
Algebraic Program Analysis of Probabilistic Programs

Di Wang
Peking University

wangdi95@pku.edu.cn
Apr 10, 2024

Joint Work with Jan Hoffmann and Thomas Reps

mailto:wangdi95@pku.edu.cn

Probabilistic Systems are Becoming Pervasive

Randomized Algorithms
(improve efficiency)

Cyber-Physical Systems
(model uncertainty)

Artificial Intelligence
(describe statistical models)

2

Application: Randomized Quicksort

Image source: https://geekfactorial.blogspot.com/2016/08/randomized-quick-sort-algorithm.html.

๏ Improve efficiency

๏ From to (expected)

๏ Samplesort
๏ Use >1 random samples as pivots

Θ(n2) Θ(n log n)

3

https://geekfactorial.blogspot.com/2016/08/randomized-quick-sort-algorithm.html

Application: Airborne Collision Avoidance

๏ Model uncertainty

๏ Probabilistic dynamics

๏ Probabilistic sensors

๏ High-confidence system

4

Image source: Kochenderfer, et al. “Next-Generation Airborne Collision Avoidance System.” Lincoln Laboratory Journal (2012).

Application: Statistical Phylogenetics

๏ Describe statistical models

๏ Automated reasoning

๏ Apply Bayesian inference to
infer evolutionary history

๏ Solve previously intractable
problems

5

Ronquist, et al. “Universal probabilistic programming offers a powerful approach to statistical phylogenetics.” Communications Biology (2021).
Image source: https://www.nationalgeographic.org/media/tree-life/.

Probabilistic Programs

6

Draw random data from distributions Change control-flow at random

Image sources: https://www.libertystorch.info/2022/02/21/the-grab-bag/; https://www.stockvault.net/photo/179872/at-a-crossroads-decisions-and-choices-concept-with-large-arrow-signs.

https://www.libertystorch.info/2022/02/21/the-grab-bag/
https://www.stockvault.net/photo/179872/at-a-crossroads-decisions-and-choices-concept-with-large-arrow-signs

Probabilistic Programs

๏ True randomness

๏ A distribution on execution paths

๏ Probabilistic nondeterminism

7

if
| prob(1/3) → choice ≔ 1
| prob(1/3) → choice ≔ 2
| prob(1/3) → choice ≔ 3
fi

Probabilistic Programs

๏ True randomness

๏ A distribution on execution paths

๏ Probabilistic nondeterminism

7

if
| prob(1/3) → choice ≔ 1
| prob(1/3) → choice ≔ 2
| prob(1/3) → choice ≔ 3
fi

choice :∈p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)

Demonic Programs

๏ Dijkstra’s Guarded Command Language (GCL)

๏ A set of execution paths

๏ Demonic nondeterminism

8

if
| true → prize ≔ 1
| true → prize ≔ 2
| true → prize ≔ 3
fi

Demonic Programs

๏ Dijkstra’s Guarded Command Language (GCL)

๏ A set of execution paths

๏ Demonic nondeterminism

8

if
| true → prize ≔ 1
| true → prize ≔ 2
| true → prize ≔ 3
fi

prize :∈d {1,2,3}

Example: Monty Hall

1 2 3

Image source: Maria Gorinova’s Advances in Programming Languages (Guest Lecture) slides on Probabilistic Programming.

9

Example: Monty Hall

10

Example: Monty Hall

๏ McIver and Morgan’s probabilistic
Guarded Command Language (pGCL)

๏ Combine two forms of nondeterminism:
๏ Probabilistic
๏ Demonic

10

prize :∈d {1,2,3};
choice :∈p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3);
host :∈d {1,2,3} \ {prize,choice};
if switch then
 choice :∈d {1,2,3} \ {choice,host}
fi

Example: Monty Hall

๏ McIver and Morgan’s probabilistic
Guarded Command Language (pGCL)

๏ Combine two forms of nondeterminism:
๏ Probabilistic
๏ Demonic

10

prize :∈d {1,2,3};
choice :∈p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3);
host :∈d {1,2,3} \ {prize,choice};
if switch then
 choice :∈d {1,2,3} \ {choice,host}
fi
ℙ(choice = prize) = ?

Example: Monty Hall

๏ McIver and Morgan’s probabilistic
Guarded Command Language (pGCL)

๏ Combine two forms of nondeterminism:
๏ Probabilistic
๏ Demonic

๏ “Demons” minimize the probability

10

prize :∈d {1,2,3};
choice :∈p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3);
host :∈d {1,2,3} \ {prize,choice};
if switch then
 choice :∈d {1,2,3} \ {choice,host}
fi
ℙ(choice = prize) = ?

Example: Failure Modeling

11

Example: Failure Modeling

๏ An example of probabilistic modeling
checking

๏ Send c messages, each with a failure
probability 0.1

11

fail := FALSE;
c :∈d {0,1,2};
while not(fail) and c > 0 do
 fail :∈p (TRUE @ 0.1 | FALSE @ 0.9);
 c := c - 1
od

Example: Failure Modeling

๏ An example of probabilistic modeling
checking

๏ Send c messages, each with a failure
probability 0.1

๏ What is the probability of success?

11

fail := FALSE;
c :∈d {0,1,2};
while not(fail) and c > 0 do
 fail :∈p (TRUE @ 0.1 | FALSE @ 0.9);
 c := c - 1
od
ℙ(fail = FALSE) = ?

Example: Abstraction

12

Example: Abstraction

๏ Program analysis introduces abstraction

๏ Predicate Abstraction
๏ [c=0] is a Boolean variable

12

fail := FALSE;
[c=0] :∈d {TRUE,FALSE};
while not(fail) and not([c=0]) do
 fail :∈p (TRUE @ 0.1 | FALSE @ 0.9);
 [c=0] :∈a {TRUE,FALSE}
od;

Example: Abstraction

๏ Program analysis introduces abstraction

๏ Predicate Abstraction
๏ [c=0] is a Boolean variable

12

fail := FALSE;
[c=0] :∈d {TRUE,FALSE};
while not(fail) and not([c=0]) do
 fail :∈p (TRUE @ 0.1 | FALSE @ 0.9);
 [c=0] :∈a {TRUE,FALSE}
od;
ℙ(fail = FALSE) = ?

Example: Abstraction

๏ Program analysis introduces abstraction

๏ Predicate Abstraction
๏ [c=0] is a Boolean variable

๏ Abstraction nondeterminism
๏ Maximize —> Upper bound
๏ Minimize —> Lower bound

12

fail := FALSE;
[c=0] :∈d {TRUE,FALSE};
while not(fail) and not([c=0]) do
 fail :∈p (TRUE @ 0.1 | FALSE @ 0.9);
 [c=0] :∈a {TRUE,FALSE}
od;
ℙ(fail = FALSE) = ?

How to automate such quantitative reasoning
about probabilistic programs?

13

How to automate such quantitative reasoning
about probabilistic programs?

13

Examples

What is the probability that an assertion holds?

How to automate such quantitative reasoning
about probabilistic programs?

13

Examples

What is the probability that an assertion holds?

What is the expected value of an expression?

How to automate such quantitative reasoning
about probabilistic programs?

13

Examples

What is the probability that an assertion holds?

What is the expected value of an expression?

What is the expected time complexity of a program?

Challenge I:
How to support multiple confluence operations?

14

… :∈p …
… :∈d …
… :∈a …

Semantic Algebras

๏ Kleene Algebras: A compositional and flexible framework for program semantics

15

Program Construct

A program S An interpretation of into the algebra 𝕊 S
Branching between and A B 𝔸 ⊕ 𝔹

Sequencing of and A B 𝔸 ⊗ 𝔹
Iteration (i.e., loop) of A 𝔸*

“abort”, “skip” , 0 1

Algebraic Representation

Do Kleene Algebras Suffice?

16

Do Kleene Algebras Suffice?

16

if
| true → x ≔ 1
| true → x ≔ 2
| true → x ≔ 3
fi

Do Kleene Algebras Suffice?

16

if
| true → x ≔ 1
| true → x ≔ 2
| true → x ≔ 3
fi

([true] ⊗ x ≔ 1)
⊕ ([true] ⊗ x ≔ 2)
⊕ ([true] ⊗ x ≔ 3)

Do Kleene Algebras Suffice?

16

if
| true → x ≔ 1
| true → x ≔ 2
| true → x ≔ 3
fi

([true] ⊗ x ≔ 1)
⊕ ([true] ⊗ x ≔ 2)
⊕ ([true] ⊗ x ≔ 3)

if
| prob(1/3) → x ≔ 1
| prob(1/3) → x ≔ 2
| prob(1/3) → x ≔ 3
fi

Do Kleene Algebras Suffice?

16

if
| true → x ≔ 1
| true → x ≔ 2
| true → x ≔ 3
fi

([true] ⊗ x ≔ 1)
⊕ ([true] ⊗ x ≔ 2)
⊕ ([true] ⊗ x ≔ 3)

if
| prob(1/3) → x ≔ 1
| prob(1/3) → x ≔ 2
| prob(1/3) → x ≔ 3
fi

([prob(1/3)] ⊗ x ≔ 1)
⊕ ([prob(1/3)] ⊗ x ≔ 2)
⊕ ([prob(1/3)] ⊗ x ≔ 3)

Do Kleene Algebras Suffice?

17

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

Do Kleene Algebras Suffice?

17

(([prob(1/2)] ⊗ x ≔ 1) ⊕ ([prob(1/2)] ⊗ x ≔ 2))
⊕ (([prob(1/2)] ⊗ x ≔ 3) ⊕ ([prob(1/2)] ⊗ x ≔ 4))

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

Do Kleene Algebras Suffice?

17

(([prob(1/2)] ⊗ x ≔ 1) ⊕ ([prob(1/2)] ⊗ x ≔ 2))
⊕ (([prob(1/2)] ⊗ x ≔ 3) ⊕ ([prob(1/2)] ⊗ x ≔ 4))

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

= ([prob(1/2)] ⊗ x ≔ 1)
⊕ ([prob(1/2)] ⊗ x ≔ 2)
⊕ ([prob(1/2)] ⊗ x ≔ 3)
⊕ ([prob(1/2)] ⊗ x ≔ 4)

Do Kleene Algebras Suffice?

17

(([prob(1/2)] ⊗ x ≔ 1) ⊕ ([prob(1/2)] ⊗ x ≔ 2))
⊕ (([prob(1/2)] ⊗ x ≔ 3) ⊕ ([prob(1/2)] ⊗ x ≔ 4))

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

= ([prob(1/2)] ⊗ x ≔ 1)
⊕ ([prob(1/2)] ⊗ x ≔ 2)
⊕ ([prob(1/2)] ⊗ x ≔ 3)
⊕ ([prob(1/2)] ⊗ x ≔ 4)

Probabilities sum up to 2!

๏ Key observation: Probabilistic programs have multiple confluence operations

Our Approach: Markov Algebras

18

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

๏ Key observation: Probabilistic programs have multiple confluence operations

Our Approach: Markov Algebras

18

Program denotations
form a CPO

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

๏ Key observation: Probabilistic programs have multiple confluence operations

Our Approach: Markov Algebras

18

Program denotations
form a CPO

Sequencing, branching, and
nondeterministic-choice

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

๏ Key observation: Probabilistic programs have multiple confluence operations

Our Approach: Markov Algebras

18

Program denotations
form a CPO

Sequencing, branching, and
nondeterministic-choice

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Easy to extend with more
confluence operations!

๏ Key observation: Probabilistic programs have multiple confluence operations

 interprets abort
 interprets skip

0
1

Our Approach: Markov Algebras

18

Program denotations
form a CPO

Sequencing, branching, and
nondeterministic-choice

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Easy to extend with more
confluence operations!

๏ Key observation: Probabilistic programs have multiple confluence operations

Our Approach: Markov Algebras

18

Program denotations
form a CPO

Sequencing, branching, and
nondeterministic-choice

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Easy to extend with more
confluence operations!

…

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)
a ⊗ 1 = 1 ⊗ a = a
aϕ⊕ b = bϕ⊕ a
a ⊓ a = a

๏ Key observation: Probabilistic programs have multiple confluence operations

Our Approach: Markov Algebras

18

Program denotations
form a CPO

Sequencing, branching, and
nondeterministic-choice

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Easy to extend with more
confluence operations!

Markov Algebras Suffice!

19

Markov Algebras Suffice!

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

19

Markov Algebras Suffice!

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

19

(x ≔ 11/2⊕ x ≔ 2) ⊓ (x ≔ 31/2⊕ x ≔ 4)

Markov Algebras Suffice!

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

19

(x ≔ 11/2⊕ x ≔ 2) ⊓ (x ≔ 31/2⊕ x ≔ 4)

while x>0 do
 x :∈p (x+1 @ 1/2 | x-1 @ 1/2)
od

Markov Algebras Suffice!

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

19

(x ≔ 11/2⊕ x ≔ 2) ⊓ (x ≔ 31/2⊕ x ≔ 4)

while x>0 do
 x :∈p (x+1 @ 1/2 | x-1 @ 1/2)
od

μS . ((x ≔ x+11/2⊕ x ≔ x-1) ⊗ S)[x>0]⊕ skip

Markov Algebras Suffice!

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

19

(x ≔ 11/2⊕ x ≔ 2) ⊓ (x ≔ 31/2⊕ x ≔ 4)

while x>0 do
 x :∈p (x+1 @ 1/2 | x-1 @ 1/2)
od

μS . ((x ≔ x+11/2⊕ x ≔ x-1) ⊗ S)[x>0]⊕ skip

Recursive Program Scheme

Flexibility: Different Semantics

20

Flexibility: Different Semantics

20

Standard: State → State

Flexibility: Different Semantics

20

Standard: State → State

GCL: State → ℘(State) { }, ,

Flexibility: Different Semantics

20

Standard: State → State

GCL: State → ℘(State)

Probabilistic: State → 𝔻(State)

{ }, ,

Flexibility: Different Semantics

20

Standard: State → State

GCL: State → ℘(State)

Probabilistic: State → 𝔻(State)

pGCL: State → ℘(𝔻(State))

{ }

{ }

, ,

,

Flexibility: Different Models for Nondeterminism

21

State → ℘(𝔻(State))

Flexibility: Different Models for Nondeterminism

๏ pGCL:

21

{ },

State → ℘(𝔻(State))

𝔻(State → ℘(State))

Flexibility: Different Models for Nondeterminism

๏ pGCL:

๏ Cousot’s Probabilistic Abstract Interpretation (PAI):

21

{ },

{ }, ,

State → ℘(𝔻(State))

𝔻(State → ℘(State))

℘(State → 𝔻(State))

Flexibility: Different Models for Nondeterminism

๏ pGCL:

๏ Cousot’s Probabilistic Abstract Interpretation (PAI):

๏ Compile-Time/Relational Nondeterminism:

21

{ },

{ },

{ }, ,

Challenge II:
How to construct recursive program schemes?

22

while x>0 do
 x :∈p (x+1 @ 1/2 | x-1 @ 1/2)
od

μS . ((x ≔ x+11/2⊕ x ≔ x-1) ⊗ S)[x>0]⊕ skip

A Control-Flow-Graph’s Perspective

๏ Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation

A program S An interpretation of into the algebra 𝕊 S
The control-flow graph of S A regular expression over , , , , and 0 1 ⊕ ⊗ *

23

A Control-Flow-Graph’s Perspective

๏ Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation

A program S An interpretation of into the algebra 𝕊 S
The control-flow graph of S A regular expression over , , , , and 0 1 ⊕ ⊗ *

[n==1]

[n!=1]

[n%2==0]

[n%2!=0]

i:=i+1

n:=n/2

n:=3*n+1

entry exit
skip

23

A Control-Flow-Graph’s Perspective

๏ Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation

A program S An interpretation of into the algebra 𝕊 S
The control-flow graph of S A regular expression over , , , , and 0 1 ⊕ ⊗ *

[n==1]

[n!=1]

[n%2==0]

[n%2!=0]

i:=i+1

n:=n/2

n:=3*n+1

entry exit
skip

[n!=1]
⊗ ⊕[n%2==0] n:=n/2
⊗[n%2!=0] n:=3*n+1

⊗()⊗ i:=i+1()*⊗ [n==1]

23

Do Control-Flow Graphs Suffice?

24

Do Control-Flow Graphs Suffice?

24

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

Do Control-Flow Graphs Suffice?

24

prob(1/2)

prob(1/2)

prob(1/2)

prob(1/2)

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

Do Control-Flow Graphs Suffice?

24

prob(1/2)

prob(1/2)

prob(1/2)

prob(1/2)

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

Probabilities sum up to 2!x' = 1
1/2

x' = 2
1/2

x' = 3
1/2

x' = 4
1/2

Our Approach: Control-Flow Hyper-Graphs

25

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Our Approach: Control-Flow Hyper-Graphs

25

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Hyper-edge
(for confluence)

Our Approach: Control-Flow Hyper-Graphs

25

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

x' = 1 x' = 2 x' = 3 x' = 4

{ , }p(1/2) p(1/2) p(1/2) p(1/2)

Hyper-edge
(for confluence)

Our Approach: Control-Flow Hyper-Graphs

25

if
| true → x :∈p (1 @ 1/2 | 2 @ 1/2)
| true → x :∈p (3 @ 1/2 | 4 @ 1/2)
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

x' = 1 x' = 2 x' = 3 x' = 4

{ , }p(1/2) p(1/2) p(1/2) p(1/2)

Hyper-edge
(for confluence)

Hyper-path
(like a tree)

Hyper-Paths are Infinite Trees!

26

Hyper-Paths are Infinite Trees!

26

[x>0]

false
true

prob(0.6)

truefalse

x≔x-1x≔x+1

t:=t+1

Hyper-Paths are Infinite Trees!

26

[x>0]

false
true

prob(0.6)

truefalse

x≔x-1x≔x+1

t:=t+1
[x<=0] [x>0]

p(0.4) p(0.6)

x≔x+1 x≔x-1

t≔t+1 t≔t+1

[x>0]
[x>0][x<=0]

[x<=0]

… … … …
p(0.4) p(0.4)p(0.6) p(0.6)

Recursive Program Schemes

27

[x<=0] [x>0]

p(0.4) p(0.6)

x≔x+1 x≔x-1

t≔t+1 t≔t+1

[x>0]
[x>0][x<=0]

[x<=0]

… … … …
p(0.4) p(0.4)p(0.6) p(0.6)

Recursive Program Schemes

27

[x<=0] [x>0]

p(0.4) p(0.6)

x:=x+1 x:=x-1

t:=t+1 t:=t+1

S S
)([x<=0] [x>0]

p(0.4) p(0.6)

x≔x+1 x≔x-1

t≔t+1 t≔t+1

[x>0]
[x>0][x<=0]

[x<=0]

… … … …
p(0.4) p(0.4)p(0.6) p(0.6)

Recursive Program Schemes

27

[x<=0] [x>0]

p(0.4) p(0.6)

x:=x+1 x:=x-1

t:=t+1 t:=t+1

S S
)(μS .

[x<=0] [x>0]

p(0.4) p(0.6)

x≔x+1 x≔x-1

t≔t+1 t≔t+1

[x>0]
[x>0][x<=0]

[x<=0]

… … … …
p(0.4) p(0.4)p(0.6) p(0.6)

Recursive Program Schemes

27

[x<=0] [x>0]

p(0.4) p(0.6)

x:=x+1 x:=x-1

t:=t+1 t:=t+1

S S
)(μS .

μS .
cond[x > 0](prob[0.6](seq[x := x − 1](seq[t := t + 1](S));

seq[x := x + 1](seq[t := t + 1](S)));
1)

[x<=0] [x>0]

p(0.4) p(0.6)

x≔x+1 x≔x-1

t≔t+1 t≔t+1

[x>0]
[x>0][x<=0]

[x<=0]

… … … …
p(0.4) p(0.4)p(0.6) p(0.6)

A Control-Flow-Hyper-Graph’s Perspective

๏ Markov Algebras are compatible with control-flow hyper-graphs via recursive program
schemes

28

A Control-Flow-Hyper-Graph’s Perspective

๏ Markov Algebras are compatible with control-flow hyper-graphs via recursive program
schemes

28

while x>0 do
 if prob(0.6) then x≔x+1
 else x≔x-1 fi;
 t≔t+1
od

A Control-Flow-Hyper-Graph’s Perspective

๏ Markov Algebras are compatible with control-flow hyper-graphs via recursive program
schemes

28

[x>0]

false
true

prob(0.6)

truefalse

x≔x-1x≔x+1

t:=t+1 while x>0 do
 if prob(0.6) then x≔x+1
 else x≔x-1 fi;
 t≔t+1
od

A Control-Flow-Hyper-Graph’s Perspective

๏ Markov Algebras are compatible with control-flow hyper-graphs via recursive program
schemes

28

[x>0]

false
true

prob(0.6)

truefalse

x≔x-1x≔x+1

t:=t+1

μS .
cond[x > 0](prob[0.6](seq[x := x − 1](seq[t := t + 1](S));

seq[x := x + 1](seq[t := t + 1](S)));
1)

while x>0 do
 if prob(0.6) then x≔x+1
 else x≔x-1 fi;
 t≔t+1
od

Challenge III:
How to carry out quantitative analyses efficiently?

29

while prob(2/3) do
 x ≔ x + 1
od

Iterative Program Analysis

while prob(2/3) do
 x ≔ x + 1
od

μS . ((x ≔ x+1) ⊗ S)[2/3]⊕ skip

30

Iterative Program Analysis

๏ Markov algebra for computing

๏ Sequencing:

๏ Branching:

𝔼[Δx]
r ⊗ t ≜ r + t

rp⊕ t ≜ p * r + (1 − p) * t

while prob(2/3) do
 x ≔ x + 1
od

μS . ((x ≔ x+1) ⊗ S)[2/3]⊕ skip

30

Iterative Program Analysis

๏ Markov algebra for computing

๏ Sequencing:

๏ Branching:

𝔼[Δx]
r ⊗ t ≜ r + t

rp⊕ t ≜ p * r + (1 − p) * t

while prob(2/3) do
 x ≔ x + 1
od

μS . ((x ≔ x+1) ⊗ S)[2/3]⊕ skip

30

κ(0) = 0
κ(1) = 2/3 * (1 + κ(0)) + 1/3 * 0 = 2/3
κ(2) = 2/3 * (1 + κ(1)) + 1/3 * 0 = 10/9

⋯
κ(∞) = 2

Iterative Program Analysis

๏ Markov algebra for computing

๏ Sequencing:

๏ Branching:

𝔼[Δx]
r ⊗ t ≜ r + t

rp⊕ t ≜ p * r + (1 − p) * t

while prob(2/3) do
 x ≔ x + 1
od

μS . ((x ≔ x+1) ⊗ S)[2/3]⊕ skip

30

κ(0) = 0
κ(1) = 2/3 * (1 + κ(0)) + 1/3 * 0 = 2/3
κ(2) = 2/3 * (1 + κ(1)) + 1/3 * 0 = 10/9

⋯
κ(∞) = 2 Need iterations to

converge!
∞

Non-iterative Program Analysis

31

๏ Markov algebra for computing

๏ Sequencing:

๏ Branching:

𝔼[Δx]
r ⊗ t ≜ r + t

rp⊕ t ≜ p * r + (1 − p) * t

while prob(2/3) do
 x ≔ x + 1
od

μS . ((x ≔ x+1) ⊗ S)[2/3]⊕ skip

Non-iterative Program Analysis

31

Equivalent to solve:

Analytical solution:

No need for iteration!

s = 2/3 * (1 + s) + 1/3 * 0,

s = 2

๏ Markov algebra for computing

๏ Sequencing:

๏ Branching:

𝔼[Δx]
r ⊗ t ≜ r + t

rp⊕ t ≜ p * r + (1 − p) * t

while prob(2/3) do
 x ≔ x + 1
od

μS . ((x ≔ x+1) ⊗ S)[2/3]⊕ skip

Non-iterative Intra-procedural Analysis

32

Non-iterative Intra-procedural Analysis

๏ Observation: Loops are (right-)linear recursions, thus we can always extract a system of
linear equations

๏ For each , we extract an equation μS . E S = E

32

Non-iterative Intra-procedural Analysis

๏ Observation: Loops are (right-)linear recursions, thus we can always extract a system of
linear equations

๏ For each , we extract an equation μS . E S = E

๏ Techniques to solve linear equation systems extracted from probabilistic programs:

๏ Linear Programming: Compute probabilities, expectations, or matrices

๏ Loop-Invariant Generation: Derive probabilistic or expectation invariants

32

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

33

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

X = skip1/3⊕ (X ⊗ X)

33

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

X = skip1/3⊕ (X ⊗ X)

p = 1/3 * 1 + 2/3 * (p * p)

Computing ℙ[terminate]

33

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

X = skip1/3⊕ (X ⊗ X)

p = 1/3 * 1 + 2/3 * (p * p)

Computing ℙ[terminate]

33

Non-linear!

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

X = skip1/3⊕ (X ⊗ X)

p = 1/3 * 1 + 2/3 * (p * p)

Computing ℙ[terminate]

Newtons’s method

33

Non-linear!

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

X = skip1/3⊕ (X ⊗ X)

p = 1/3 * 1 + 2/3 * (p * p)

Computing ℙ[terminate]

Newtons’s method

33

f(x) = 1/3 * 1 + 2/3 * (x * x)

Non-linear!

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

X = skip1/3⊕ (X ⊗ X)

p = 1/3 * 1 + 2/3 * (p * p)

Computing ℙ[terminate]

Newtons’s method

33

f(x) = 1/3 * 1 + 2/3 * (x * x)

Δ(i) = (f(p(i)) − p(i)) + f′ (p(i)) * Δ(i)

p(i+1) ← p(i) + Δ(i)

Non-linear!

Beyond Loops

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

X = skip1/3⊕ (X ⊗ X)

p = 1/3 * 1 + 2/3 * (p * p)

Computing ℙ[terminate]

Newtons’s method

33

f(x) = 1/3 * 1 + 2/3 * (x * x)

Δ(i) = (f(p(i)) − p(i)) + f′ (p(i)) * Δ(i)

p(i+1) ← p(i) + Δ(i)

Non-linear!

Linear!

Newton’s Method

34

Newton’s Method

๏ Solve the equation where is
well-defined

f(x) = 0 f′ (x)

34

Newton’s Method

๏ Solve the equation where is
well-defined

f(x) = 0 f′ (x)

34

p = 1/3 * 1 + 2/3 * (p * p)

f(x) = 1/3 * 1 + 2/3 * (x * x) − x
= 2/3 * x2 − x + 1/3

f′ (x) = 4/3 * x − 1

Newton’s Method

๏ Solve the equation where is
well-defined

f(x) = 0 f′ (x)

๏ Start from an initial approximation ν(0)

34

p = 1/3 * 1 + 2/3 * (p * p)

f(x) = 1/3 * 1 + 2/3 * (x * x) − x
= 2/3 * x2 − x + 1/3

f′ (x) = 4/3 * x − 1

ν(0) ← 0

Newton’s Method

๏ Solve the equation where is
well-defined

f(x) = 0 f′ (x)

๏ Start from an initial approximation ν(0)

๏ At step , solve a linear equation
, i.e., set

i
f(ν(i)) + f′ (ν(i)) * (y − ν(i)) = 0
ν(i+1) = ν(i) − f(ν(i))/f′ (ν(i))

34

p = 1/3 * 1 + 2/3 * (p * p)

f(x) = 1/3 * 1 + 2/3 * (x * x) − x
= 2/3 * x2 − x + 1/3

f′ (x) = 4/3 * x − 1

ν(0) ← 0

Newton’s Method

๏ Solve the equation where is
well-defined

f(x) = 0 f′ (x)

๏ Start from an initial approximation ν(0)

๏ At step , solve a linear equation
, i.e., set

i
f(ν(i)) + f′ (ν(i)) * (y − ν(i)) = 0
ν(i+1) = ν(i) − f(ν(i))/f′ (ν(i))

34

p = 1/3 * 1 + 2/3 * (p * p)

f(x) = 1/3 * 1 + 2/3 * (x * x) − x
= 2/3 * x2 − x + 1/3

f′ (x) = 4/3 * x − 1

ν(0) ← 0
ν(1) = 0 − f(0)/f′ (0) = 1/3
ν(2) = 1/3 − f(1/3)/f′ (1/3) = 7/15
ν(3) = 7/15 − f(7/15)/f′ (7/15) = 127/255

⋯
ν(∞) = 1/2

Newton’s Method Converges Faster

35

Newtonian Program Analysis (NPA)

36

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

Newtonian Program Analysis (NPA)

36

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

call X

call X

1

Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

Newtonian Program Analysis (NPA)

36

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

call X

call X

1

p(1/3) p(2/3)

call Δ

call Δ

0
v

v

Differentiate

Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

When X=v

Newtonian Program Analysis (NPA)

36

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

call X

call X

1

p(1/3) p(2/3)

call Δ

call Δ

0
v

v

Differentiate

Every root-to-leaf path
contains at most one call!

Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

When X=v

Newtonian Program Analysis (NPA)

36

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

call X

call X

1

p(1/3) p(2/3)

call Δ

call Δ

0
v

v

Differentiate

Every root-to-leaf path
contains at most one call!

Linear!

Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

When X=v

Newtonian Program Analysis (NPA)

36

proc X begin
 if prob(1/3) then
 skip
 else
 call X;
 call X
 fi
end

p(1/3) p(2/3)

call X

call X

1

p(1/3) p(2/3)

call Δ

call Δ

0
v

v

Differentiate

Every root-to-leaf path
contains at most one call!

Linear!

Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

d(f * g)
dx

=
df
dx

* g + f *
dg
dx

When X=v

Newtonian Program Analysis (NPA)

37

Newtonian Program Analysis (NPA)

๏ Idea: Apply Newton’s method to algebraic structures, e.g., Kleene algebras

37

Newtonian Program Analysis (NPA)

๏ Idea: Apply Newton’s method to algebraic structures, e.g., Kleene algebras

๏ Derive the syntactic differential of algebraic expressions

𝒟(X) |ν (Y) ≜ Y

𝒟(f ⊕ g) |ν (Y) ≜ 𝒟f |ν (Y) ⊕ 𝒟gν(Y)

𝒟(f ⊗ g) |ν (Y) ≜ (𝒟f |ν (Y) ⊗ g(ν)) ⊕ (f(ν) ⊗ 𝒟g |ν (Y))

37

Newtonian Program Analysis (NPA)

๏ Idea: Apply Newton’s method to algebraic structures, e.g., Kleene algebras

๏ Derive the syntactic differential of algebraic expressions

𝒟(X) |ν (Y) ≜ Y

𝒟(f ⊕ g) |ν (Y) ≜ 𝒟f |ν (Y) ⊕ 𝒟gν(Y)

𝒟(f ⊗ g) |ν (Y) ≜ (𝒟f |ν (Y) ⊗ g(ν)) ⊕ (f(ν) ⊗ 𝒟g |ν (Y))

37

Procedure call to X

Newtonian Program Analysis (NPA)

๏ Idea: Apply Newton’s method to algebraic structures, e.g., Kleene algebras

๏ Derive the syntactic differential of algebraic expressions

𝒟(X) |ν (Y) ≜ Y

𝒟(f ⊕ g) |ν (Y) ≜ 𝒟f |ν (Y) ⊕ 𝒟gν(Y)

𝒟(f ⊗ g) |ν (Y) ≜ (𝒟f |ν (Y) ⊗ g(ν)) ⊕ (f(ν) ⊗ 𝒟g |ν (Y))

37

Branching

Newtonian Program Analysis (NPA)

๏ Idea: Apply Newton’s method to algebraic structures, e.g., Kleene algebras

๏ Derive the syntactic differential of algebraic expressions

𝒟(X) |ν (Y) ≜ Y

𝒟(f ⊕ g) |ν (Y) ≜ 𝒟f |ν (Y) ⊕ 𝒟gν(Y)

𝒟(f ⊗ g) |ν (Y) ≜ (𝒟f |ν (Y) ⊗ g(ν)) ⊕ (f(ν) ⊗ 𝒟g |ν (Y))

37

Sequencing

Newtonian Program Analysis (NPA)

๏ Idea: Apply Newton’s method to algebraic structures, e.g., Kleene algebras

๏ Derive the syntactic differential of algebraic expressions

𝒟(X) |ν (Y) ≜ Y

𝒟(f ⊕ g) |ν (Y) ≜ 𝒟f |ν (Y) ⊕ 𝒟gν(Y)

𝒟(f ⊗ g) |ν (Y) ≜ (𝒟f |ν (Y) ⊗ g(ν)) ⊕ (f(ν) ⊗ 𝒟g |ν (Y))

37

Sequencing

Interpreting calls to in by X g ν

Newtonian Program Analysis (NPA)

๏ Idea: Apply Newton’s method to algebraic structures, e.g., Kleene algebras

๏ Derive the syntactic differential of algebraic expressions

𝒟(X) |ν (Y) ≜ Y

𝒟(f ⊕ g) |ν (Y) ≜ 𝒟f |ν (Y) ⊕ 𝒟gν(Y)

𝒟(f ⊗ g) |ν (Y) ≜ (𝒟f |ν (Y) ⊗ g(ν)) ⊕ (f(ν) ⊗ 𝒟g |ν (Y))

37

Sequencing

Interpreting calls to in by X g ν

Interpreting calls to in by X g ν

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Support multiple confluences,
loops, and recursion

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

 defines a partial order and
gives an additive structure

⊕

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Equation
System

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Equation
System

Linearized
Equation

System

Differentiate at ν(i)

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Equation
System

Linearized
Equation

System

Differentiate at ν(i)

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Analysis-specified
loop-solving strategy

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Equation
System

Linearized
Equation

System

Differentiate at ν(i)

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Our Approach: NPA for pre-Markov Algebras

๏ Key idea: Apply Newton’s method to pre-Markov algebras

๏ We develop a differentiation routine for recursive program schemes

38

Equation
System

Linearized
Equation

System

Differentiate at ν(i)

Solve the linear system to get ν(i+1)

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Preliminary Evaluation

39

Reaching Probability Expected Reward

Our Papers

๏ Di Wang, Jan Hoffmann, Thomas Reps (2018). PMAF: An Algebraic Framework for Static
Analysis of Probabilistic Programs. In PLDI’18.

๏ Di Wang, Jan Hoffmann, Thomas Reps (2019). A Denotational Semantics for Low-Level
Probabilistic Programs with Nondeterminism. In MFPS’19.

๏ Di Wang, Thomas Reps (2024). Newtonian Program Analysis of Probabilistic Programs. In
OOPSLA’24.

40

Towards a flexible and efficient framework for
program analysis of probabilistic programs

Semantics:

Representation:

Algorithm:

Markov Algebras for Multiple Kinds of Confluences

Construction of Recursive Program Schemes

Newton’s Method for pre-Markov Algebras

41

