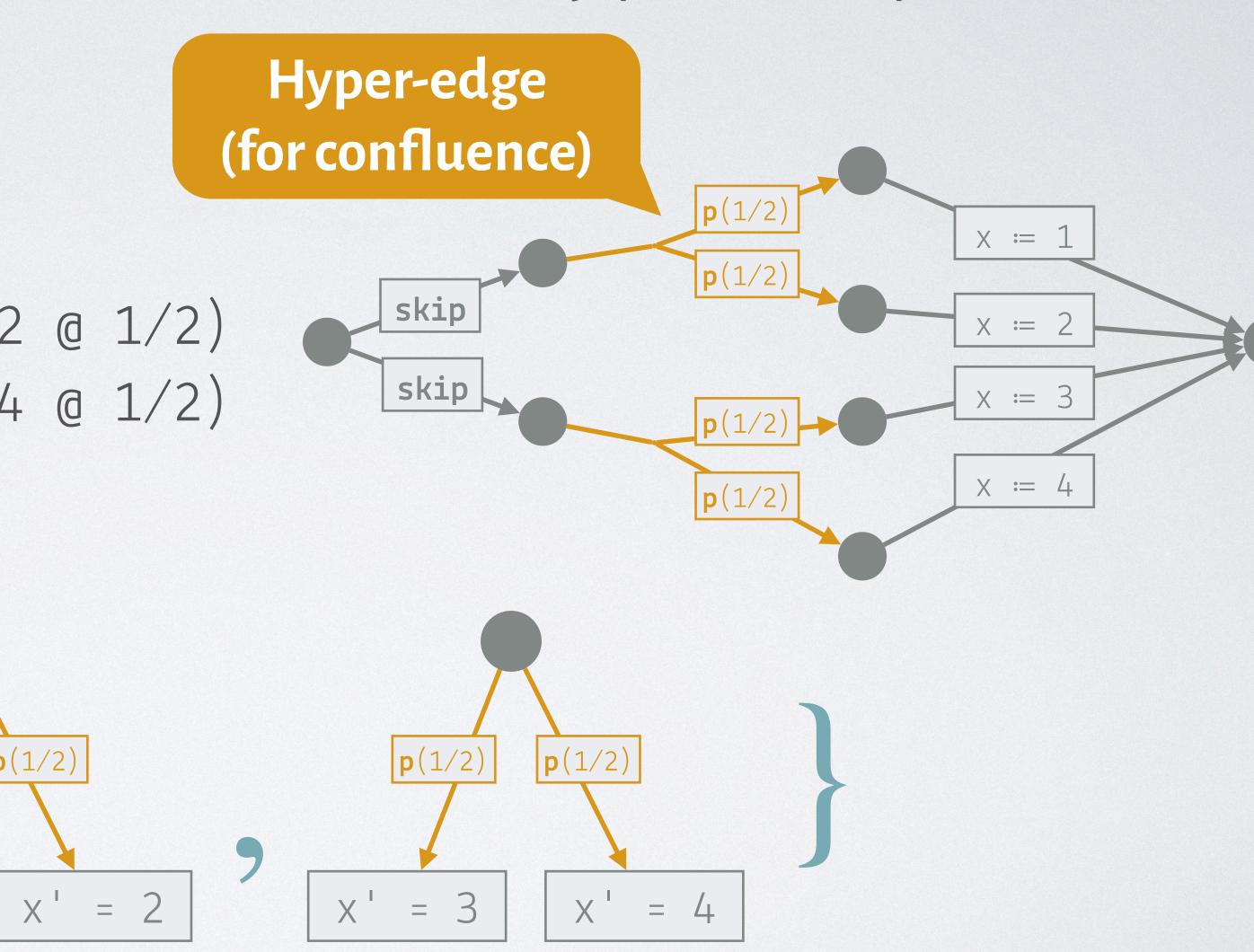
if true → x :∈_p (1 @ 1/2 | 2 @ 1/2) true → x :∈_p (3 @ 1/2 | 4 @ 1/2) fi

p(1/2)

X' = 1

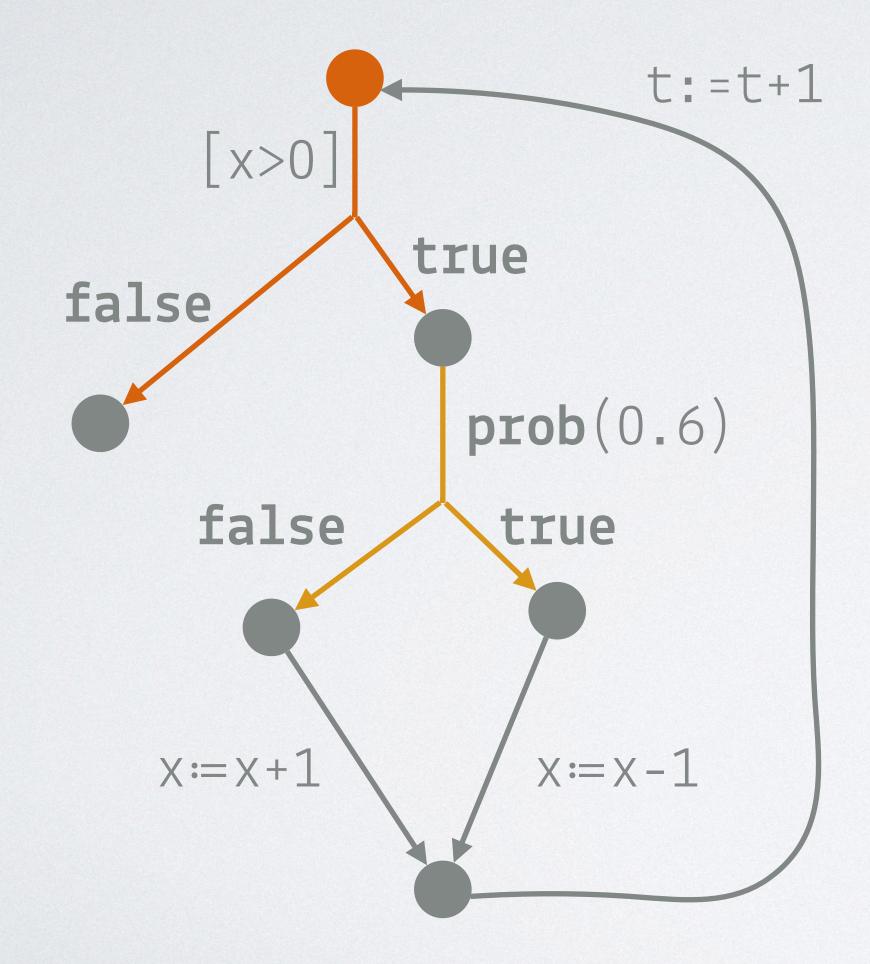
p(1/2)

Hyper-path (like a tree)

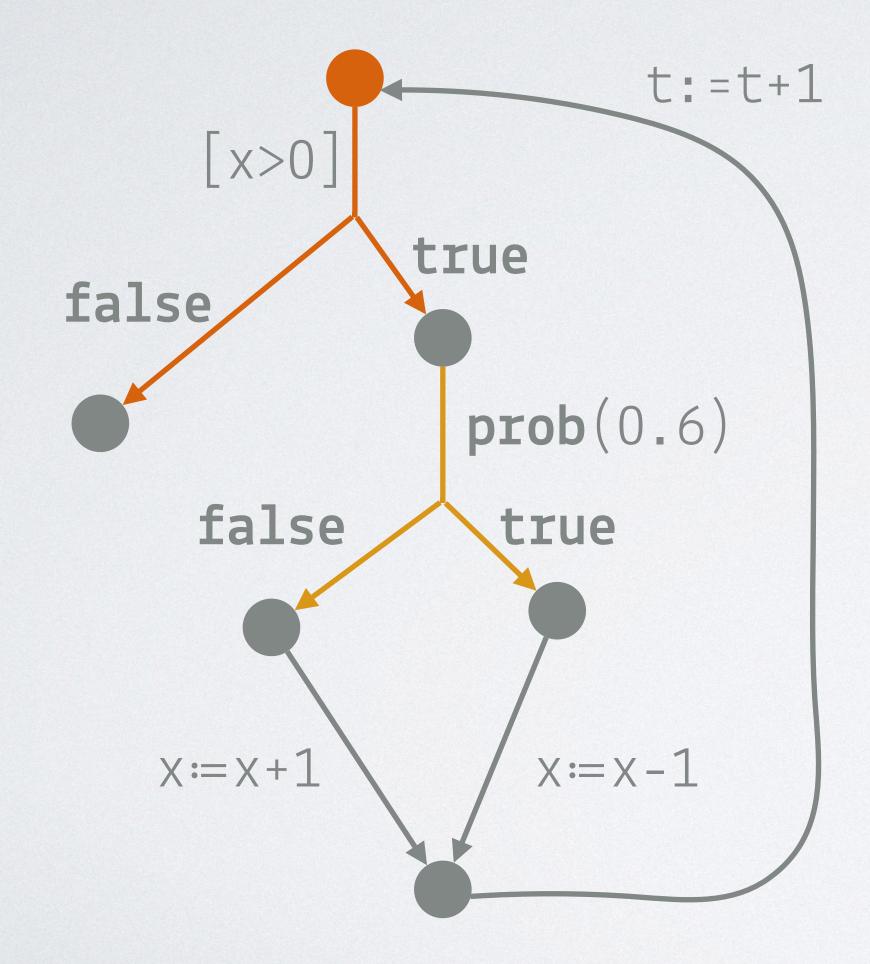


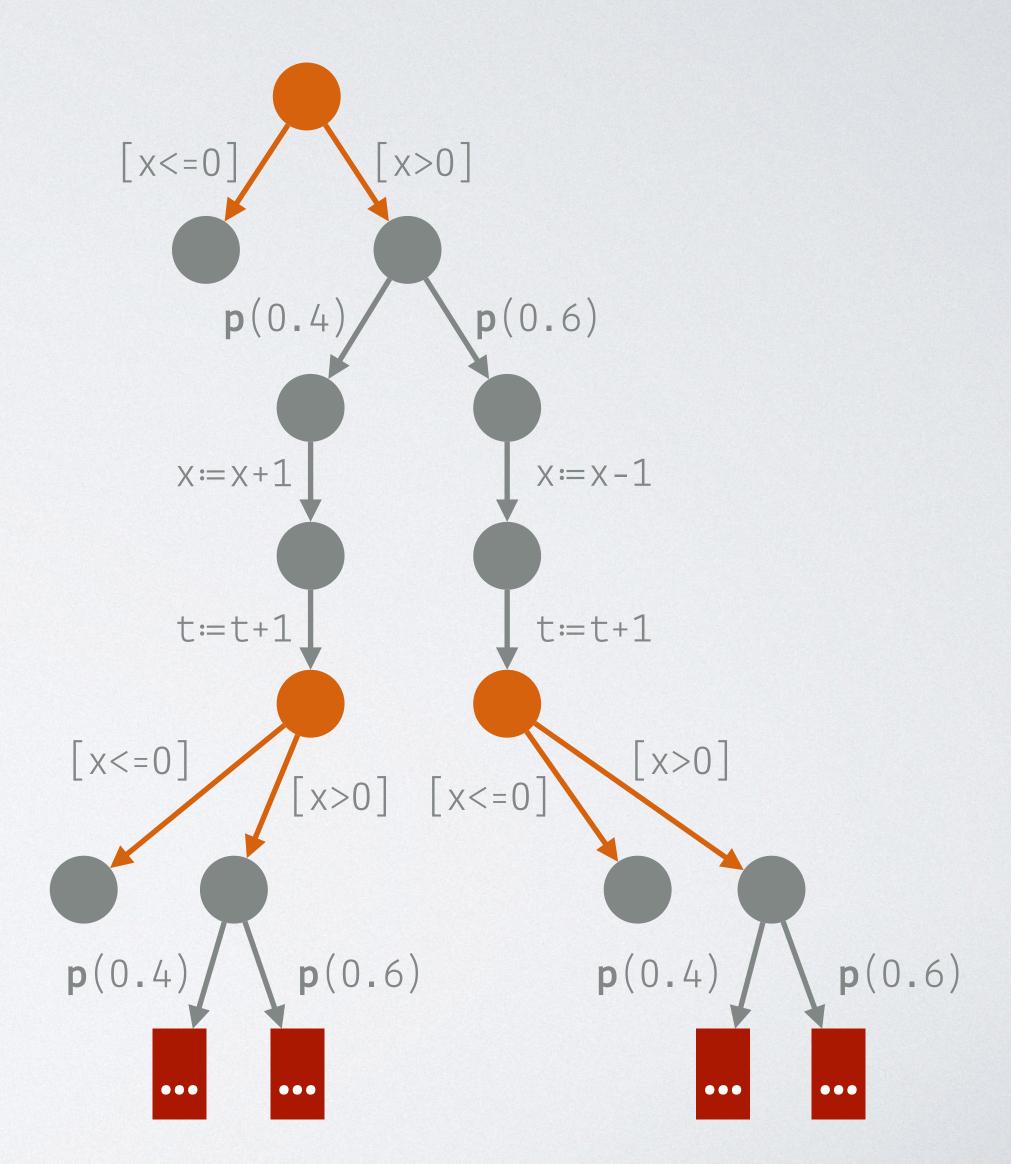
Hyper-Paths are Infinite Trees!

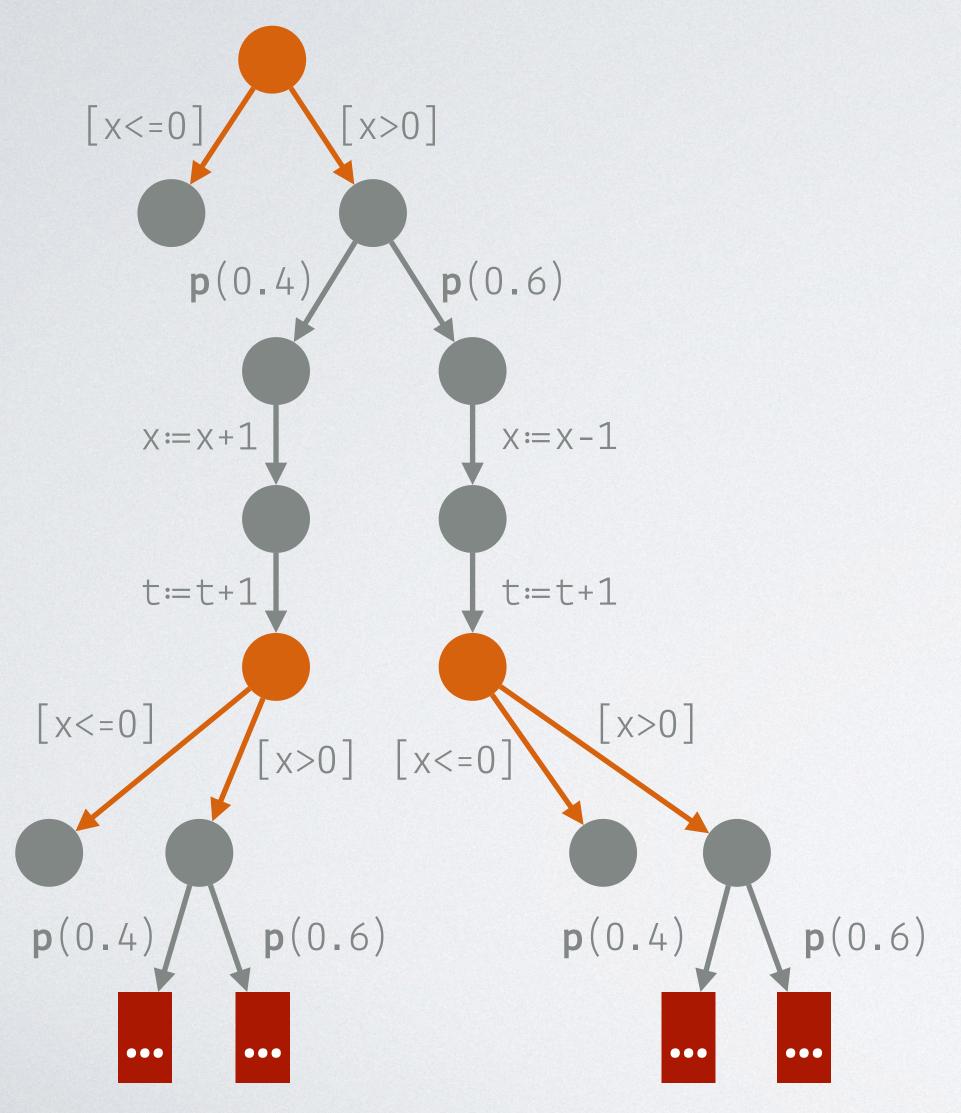
Hyper-Paths are Infinite Trees!

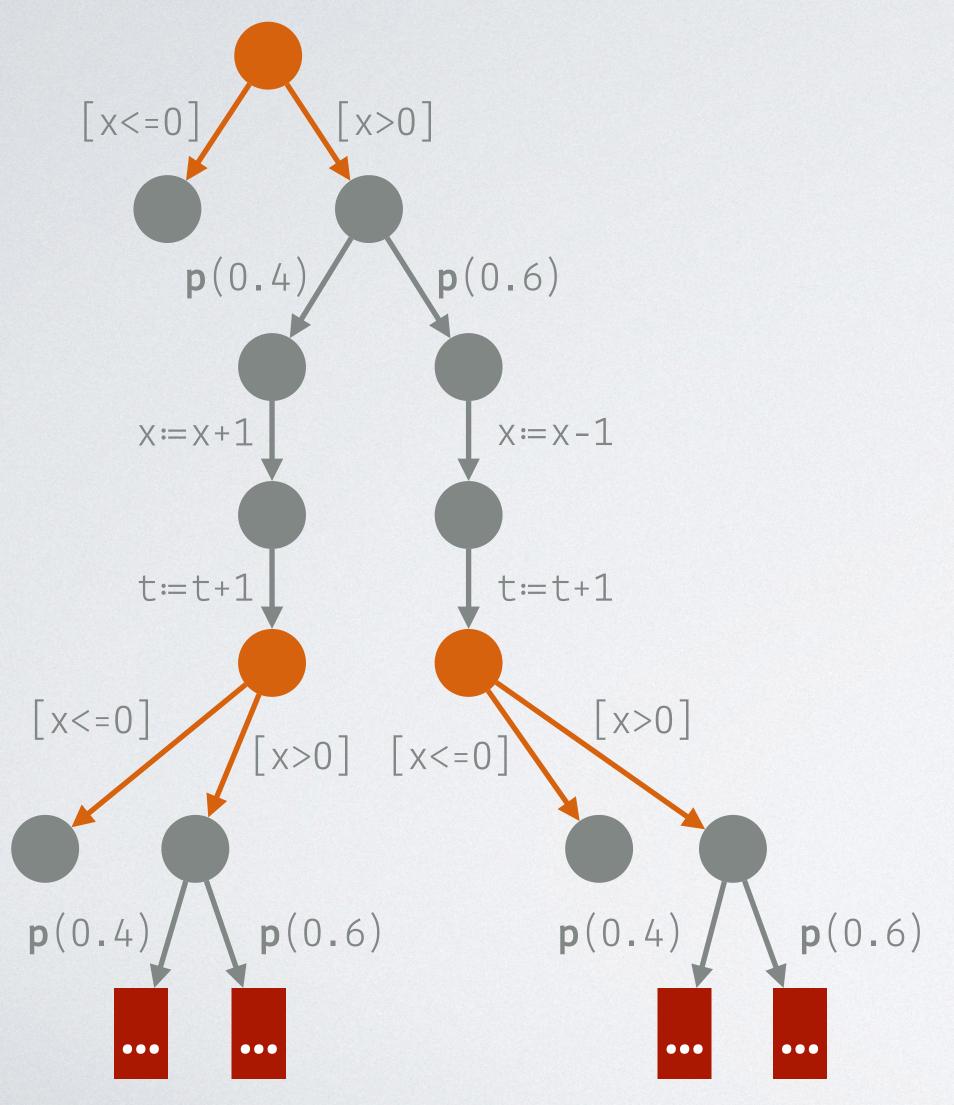


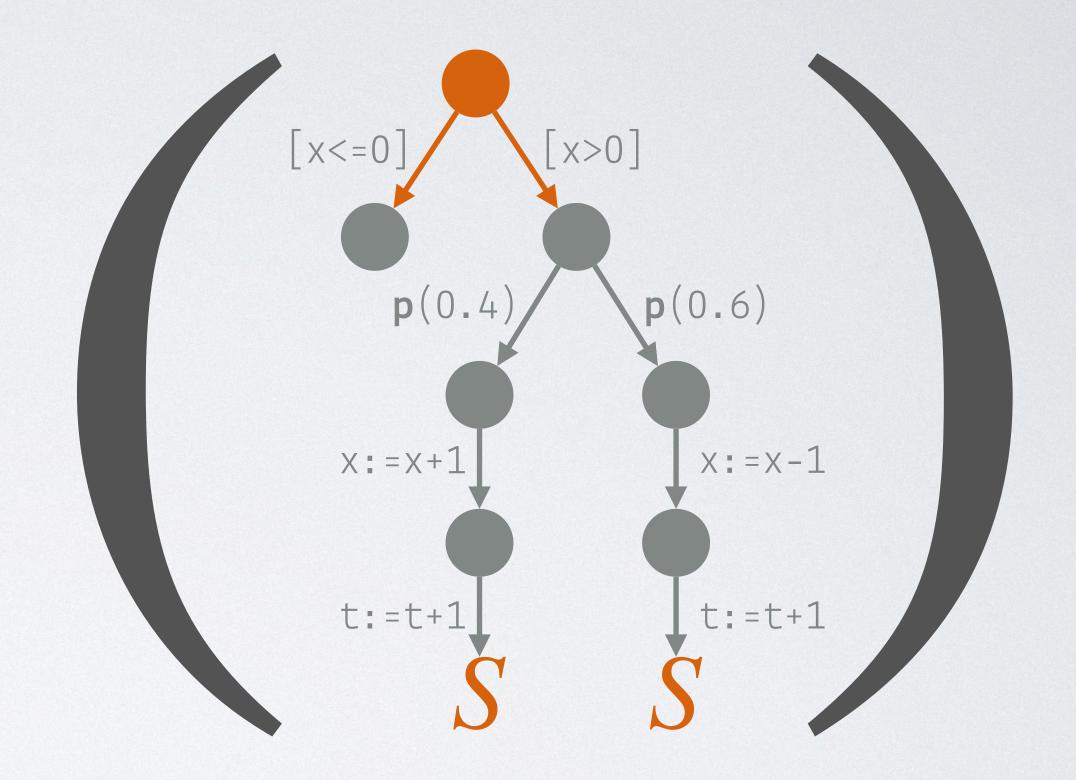
Hyper-Paths are Infinite Trees!

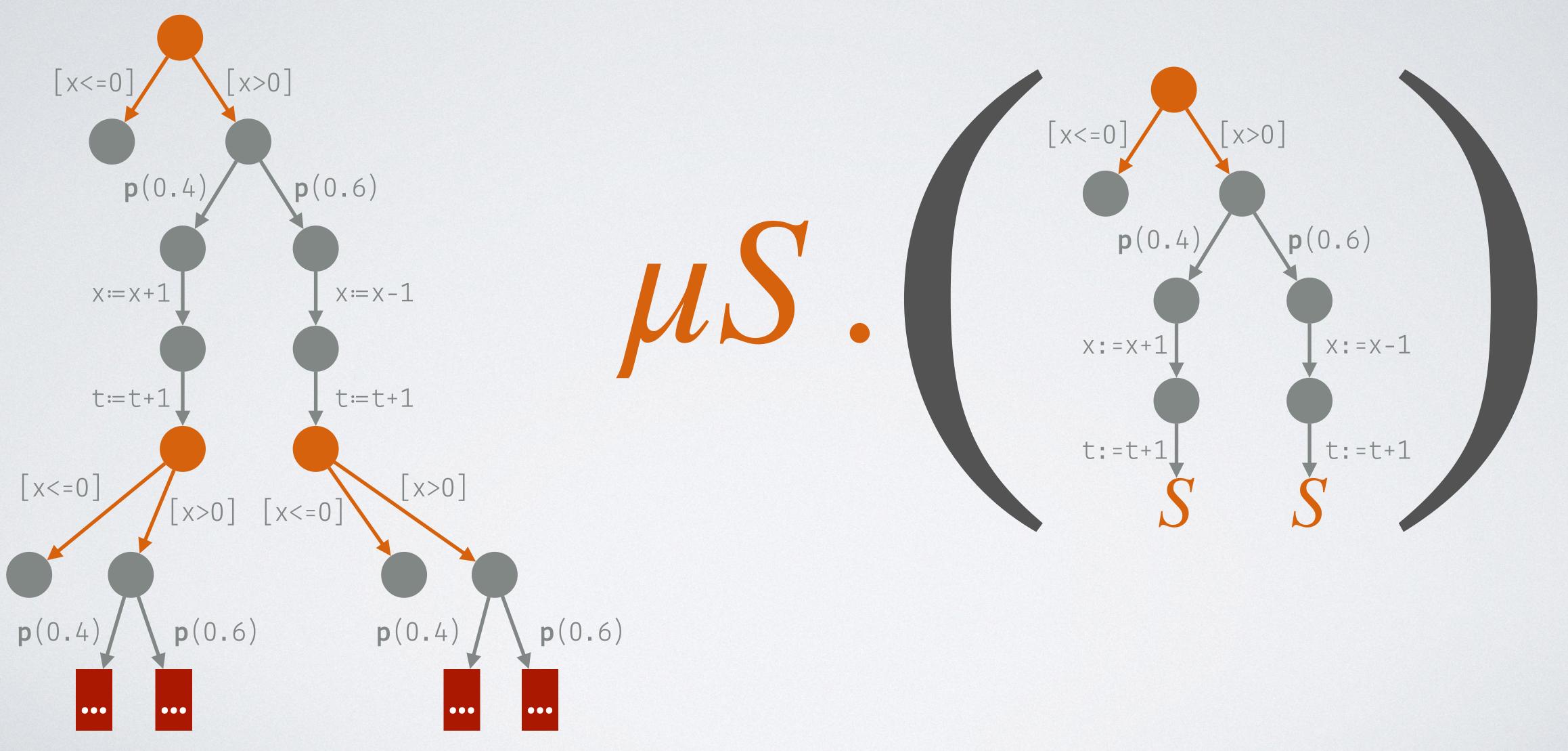


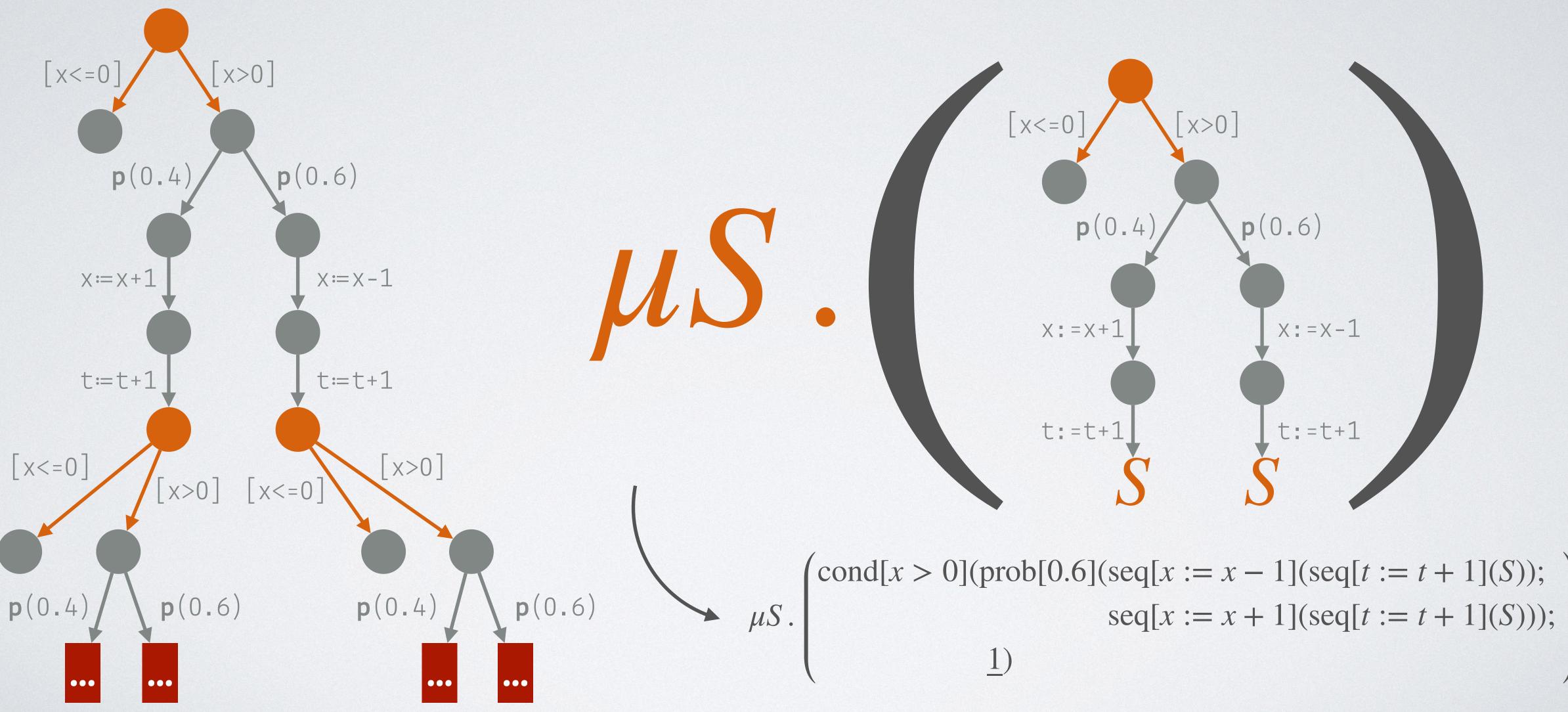












Markov Algebras are compatible with consciences

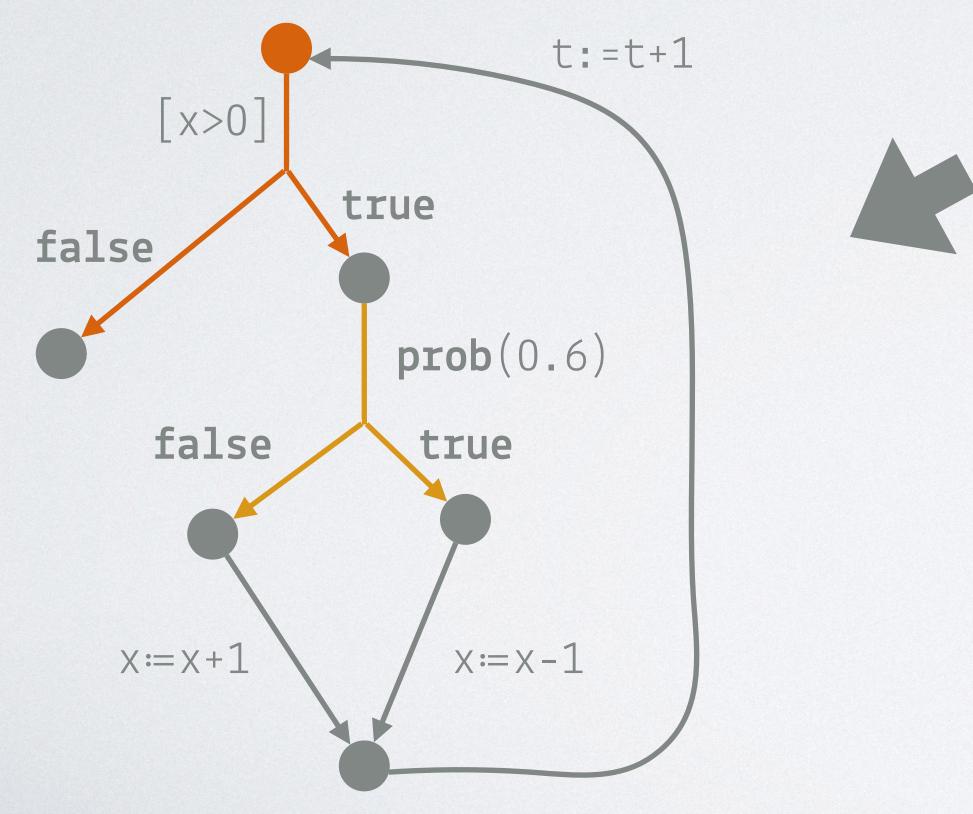
Markov Algebras are compatible with control-flow hyper-graphs via recursive program

Markov Algebras are compatible with consciences

Markov Algebras are compatible with control-flow hyper-graphs via recursive program

while x>0 do
 if prob(0.6) then x=x+1
 else x=x-1 fi;
 t=t+1
od

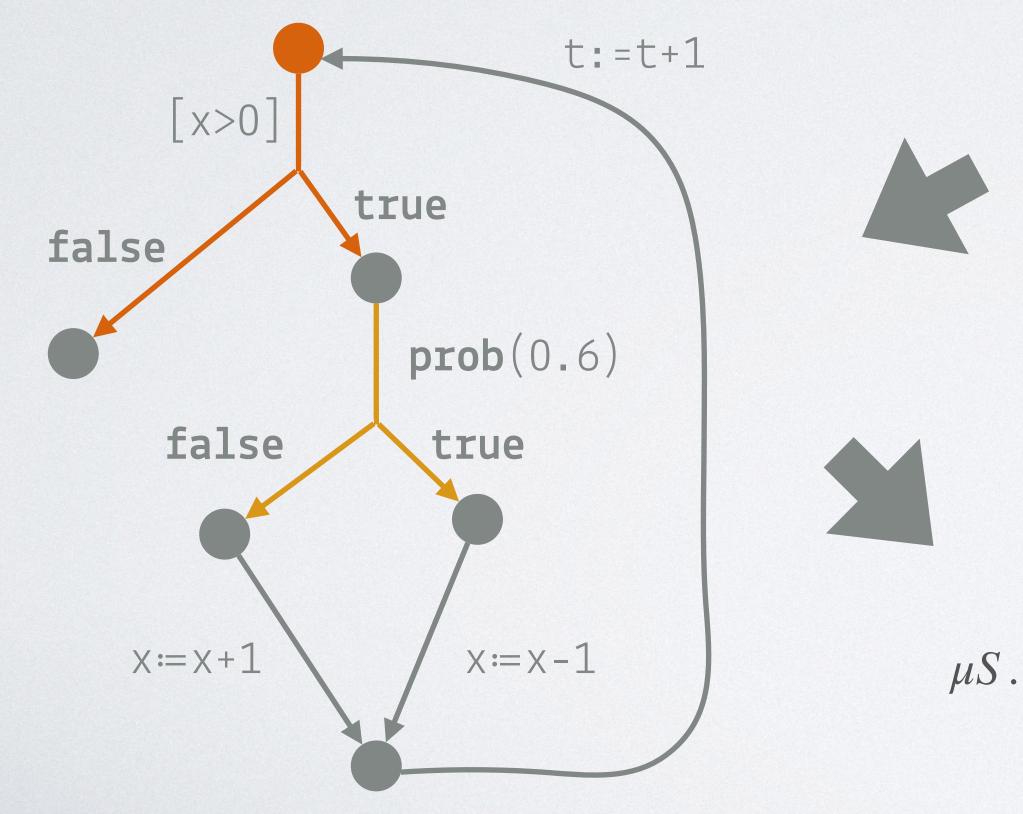
Markov Algebras are compatible with consciences



Markov Algebras are compatible with control-flow hyper-graphs via recursive program

while x>0 do
 if prob(0.6) then x=x+1
 else x=x-1 fi;
 t=t+1
od

Markov Algebras are compatible with consciences



Markov Algebras are compatible with control-flow hyper-graphs via recursive program

while x>0 do
 if prob(0.6) then x:=x+1
 else x:=x-1 fi;
 t:=t+1
od

cond[x > 0](prob[0.6](seq[x := x - 1](seq[t := t + 1](S));))seq[x := x + 1](seq[t := t + 1](S)));

Challenge III: How to carry out quantitative analyses efficiently?

 $x \coloneqq x + 1$ od

while prob(2/3) do

while prob(2/3) do x := x + 1od

$\mu S.((x \coloneqq x+1) \otimes S)_{[2/3]} \oplus skip$

while prob(2/3) do x := x + 1od

• Markov algebra for computing $\mathbb{E}[\Delta x]$

- Sequencing: $r \otimes t \triangleq r + t$
- Branching: $r_p \oplus t \triangleq p * r + (1 p) * t$

$\mu S.((x = x+1) \otimes S)_{[2/3]} \oplus skip$

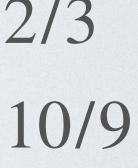
while prob(2/3) do $x \coloneqq x + 1$ od

• Markov algebra for computing $\mathbb{E}[\Delta x]$

- Sequencing: $r \otimes t \triangleq r + t$
- Branching: $r_p \oplus t \triangleq p * r + (1 p) * t$

$\mu S.((x \coloneqq x+1) \otimes S)_{[2/3]} \oplus skip$

 $\kappa^{(0)} = 0$ $\kappa^{(1)} = 2/3 * (1 + \kappa^{(0)}) + 1/3 * 0 = 2/3$ $\kappa^{(2)} = 2/3 * (1 + \kappa^{(1)}) + 1/3 * 0 = 10/9$... $\kappa^{(\infty)} = 2$



while prob(2/3) do $x \coloneqq x + 1$ od

• Markov algebra for computing $\mathbb{E}[\Delta x]$

- Sequencing: $r \otimes t \triangleq r + t$
- Branching: $r_p \oplus t \triangleq p * r + (1 p) * t$

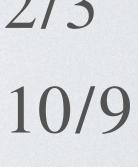
$\mu S.((x \coloneqq x+1) \otimes S)_{[2/3]} \oplus skip$

 $\kappa^{(0)} = 0$ $\kappa^{(1)} = 2/3 * (1 + \kappa^{(0)}) + 1/3 * 0 = 2/3$ $\kappa^{(2)} = 2/3 * (1 + \kappa^{(1)}) + 1/3 * 0 = 10/9$

. . .

 $\kappa^{(\infty)} = 2$

Need ∞ iterations to converge!



while prob(2/3) do $x \coloneqq x + 1$ od

Markov algebra for computing $\mathbb{E}[\Delta x]$

- Sequencing: $r \otimes t \triangleq r + t$
- Branching: $r_p \oplus t \triangleq p * r + (1 p) * t$

Non-iterative Program Analysis

$\mu S.((x \coloneqq x+1) \otimes S)_{[2/3]} \oplus skip$

while prob(2/3) do $x \coloneqq x + 1$ od

Markov algebra for computing $\mathbb{E}[\Delta x]$

- Sequencing: $r \otimes t \triangleq r + t$
- Branching: $r_p \oplus t \triangleq p * r + (1 p) * t$

Non-iterative Program Analysis

$\mu S.((x \coloneqq x+1) \otimes S)_{[2/3]} \oplus skip$

Equivalent to solve:

s = 2/3 * (1 + s) + 1/3 * 0, Analytical solution:

s = 2**No need for iteration!**

Non-iterative Intra-procedural Analysis

Non-iterative Intra-procedural Analysis

- linear equations
 - For each $\mu S \cdot E$, we extract an equation S = E

Observation: Loops are (right-)linear recursions, thus we can always extract a system of

Non-iterative Intra-procedural Analysis

- linear equations
 - For each $\mu S \cdot E$, we extract an equation S = E
- Techniques to solve linear equation systems extracted from probabilistic programs:
 - Linear Programming: Compute probabilities, expectations, or matrices
 - Loop-Invariant Generation: Derive probabilistic or expectation invariants

Observation: Loops are (right-)linear recursions, thus we can always extract a system of

Beyond Loops

Beyond Loops

$X = \mathbf{skip}_{1/3} \oplus (X \otimes X)$

Beyond Loops

$X = \mathbf{skip}_{1/3} \oplus (X \otimes X)$ Computing P[terminate]

p = 1/3 * 1 + 2/3 * (p * p)

Beyond Loops

$X = \mathbf{skip}_{1/3} \oplus (X \otimes X)$

Computing P[terminate]

p = 1/3 * 1 + 2/3 * (p * p)

Beyond Loops

$X = \mathbf{skip}_{1/3} \oplus (X \otimes X)$

Non-linear!

Computing P[terminate]

p = 1/3 * 1 + 2/3 * (p * p)

Newtons's method

Beyond Loops

$X = \mathbf{skip}_{1/3} \oplus (X \otimes X)$

Non-linear!

Computing P[terminate]

p = 1/3 * 1 + 2/3 * (p * p)

Newtons's method

f(x) = 1/3 * 1 + 2/3 * (x * x)

Beyond Loops

$X = \mathbf{skip}_{1/3} \oplus (X \otimes X)$

Computing P[terminate]

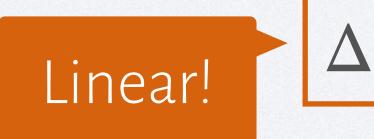
p = 1/3 * 1 + 2/3 * (p * p)

Newtons's method

$$f(x) = 1/3 * 1 + 2/3 * (x * x)$$

$$\Delta^{(i)} = (f(p^{(i)}) - p^{(i)}) + f'(p^{(i)}) * \Delta^{(i)}$$

$$p^{(i+1)} \leftarrow p^{(i)} + \Delta^{(i)}$$



Beyond Loops

$X = \mathbf{skip}_{1/3} \oplus (X \otimes X)$

Computing P[terminate]

p = 1/3 * 1 + 2/3 * (p * p)

Newtons's method

$$f(x) = 1/3 * 1 + 2/3 * (x * x)$$

$$\Delta^{(i)} = (f(p^{(i)}) - p^{(i)}) + f'(p^{(i)}) * \Delta^{(i)}$$

$$p^{(i+1)} \leftarrow p^{(i)} + \Delta^{(i)}$$

• Solve the equation f(x) = 0 where f'(x) is well-defined

• Solve the equation f(x) = 0 where f'(x) is well-defined

 $p = \frac{1}{3} * 1 + \frac{2}{3} * (p * p)$ $f(x) = \frac{1}{3} * 1 + \frac{2}{3} * (x * x) - x$ $= \frac{2}{3} * \frac{x^2 - x + \frac{1}{3}}{1}$ $f'(x) = \frac{4}{3} * x - 1$

- Solve the equation f(x) = 0 where f'(x) is well-defined
- Start from an initial approximation $u^{(0)}$

 $p = \frac{1}{3} * 1 + \frac{2}{3} * (p * p)$ $f(x) = \frac{1}{3} * 1 + \frac{2}{3} * (x * x) - x$ $= \frac{2}{3} * \frac{x^2 - x + \frac{1}{3}}{1}$ $f'(x) = \frac{4}{3} * x - 1$

 $\nu^{(0)} \leftarrow 0$

- Solve the equation f(x) = 0 where f'(x) is well-defined
- Start from an initial approximation $u^{(0)}$
- At step *i*, solve a linear equation $f(\nu^{(i)}) + f'(\nu^{(i)}) * (y - \nu^{(i)}) = 0, \text{ i.e., set}$ $\nu^{(i+1)} = \nu^{(i)} - f(\nu^{(i)})/f'(\nu^{(i)})$

 $p = \frac{1}{3} * 1 + \frac{2}{3} * (p * p)$ $f(x) = \frac{1}{3} * 1 + \frac{2}{3} * (x * x) - x$ $= \frac{2}{3} * \frac{x^2 - x + \frac{1}{3}}{1}$ $f'(x) = \frac{4}{3} * x - 1$

 $\nu^{(0)} \leftarrow 0$

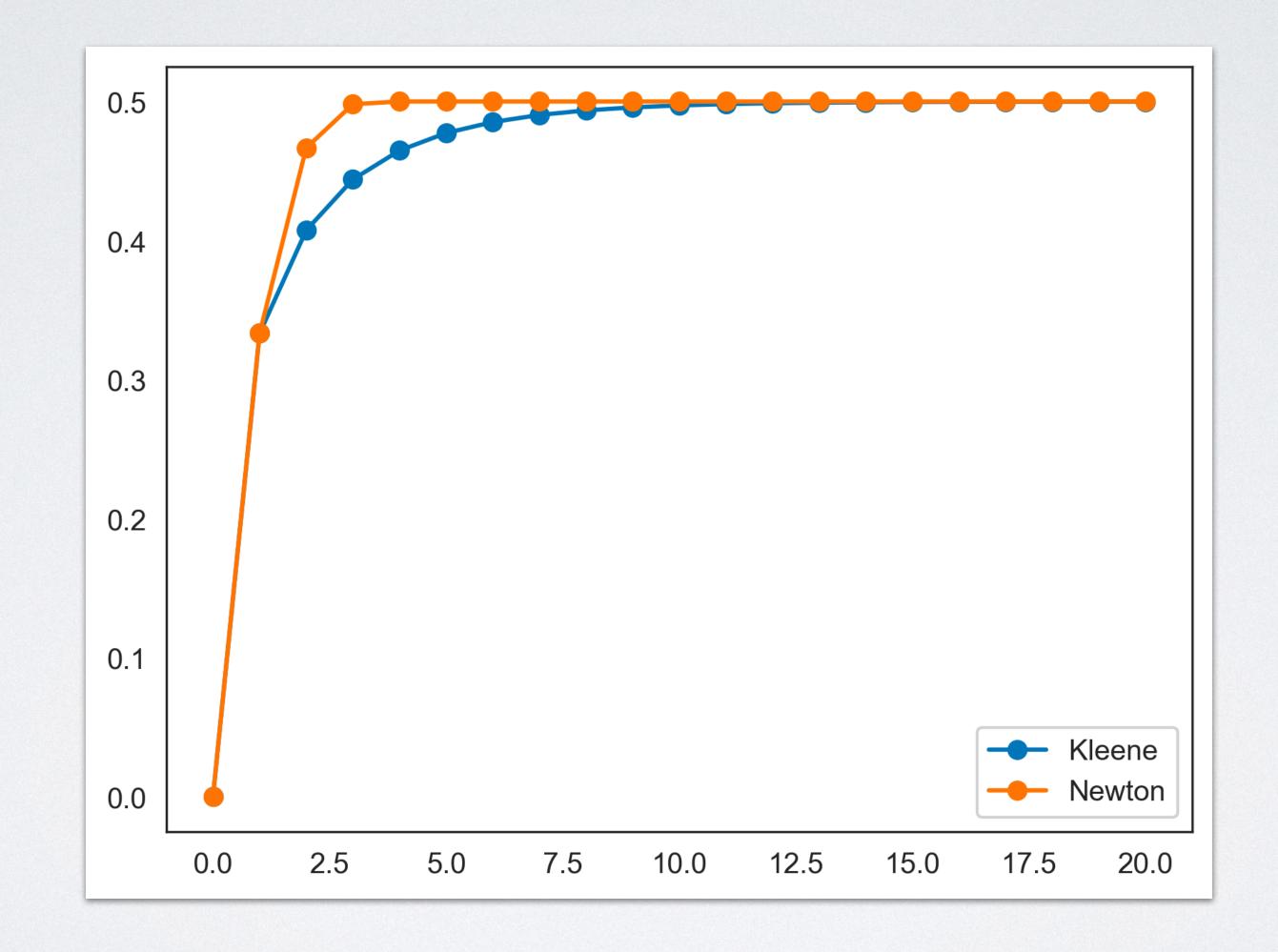
- Solve the equation f(x) = 0 where f'(x) is well-defined
- Start from an initial approximation $\nu^{(0)}$
- At step i, solve a linear equation $f(\nu^{(i)}) + f'(\nu^{(i)}) * (\gamma - \nu^{(i)}) = 0$, i.e., set $\nu^{(i+1)} = \nu^{(i)} - f(\nu^{(i)})/f'(\nu^{(i)})$

p = 1/3 * 1 + 2/3 * (p * p)f(x) = 1/3 * 1 + 2/3 * (x * x) - x $= 2/3 * x^2 - x + 1/3$ f'(x) = 4/3 * x - 1

 $\nu^{(0)} \leftarrow 0$ $\nu^{(1)} = 0 - f(0)/f'(0) = 1/3$ $\nu^{(2)} = \frac{1}{3} - \frac{f(1/3)}{f'(1/3)} = \frac{7}{15}$ $\nu^{(3)} = 7/15 - f(7/15)/f'(7/15) = 127/255$. . .

 $\nu^{(\infty)} = 1/2$

Newton's Method Converges Faster

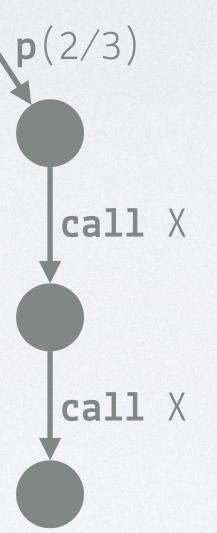


Newtonian Program Analysis (NPA)

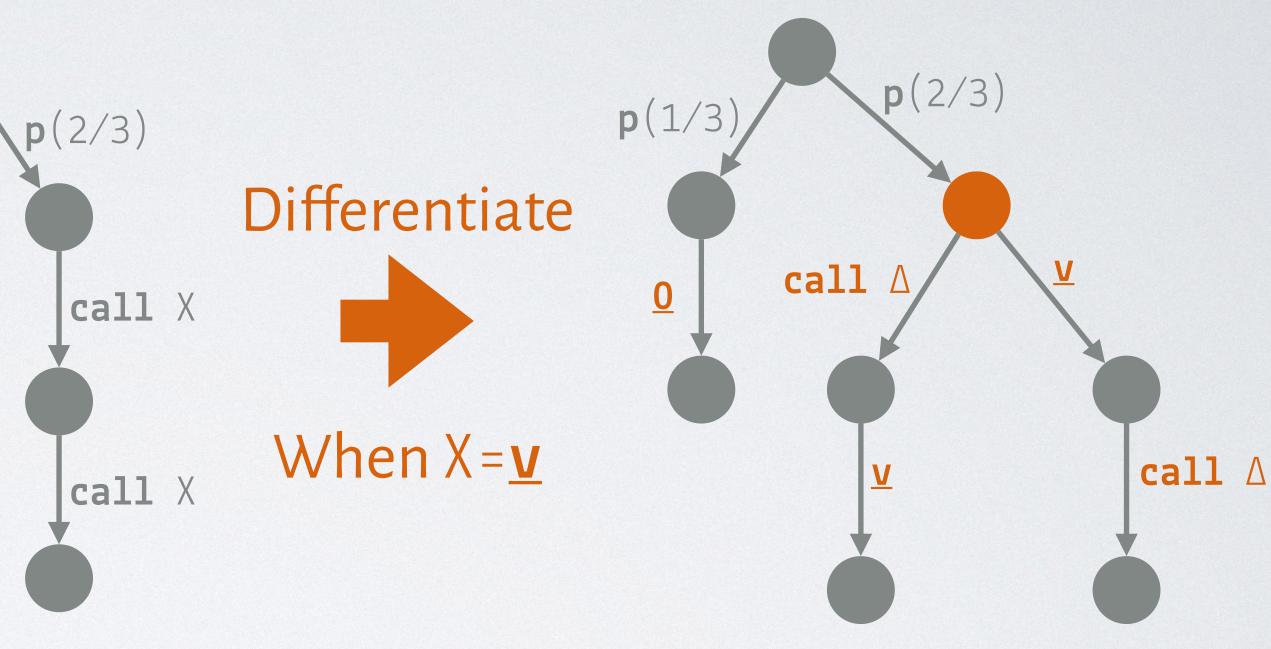
```
proc X begin
  if prob(1/3) then
    skip
  else
    call X;
    call X
  fi
end
```



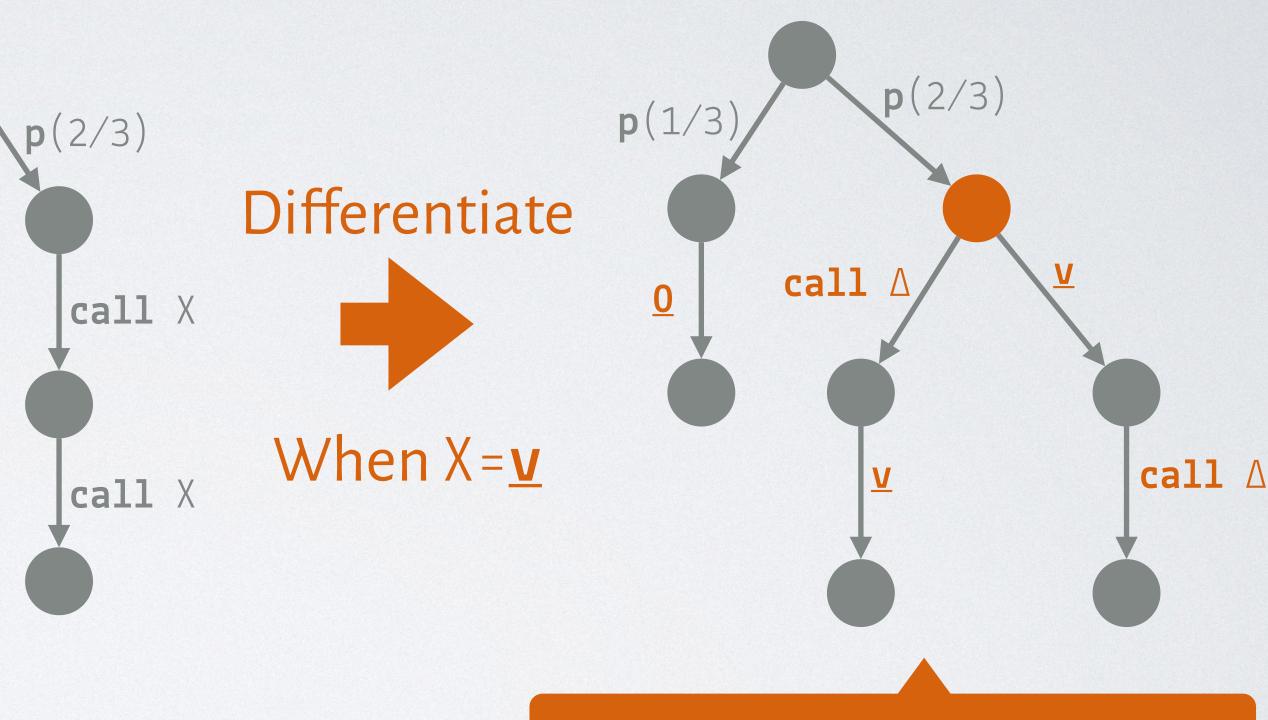
```
proc X begin
  if prob(1/3) then
                          p(1/3)
    skip
  else
                           1
    call X;
    call X
  fi
end
```


```
proc X begin
  if prob(1/3) then
                          p(1/3)
    skip
  else
                           1
    call X;
    call X
  fi
end
```

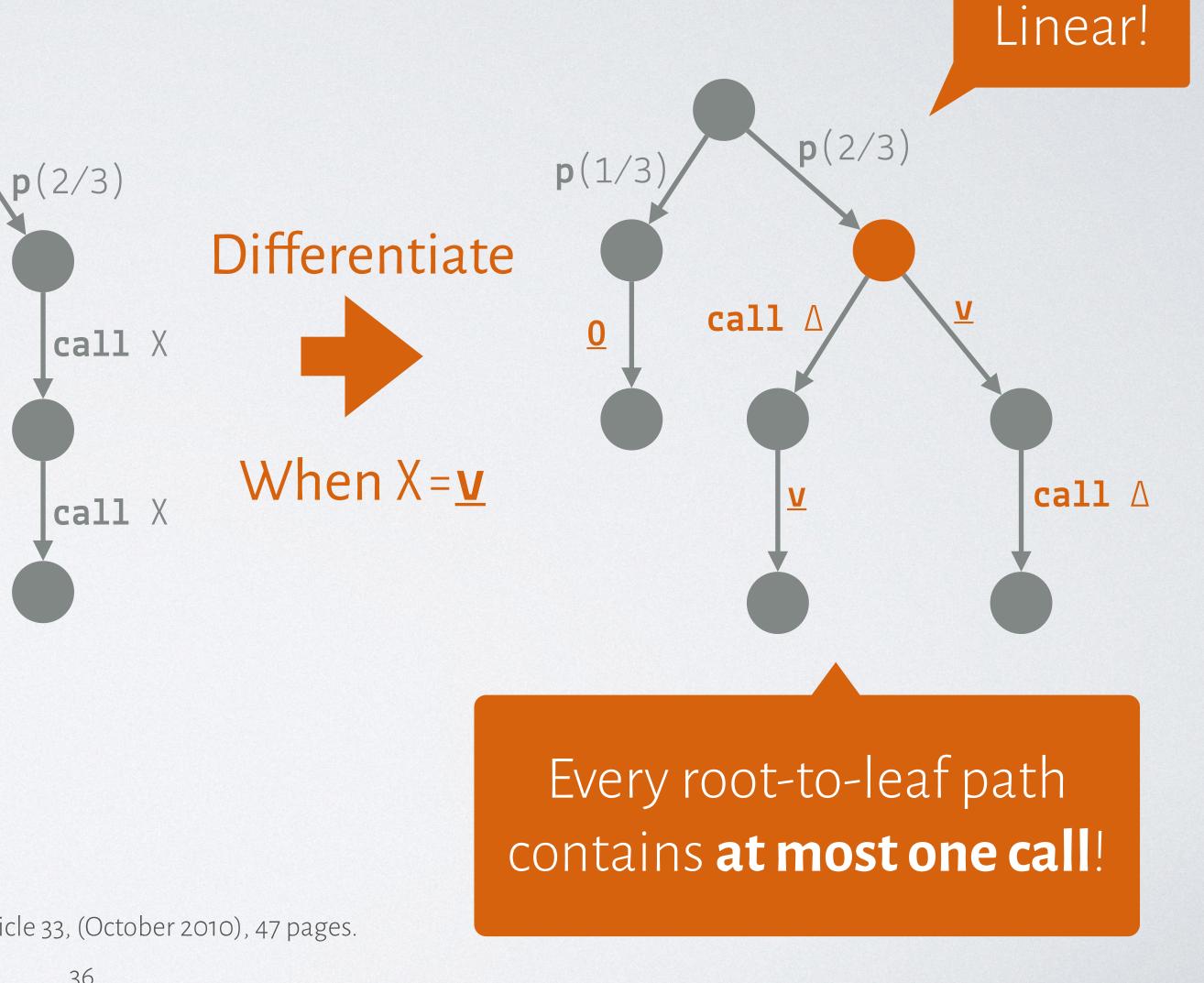



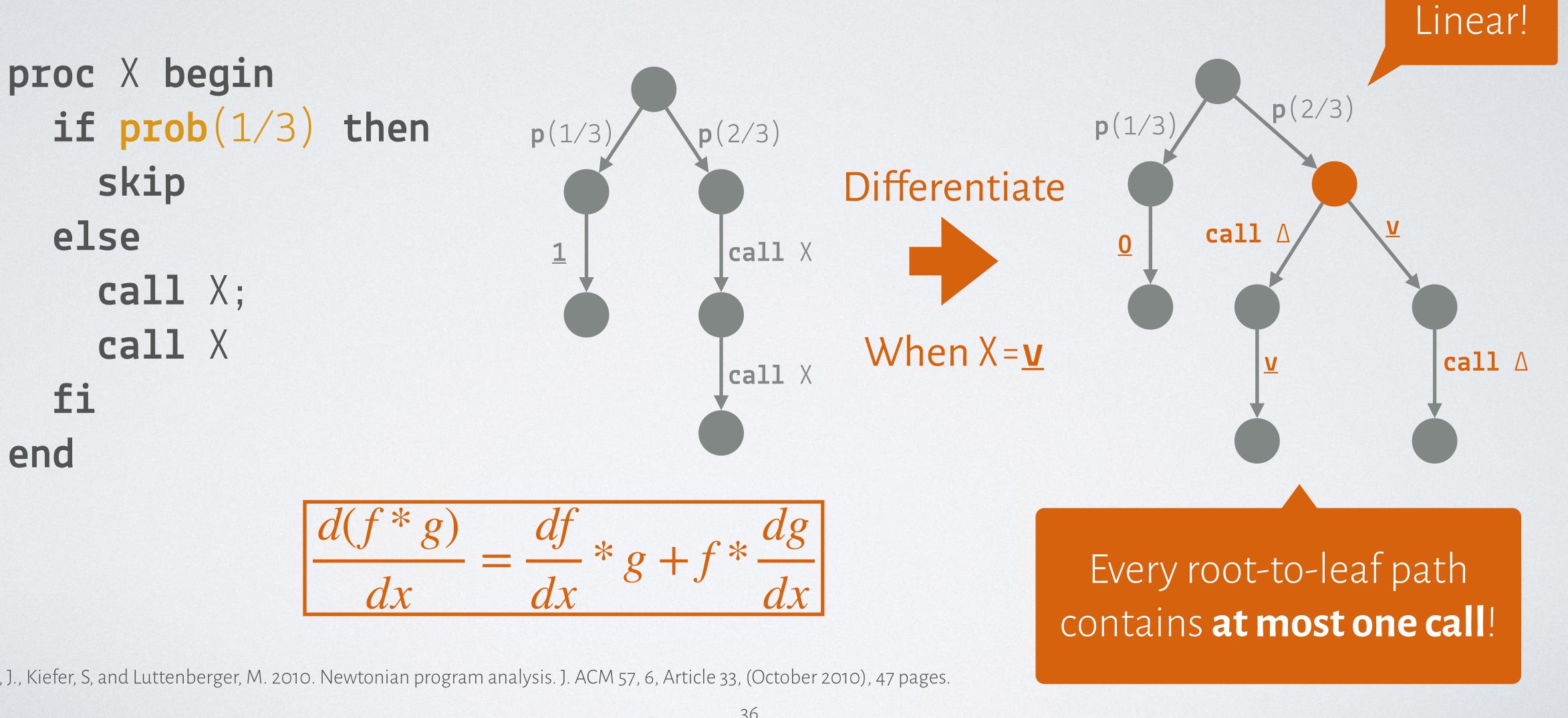

```
proc X begin
  if prob(1/3) then
                          p(1/3)
    skip
  else
                            1
    call X;
    call X
  fi
end
```

Every root-to-leaf path contains **at most one call**!


```
proc X begin
  if prob(1/3) then
                          p(1/3)
    skip
  else
                            1
    call X;
    call X
  fi
end
```



Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

• Idea: Apply Newton's method to **algebraic structures**, e.g., Kleene algebras

Idea: Apply Newton's method to algebraic structures, e.g., Kleene algebras

• Derive the **syntactic** differential of algebraic expressions

 $\begin{aligned} \mathfrak{D}(X)|_{\nu}(Y) &\triangleq Y \\ \mathfrak{D}(f \oplus g)|_{\nu}(Y) &\triangleq \mathfrak{D}f|_{\nu}(Y) \oplus \mathfrak{D}g_{\nu}(Y) \\ \mathfrak{D}(f \otimes g)|_{\nu}(Y) &\triangleq (\mathfrak{D}f|_{\nu}(Y) \otimes g(\nu)) \oplus (f(\nu) \otimes \mathfrak{D}g|_{\nu}(Y)) \end{aligned}$

Idea: Apply Newton's method to algebraic structures, e.g., Kleene algebras

• Derive the syntactic differential of algebraic expressions Procedure call to X

$$\begin{split} \mathfrak{D}(X)|_{\nu}(Y) &\triangleq Y \\ \mathfrak{D}(f \oplus g)|_{\nu}(Y) &\triangleq \mathfrak{D}f|_{\nu}(Y) \oplus \mathfrak{D}g_{\nu}(Y) \\ \mathfrak{D}(f \otimes g)|_{\nu}(Y) &\triangleq (\mathfrak{D}f|_{\nu}(Y) \otimes g(\nu)) \oplus (f(\nu) \otimes \mathfrak{D}g|_{\nu}(Y)) \end{split}$$

Idea: Apply Newton's method to algebraic structures, e.g., Kleene algebras

• Derive the **syntactic** differential of algebraic expressions

Branching $\delta(X)|_{\nu}(Y) \triangleq Y$ $\mathfrak{D}(f \oplus g)|_{\nu}(Y) \triangleq \mathfrak{D}f|_{\nu}(Y) \oplus \mathfrak{D}g_{\nu}(Y)$ $\mathfrak{D}(f \otimes g)|_{\nu}(Y) \triangleq (\mathfrak{D}f|_{\nu}(Y) \otimes g(\nu)) \oplus (f(\nu) \otimes \mathfrak{D}g|_{\nu}(Y))$

Idea: Apply Newton's method to algebraic structures, e.g., Kleene algebras

• Derive the **syntactic** differential of algebraic expressions

 $\mathcal{D}(X)|_{\nu}(Y) \triangleq Y$ Sequencing $\bigoplus g)|_{\nu}(Y) \triangleq \mathcal{D}f|_{\nu}(Y) \oplus \mathcal{D}g_{\nu}(Y)$ $\mathcal{D}(f \otimes g)|_{\nu}(Y) \triangleq (\mathcal{D}f|_{\nu}(Y) \otimes g(\nu)) \oplus (f(\nu) \otimes \mathcal{D}g|_{\nu}(Y))$

Idea: Apply Newton's method to algebraic structures, e.g., Kleene algebras

Derive the **syntactic** differential of algebraic expressions

> $\mathcal{D}(X)|_{U}(Y) \triangleq Y$ Sequencing $[\bigoplus g) |_{\nu}(Y) \triangleq \mathscr{D}f|_{\nu}(Y) \oplus \mathscr{D}g_{\nu}(Y)$

 $\mathcal{D}(f \otimes g)|_{\nu}(Y) \triangleq (\mathcal{D}f|_{\nu}(Y) \otimes g(\nu)) \oplus (f(\nu) \otimes \mathcal{D}g|_{\nu}(Y))$ Interpreting calls to X in g by u

Idea: Apply Newton's method to algebraic structures, e.g., Kleene algebras

Derive the **syntactic** differential of algebraic expressions

 $\mathcal{D}(X)|_{U}(Y) \triangleq Y$

Sequencing $\left. \bigoplus g \right|_{\nu}(Y) \triangleq \mathcal{D}f|_{\nu}(Y) \oplus \mathcal{D}g_{\nu}($ Interpreting calls to X in g by ν $\mathcal{D}(f \otimes g)|_{\nu}(Y) \triangleq (\mathcal{D}f|_{\nu}(Y) \otimes g(\nu)) \oplus (f(\nu) \otimes \mathcal{D}g|_{\nu}(Y))$ Interpreting calls to X in g by u

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes

Support multiple confluences, loops, and recursion

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes

 $\langle M, \oplus, \otimes, \phi \oplus, \Pi, \underline{0}, \underline{1} \rangle$

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes



 \bigoplus defines a partial order and gives an additive structure

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes

 $\langle M, \oplus, \otimes, \phi \oplus, \Pi, \underline{0}, \underline{1} \rangle$

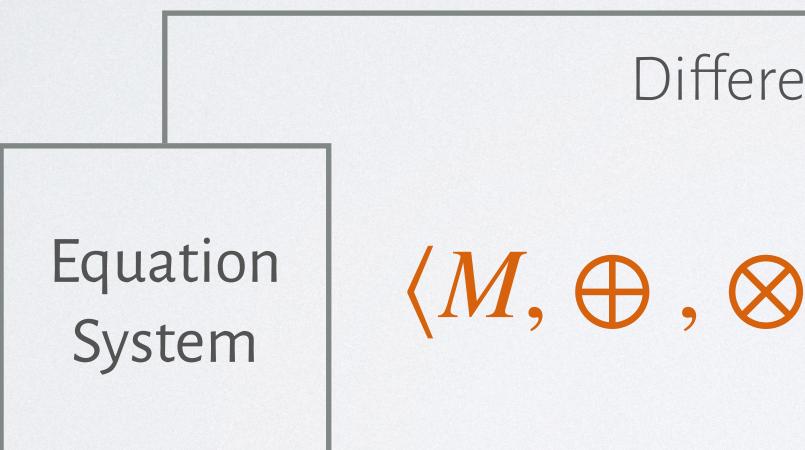
Key idea: Apply Newton's method to pre-Markov algebras

We develop a differentiation routine for recursive program schemes

> Equation System

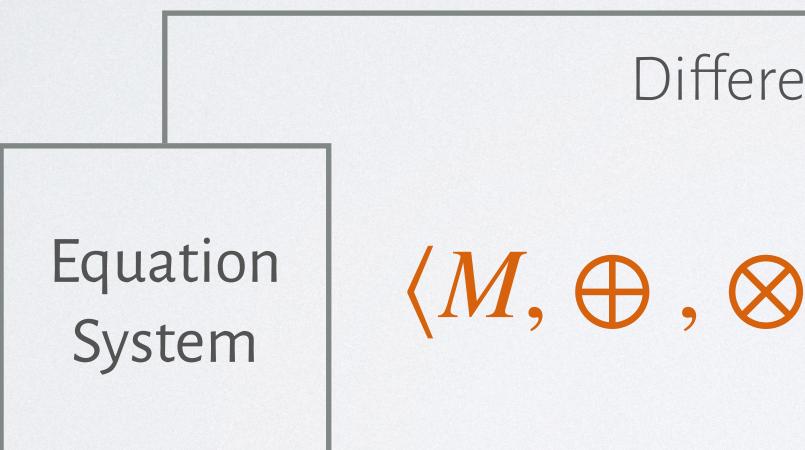
 $\langle M, \oplus, \otimes, \phi \oplus, \Pi, 0, 1 \rangle$

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes



Differentiate at $\nu^{(i)}$ Linearized $\langle M, \oplus, \otimes, \phi \oplus, \Pi, 0, 1 \rangle$ Equation System

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes

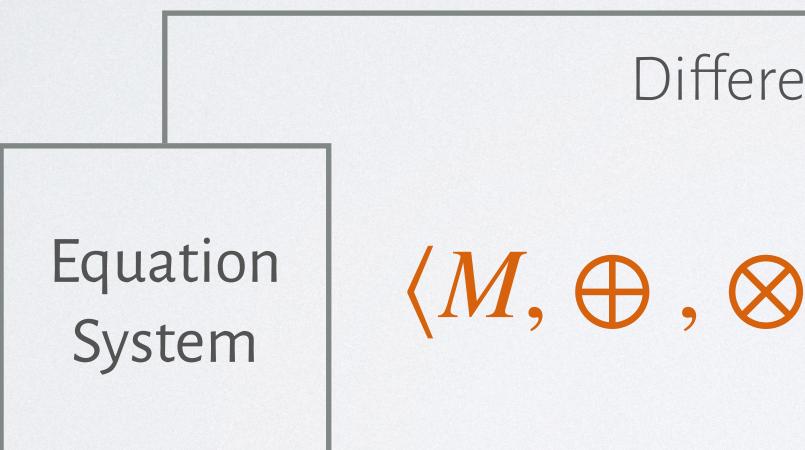


Differentiate at $\nu^{(i)}$

 $\langle M, \oplus, \otimes, \phi \oplus, \Pi, 0, 1 \rangle$

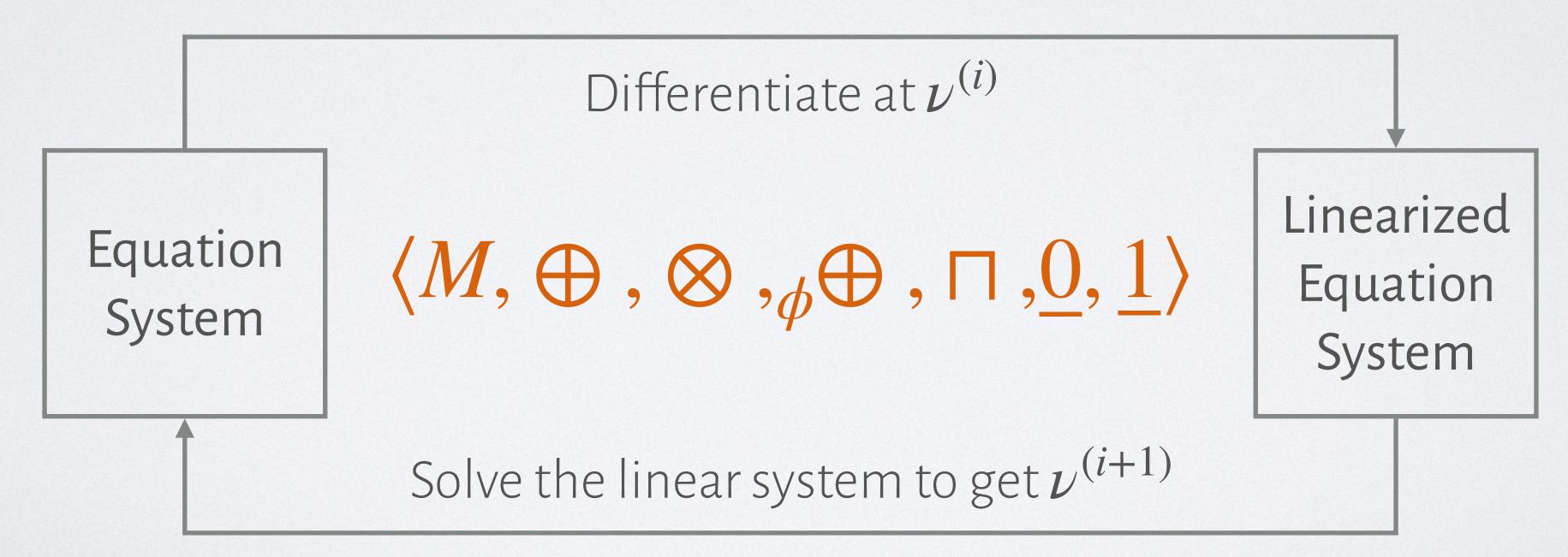
Analysis-specified loop-solving strategy Linearized Equation System

- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes

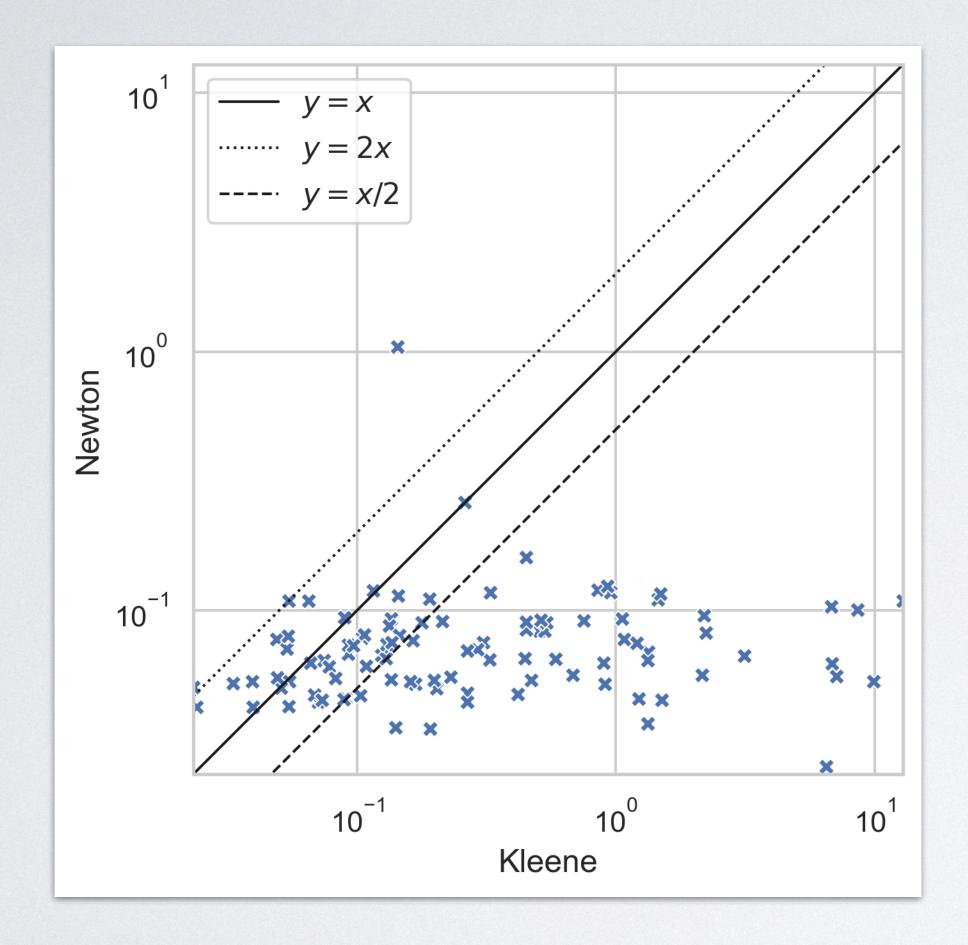


Differentiate at $\nu^{(i)}$ Linearized $\langle M, \oplus, \otimes, \phi \oplus, \Pi, 0, 1 \rangle$ Equation System

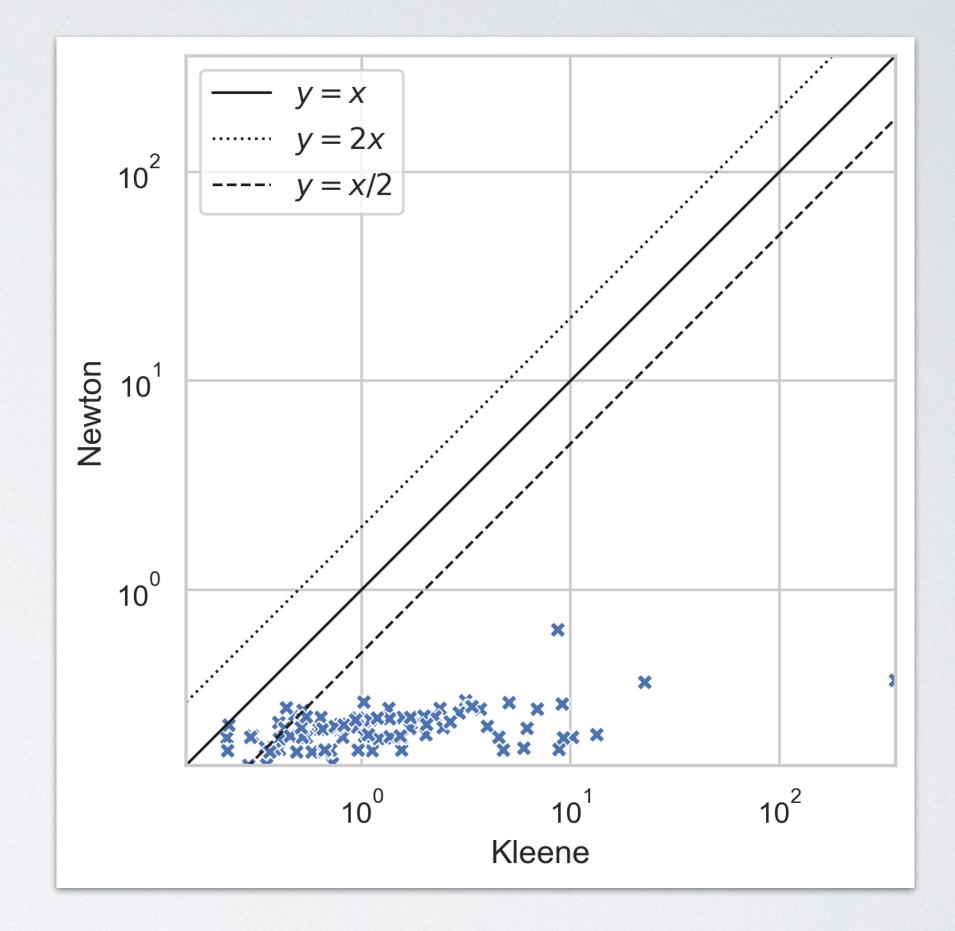
- Key idea: Apply Newton's method to pre-Markov algebras
- We develop a differentiation routine for recursive program schemes



Preliminary Evaluation



Reaching Probability



Expected Reward

- Di Wang, Jan Hoffmann, Thomas Reps (2018). PMAF: An Algebraic Framework for Static Analysis of Probabilistic Programs. In PLDI'18.
- Di Wang, Jan Hoffmann, Thomas Reps (2019). A Denotational Semantics for Low-Level Probabilistic Programs with Nondeterminism. In MFPS'19.
- Di Wang, Thomas Reps (2024). Newtonian Program Analysis of Probabilistic Programs. In OOPSLA'24.

Our Papers

Towards a flexible and efficient framework for program analysis of probabilistic programs

- Markov Algebras for Multiple Kinds of Confluences Semantics:
- **Representation:** Construction of Recursive Program Schemes
- Algorithm: Newton's Method for pre-Markov Algebras

