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Abstract
Probabilistic programming languages aim to describe and

automate Bayesian modeling and inference. Modern lan-

guages support programmable inference, which allows users

to customize inference algorithms by incorporating guide
programs to improve inference performance. For Bayesian

inference to be sound, guide programs must be compatible

with model programs. One pervasive but challenging con-

dition for model-guide compatibility is absolute continuity,
which requires that the model and guide programs define

probability distributions with the same support.

This paper presents a new probabilistic programming

language that guarantees absolute continuity, and features

general programming constructs, such as branching and

recursion. Model and guide programs are implemented as

coroutines that communicate with each other to synchronize

the set of random variables they sample during their execu-

tion. Novel guide types describe and enforce communication

protocols between coroutines. If the model and guide are

well-typed using the same protocol, then they are guaranteed

to enjoy absolute continuity. An efficient algorithm infers

guide types from code so that users do not have to specify the

types. The new programming language is evaluated with an

implementation that includes the type-inference algorithm

and a prototype compiler that targets Pyro. Experiments

show that our language is capable of expressing a variety

of probabilistic models with nontrivial control flow and re-

cursion, and that the coroutine-based computation does not

introduce significant overhead in actual Bayesian inference.

CCSConcepts: •Theory of computation→Probabilistic
computation; Type structures; •Mathematics of com-
puting→ Probabilistic inference problems.

Keywords: Probabilistic programming, Bayesian inference,

type systems, coroutines
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1 Introduction
Probabilistic programming languages (PPLs) [1, 12, 22–24, 45,
48, 53, 58] provide a flexible way of describing statistical

models and automatically performing Bayesian inference: a

method for inferring the posterior of a statistical model from

observed data. Bayesian inference accounts for uncertainty

in latent variables that produce the observed data. It has ap-

plications in many fields, including artificial intelligence [21],

cognitive science [25], and applied statistics [20].

Because there is not a single known inference algorithm

that works well for all models [38], several PPLs have re-

cently added support for programmable inference [7, 16, 19,
38, 43, 59]. This capability allows users to customize infer-

ence algorithms based on the characteristics of a partic-

ular model or dataset. Researchers have shown that pro-

grammable inference enables improved inference perfor-

mance on a variety of modeling problems [7, 16, 18, 38].

Two important families of inference algorithms can be

customized by incorporating guide programs, which are im-

plemented by the user. The first family is Monte-Carlo meth-

ods, such as importance sampling and Markov-Chain Monte

Carlo, where a guide program serves as a proposal, which
generates random samples for latent variables. The second

family is variational inference, where a guide program is a

parameterized program that specifies a collection of approx-
imating distributions on latent variables.

To ensure soundness of programmable inference, the guide

programs have to be compatible with the implemented model

program; incompatible guide programs could crash the in-

ference process or lead to incorrect inference results [36, 37].

Recently, Lee et al. [36] developed a static analysis for find-

ing bugs in model-guide pairs for variational inference in

Pyro [7]. Lew et al. [37] proposed a type system that proves

model-guide compatibility for multiple inference algorithms.

However, neither approach handles general conditional state-

ments that can influence the set of latent variables sampled

by the model, and it is unclear how to extend them to analyze

recursive programs precisely.

In this paper, we develop a new PPL that supports re-

cursion and conditional statements, as well as guarantees

absolute continuity, one of the most pervasive conditions for

ensuring model-guide compatibility. Our PPL uses a new
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paradigm for writing inference code: users implement the

model and guide programs as coroutines, which can commu-

nicate with each other during their execution. We develop a

new type system, which we dub guide types, to describe the

communication protocols between coroutines. These guide

types can be automatically inferred and are proof certificates

of absolute continuity for model-guide pairs. They apply to

multiple kinds of Bayesian-inference algorithms.

In our development, we follow a common scheme of trace-
based programmable inference that underlies Pyro [7], Ven-

ture [38], Gen [16], etc. These PPLs define the meaning of a

probabilistic program by a probability distribution on sample
traces that record all the random samples that the program

draws during its execution. A program 𝑝 is absolutely contin-
uous with respect to a program 𝑞, if any set of sample traces

with non-zero probability under the program 𝑝 must also

have non-zero probability under the program 𝑞. In this paper,

we reduce the problem of checking absolute continuity to

the following verification task:

Given amodel program 𝑝 and a guide program𝑞, verify that
they define probability distributions with the same support,
i.e., they have the same set of possible sample traces.

Themajor challenge in our development is to reason about

the sets of possible sample traces for the model and guide

programs, when the two programs can diverge in their ex-

ecution, as always with relational reasoning. Control-flow

constructs make it difficult to keep track of sample sites

precisely; for example, a conditional statement can sample

different sets of random variables in its two branches. It is

intractable to enumerate all possible execution paths in the

two programs and compare the sample sites path-to-path,

especially when the programs are recursive.

The first part of our solution is to think of the model and

guide programs as coroutines that can exchange messages.

Conceptually, we use coroutine-style communication to syn-
chronize each pair of sample sites that represent the same

random variable, as well as each branch selection that in-

fluences control flow. The communication between the two

coroutines should then be conducted according to a proto-

col so that messages always occur in guidance pairs: when
one partner sends, the other receives; and when one partner

offers a selection, the other branches.

The second part of our solution is to develop guide types as
guidance protocols between the model and guide coroutines.

In our formalization, we structure the sequence of messages

between two coroutines, rather than describe it as a collec-

tion of unrelated messages. To handle general recursion, we

parameterize the guide type for each coroutine by a con-
tinuation type that describes the guidance protocol for the

computation that continues after a recursive invocation. We

also develop an efficient algorithm that infers guide types

automatically from the code.

There have been several type systems for coroutines [2, 3,

26], but all of them require that all messages from a coroutine

to another have the same type; thus, they are not sufficient to

handle sample passing and branch selection in our coroutine-

based paradigm. In our development of guide types, we took

inspiration from type systems for communication protocols

in concurrent systems, such as session types [28, 29]. Guide
types have different semantics from and are simpler than

session types, and use a parametrization technique to model

recursive computation.

We then establish formal guarantees of our new PPL. First,

we prove that guide types ensure safety of communication

between coroutines, i.e., the coroutines send and receive

messages in a consistent manner. Second, we prove that

guide types serve as proof certificates of absolute continuity

between the model and guide programs; consequently, we

use guide types to justify soundness of importance sampling,

Markov-Chain Monte Carlo, and variational inference. Note

that for variational inference, the soundness guarantee is

partial, because sound inference requires some additional

conditions (e.g., differentiability), whereas this paper focuses

just on absolute continuity.

We implemented a type-inference algorithm for guide

types and a prototype compiler from our PPL to Pyro. We

evaluated our PPL on a broad suite of probabilistic models,

and our experimental results show that (i) our PPL is more

expressive than a state-of-the-art PPL that ensures sound-

ness of programmable inference [37], and (ii) type inference

completes in several milliseconds, and the performance of

Bayesian inference on the compiled code is similar to hand-

written Pyro code, i.e., coroutine communication does not

introduce significant overhead.

Contributions. We make four main contributions.

• We develop a new PPL with a coroutine-based paradigm

for implementing model and guide programs.

• We propose guide types, which prescribe guidance proto-

cols between the model and guide coroutines, and develop

an efficient inference algorithm for guide types.

• We prove type safety of guide types, and show that guide

types ensure key soundness conditions of model-guide

pairs for multiple kinds of Bayesian-inference algorithms.

• We implemented our PPL and evaluated its effectiveness

on a variety of probabilistic models.

2 Overview
In this section, we first review Bayesian inference and trace-

based programmable inference (§2.1). We then demonstrate

the coroutine-based paradigm for implementing inference

code and the use of guide types to enforce guidance protocols

between coroutines. (§2.2).

2.1 Bayesian Inference
Probabilistic programs specify generativemodels that sample

random variables. The semantics of a probabilistic program

can be defined as a probability distribution on the sample
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1 proc Model() =
2 𝑣 ← sample(@𝑥,Gamma(2; 1));
3 if 𝑣 < 2 then
4 _← sample(@𝑧,Normal(−1; 1));
5 return(𝑣)
6 else
7 𝑚← sample(@𝑦, Beta(3; 1));
8 _← sample(@𝑧,Normal(𝑚; 1));
9 return(𝑣)

Figure 1. A program Model with a conditional statement.

traces that record all the random values that a program draws

during its execution [9, 35]. Consider the program Model in
Fig. 1; it specifies a probabilistic model on random variables

introduced by commands sample(@ℓ, 𝑑), where ℓ is a la-
bel that identifies a sample site in a program; and 𝑑 is a

primitive distribution, such as Gamma distributions whose

support is the positive real line ℝ+, Normal distributions
whose support is the real line ℝ, and Beta distributions

whose support is the unit interval ℝ(0,1) . Two possible sam-

ple traces in the program Model are [@𝑥 = 1; @𝑧 = −0.5]
and [@𝑥 = 3; @𝑦 = 0.9; @𝑧 = 0.7]. More generally, the pro-

gram specifies a distribution on sample traces whose support

is

{[@𝑥 = 𝑎; @𝑧 = 𝑐] | 0 < 𝑎 < 2}
∪ {[@𝑥 = 𝑎; @𝑦 = 𝑏; @𝑧 = 𝑐] | 𝑎 ≥ 2, 0 < 𝑏 < 1}. (1)

Bayesian Inference amounts to conditioning a proba-

bilistic model on observations and computing a posterior

distribution on latent variables. For the program Model,
we consider that @𝑧 is the single ℝ-valued observation,

while both @𝑥 and @𝑦 are latent variables. Intuitively,

latent variables encode knowledge about the “ground

truth” that we cannot observe directly, and the model pro-

gram specifies a prior distribution on the “ground truth.”

Figure 2. Probability den-

sities of the prior and poste-

rior distribution of the ran-

dom variable @𝑥 .

Given a concrete value of the ob-

servation (e.g., @𝑧 = 0.8), the ob-

jective of Bayesian inference is to

approximate the posterior distri-
bution of the latent variables (e.g.,

likely values of @𝑥 and @𝑦 un-

der the condition that @𝑧 = 0.8).

Fig. 2 plots the prior distribution

of the randomvariable@𝑥 , and its

posterior distribution under the

observation @𝑧 = 0.8.

It is usually intractable to sam-

ple directly from or even de-

rive posterior distributions. There

have been two popular families of

inference algorithms: Monte-Carlo methods and variational
inference. These inference algorithms usually require some

guide programs, which can have a substantial influence on

the performance of the inference. Although many PPLs pro-

vide mechanisms for automatically generating those guide

programs, the ability to allow users to customize them, has

been shown to be helpful, and sometimes crucial, for ef-

fective inference [7, 16, 18, 38]. However, customizability

introduces non-trivial challenges to ensuring soundness of
Bayesian inference. We now illustrate some mistakes when

programming guide programs for Monte-Carlo methods and

for variational inference.

Monte-Carlo methods. A Monte-Carlo method generates

iteratively random samples such that empirical distribution

of the samples approximates the posterior distribution. Two

popular Monte-Carlo methods are importance sampling (IS)

and Markov-Chain Monte Carlo (MCMC). IS generates in-

dependent and identically distributed samples from a pro-
posal distribution, and reweights the samples by their impor-
tance, which corrects the discrepancy between the posterior

and proposal distributions. MCMC generates iteratively a

new random sample from an old one; that is, it constructs a

Markov chain whose stationary distribution is the posterior

distribution.

We now illustrate a mistake when programming guide

programs for IS. For IS to converge asymptotically to the

posterior distribution, the posterior distribution must be ab-
solutely continuous with respect to the proposal distribution,

i.e., any set of samples with non-zero probability under the

posterior distribution must also have non-zero probability

under the proposal distribution. In §5, we will show that

it suffices to verify if the model program conditioned with

respect to a concrete observation and the guide program

have the same set of possible sample traces. For example, for

the program Model shown in Fig. 1, the support of a sound

guide program could be

{[@𝑥 = 𝑎] | 0 < 𝑎 < 2}
∪ {[@𝑥 = 𝑎; @𝑦 = 𝑏] | 𝑎 ≥ 2, 0 < 𝑏 < 1}, (2)

which is obtained by factoring out the observation @𝑧 from

the support of the unconditioned model shown in (1).

Fig. 3 presents two guide programs for performing IS from

the programModel shown in Fig. 1, where the supports of the
Pois and Unif distributions are natural numbers ℕ and the

unit intervalℝ(0,1) , respectively. The support of the program
Guide1 is exactly the one shown in (2); thus,Guide1 is a sound

guide program; that is, Guide1 samples the latent random

variables @𝑥,@𝑦 from the same space as Model does. On
the other hand, the support of the program Guide′

1
does not

match (2), and it is actually an unsound guide program for

two reasons:

• In the model program, the latent variable @𝑥 can be any

positive real number, whereas the program Guide′
1
only

samples natural numbers for @𝑥 .

• In the model program, when the value of 𝑣 (i.e., the latent

variable @𝑥) is greater than 2, the other latent variable

@𝑦 should be present in the sample trace. However, when
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A sound guide

1 proc Guide1() =

2 𝑣 ← sample(@𝑥,Gamma(1; 1));
3 if 𝑣 < 2 then
4 return()
5 else
6 _← sample(@𝑦,Unif);
7 return()

An unsound guide

1 proc Guide′
1
() =

2 𝑣 ← sample(@𝑥, Pois(4));
3 if 𝑣 > 10 then
4 return()
5 else
6 _← sample(@𝑦,Unif);
7 return()

Figure 3. Sound and unsound guide programs for IS.

the value of 𝑣 is greater than 10, the program Guide′
1
will

not produce a sample for @𝑦.

Variational inference (VI). In contrast to Monte-Carlo

methods, VI uses optimization (e.g., stochastic gradient de-

scent) to find a candidate from an approximating family of

distributions that minimizes the distance between the pos-

terior distribution and the approximating distributions. In

PPLs such as Pyro, users specify the approximating family

by a parameterized probabilistic program called a guide; in-
stantiating the parameters with a concrete valuation that

produces a member of the approximating family. A widely

used distance is the Kullback-Leibler (KL) divergence from

the posterior distribution to the guide distribution. For the

KL divergence to be well-defined, the guide distribution must

be absolutely continuous with respect to the posterior distri-

bution. In §5, we again reduce the verification of absolute

continuity to checking a sufficient condition, namely, that

the model conditioned with respect to a concrete observation

and the guide have the same support. Note that VI requires

several more conditions (such as differentiability) for infer-

ence to be sound [36]. In this paper, we focus on verification

of absolute continuity.

Fig. 4 presents two guide programs for performing VI on

the program Model shown in Fig. 1. The real-valued param-

eters of the guide programs are 𝜃1, . . . , 𝜃4. The support of

the program Guide2 (instantiated with concrete parameters)

is exactly the one shown in eq. (2). On the other hand, the

program Guide′
2
defines an unsound guide, because it sam-

ples @𝑥 from a normal distribution, whose support is the

whole real line, whereas the program Model always samples

a positive value for @𝑥 .

2.2 Sound Bayesian Inference via Guide Types
Programs as coroutines. Our first contribution is a corou-
tine-based paradigm for implementing the model and guide

programs for Bayesian inference. In an inference algorithm,

the model program and its guide program have many con-

nections. The two most significant patterns we can observe

in common inference algorithms are as follows:

• The guide program is used to generate sample traces, and

then the model program is simulated with these traces to

compute likelihoods.

A sound guide

1 proc Guide2(𝜃1,𝜃2,𝜃3,𝜃4) =

2 𝑣 ← sample(@𝑥,

3 Gamma(𝜃1;𝜃2));
4 if 𝑣 < 2 then
5 return()
6 else
7 _← sample(@𝑦,

8 Beta(𝜃3;𝜃4));
9 return()

An unsound guide

1 proc Guide′
2
(𝜃1,𝜃2) =

2 𝑣 ← sample(@𝑥,

3 Normal(𝜃1;𝜃2));
4 if 𝑣 < 2 then
5 return()
6 else
7 _← sample(@𝑦,

8 Unif);
9 return()

Figure 4. Sound and unsound guide programs for VI.

• The guide program needs to have similar control-flow

structure to that of the model program. For example, if

the model program has a conditional command whose

two branches sample different sets of latent variables, the

guide program should also have a conditional command

with an equivalent branch condition.

The first pattern illustrates a form of sample passing from

the guide program to the model program, and the second

pattern indicates that the model program should provide

branch selection to the guide program. Such bidirectional
guidance inspired us to treat the model and guide programs

as coroutines that communicate with each other during their

execution, rather than as totally independent programs. On

the other hand, we do not want the coroutines to be tightly

coupled: Bayesian practitioners usually maintain a separa-

tion between the model and the guide so that they can refine

the guide iteratively to improve inference performance.

Therefore, we use message-passing communication to im-

plement the coroutines; this formalism allows us to separate

the model and the guide as individual programs, but connect

them via channels over which coroutines exchange mes-

sages. Fig. 5 reimplements the model and guide programs

in Fig. 1 and Fig. 3, respectively, by making the guidance

communication explicit. The sample(·) commands and con-

ditional commands are annotated with rv (i.e., “receive”) or
sd (i.e., “send”) to indicate the direction of communication,

and associated with a name of the channel on which the

communication is carried out. In this example, we use two

channels: latent for communication between the guide and

the model, and obs for identifying observations in the model.

Every channel has a unique provider and a unique consumer.

Note that in this way we do not need to use labeled samples—

as Pyro and some other PPLs do—because the sampling sites

are synchronized through guidance communication.

Operationally, when a coroutine is executing a command

associated with a channel 𝑐 , it resumes the other coroutine

that accesses channel 𝑐 , until the other coroutine encounters

a command that also communicates on channel 𝑐 . Then they

perform synchronization; for example,

• When Model executes samplerv{latent}(Gamma(2; 1)),
it resumes the other end of the latent channel, i.e.,
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Model

1 proc Model() consume latent provide obs =
2 𝑣 ← samplerv{latent}(Gamma(2; 1));
3 ifsd{latent} 𝑣 < 2 then
4 _← samplesd{obs}(Normal(−1; 1));
5 return(𝑣)
6 else
7 𝑚← samplerv{latent}(Beta(3; 1));
8 _← samplesd{obs}(Normal(𝑚; 1));
9 return(𝑣)

Guide

1 proc Guide1() consume . provide latent =
2 𝑣 ← samplesd{latent}(Gamma(1; 1));
3 ifrv{latent} ★ then
4 return()
5 else
6 _← samplesd{latent}(Unif);
7 return()

Figure 5. Probabilistic programs as coroutines.

the coroutine Guide1, until Guide1 reaches the com-

mand samplesd{latent}(Gamma(1; 1)). Recall that the
guide program is used in importance sampling; thus,

the coroutine Guide1 draws a sample from the distri-

bution Gamma(1; 1), and then sends it to the coroutine

Model, which uses the sample and the prior distribution

Gamma(2; 1) to calculate the importance weight.

• When Guide1 executes the conditional command on line

3 (where the ★ symbol indicates that the branch selection

is received from the other coroutine), it resumes the other

end of the latent channel, i.e., the coroutine Model, until
Model reaches the conditional command on line 3. The

coroutine Model is the sender of the branch selection;

thus, it evaluates the branch predicate 𝑣 < 2, and sends

the result back to Guide1.

When the synchronization is completed, either coroutine

can continue to execute.

Guide types. Our second contribution is guide types that en-
force guidance protocols between coroutines, and an efficient

algorithm that infers guide types from code.

We take inspiration from type systems for communication

protocols in concurrent systems, such as session types [28,
29]. The key idea is to structure the sequence of guidance
messages on a channel, rather than describe it as a collection

of unrelated messages.

We sketch some type constructors in our development of

guide types. The type 111 types an ended channel, where no

messages can be exchanged. The type 𝐴N 𝐵 types a channel

whose provider waits for a branch selection, and continues

with a protocol of type 𝐴 or a protocol of type 𝐵 based on

the received selection. The type 𝜏 ∧𝐴 types a channel whose

provider samples and sends a random value of type 𝜏 , and

then continues with a type 𝐴 protocol. The guide type for a

channel is the same for the provider and the consumer of the

channel, but the two ends of a channel interpret the guide

type for the channel dually (e.g., sends as receives).

With these three type constructors, we can express the

protocols for the latent and obs channels shown in Fig. 5 as

latent : ℝ+ ∧ (111 N (ℝ(0,1) ∧ 111)), (3)

obs : ℝ ∧ 111. (4)

The provider and the consumer of the channel latent are
the coroutines Guide1 and Model, respectively. From the

provider Guide1’s perspective, the protocol shown as type

(3) guides Guide1 to draw a ℝ+-valued sample and send it

on latent, then wait for a branch selection, and finally end

the communication on latent if the received branch selection

is then-branch, otherwise draw an ℝ(0,1) -valued sample be-

fore ending the communication. The coroutine Guide1 imple-

ments this guidance protocol exactly. Meanwhile, from the

consumer Model’s perspective, the type constructors have
dual semantics, i.e., send becomes receive and vice versa; thus,
the protocol for latent guidesModel to receive an ℝ+-valued
sample, and then send out a branch selection on channel la-
tent; ifModel selects the else-branch, then it further receives

an ℝ(0,1) -valued sample on channel latent.
The channel obs, whose provider is the coroutine Model,

is used to identify observations in the probabilistic model.

The coroutine Model accesses obs on lines 4 and 8, each of

which lies in a branch of the conditional command on line 3.

Because the conditional command is associated with latent,
it should not bother with the communication on channel

obs; thus, we require that the two branches of the condi-

tional command have the same guidance protocol for obs.
The protocol shown as type (4) specifies that the coroutine

Model produces a single ℝ-valued observation, and Model
implements this protocol exactly.

Recursion. Probabilistic programs can use recursion to ex-

press complex generative models, such as a probabilistic
context-free grammar (PCFG), which is a popular model for

constructing languages [33]. Fig. 6 shows a recursive model

that generates a random expression tree with two construc-

tors: Const(·) for leaf nodes and Add(·; ·) for internal nodes.
To support recursion in probabilistic programs, we add a

standard recursive-type constructor to guide types. However,

composition of the guide types from multiple procedure calls

in a non-tail-recursive program remains a challenge. One

straightforward approach is to add a sequencing type 𝐴 # 𝐵
that types a channel whose provider starts with a type 𝐴

protocol and then continues with a type 𝐵 protocol, but such

sequencing types will complicate the type system, because

they allow a guidance protocol to be described by different
types. For example, both (ℝ ∧ ℝ ∧ 111) and ((ℝ ∧ 111) # (ℝ ∧
111)) describe a channel whose provider sends two ℝ-valued

random samples.
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1 proc Pcfg() consume latent provide . =
2 𝑘 ← samplerv{latent}(Beta(3; 1));
3 call PcfgGen(𝑘)
4

5 proc PcfgGen(𝑘) consume latent provide . =
6 𝑢 ← samplerv{latent}(Unif);
7 ifsd{latent} 𝑢 < 𝑘 then
8 𝑣 ← samplerv{latent}(Normal(0; 1));
9 return(Const(𝑣))
10 else
11 lhs← call PcfgGen(𝑘);
12 rhs← call PcfgGen(𝑘);
13 return(Add(lhs; rhs))

Figure 6. A recursive probabilistic model.

To sidestep the need for a nontrivial equivalence check

in the type system, we adapt the idea of type-level poly-
morphism, and parameterize the guide type for a recursive

coroutine by a continuation type that describes the commu-

nication after a procedure call to this coroutine returns. For

example, consider the following parametric type R[·].
R[𝑋 ] def

= ℝ(0,1) ∧ ((ℝ ∧ 𝑋 ) N R[R[𝑋 ]]),
It specifies a guidance protocol by prependingmessages to the

continuation protocol defined by the type parameter 𝑋 . The

type R[𝑋 ] precisely describes the behavior of the PcfgGen
coroutine shown in Fig. 6: the coroutine first receives an

ℝ(0,1) -valued random sample (line 6); evaluates and sends

out a branch selection (line 7); and then based on the branch

selection, the coroutine either receives an ℝ-valued random

sample (line 8) and then returns (i.e., continues with the

continuation protocol 𝑋 ), or makes two recursive procedure

calls (lines 11 and 12). The guide type of the else-branch can

be justified by backward reasoning: at line 13, the coroutine

returns (i.e., continues with the continuation protocol 𝑋 );

at line 12, because the guide type after the procedure call
is 𝑋 , we obtain the guide type before the procedure call by
instantiating R with 𝑋 ; and at line 11, because the guide

type after the procedure call is R[𝑋 ], we again instantiate R,
but with R[𝑋 ], to derive the guide type of the else-branch.

Finally, for the coroutine Pcfg shown in Fig. 6, we derive

ℝ(0,1) ∧ R[111] as the guidance protocol for channel latent.
Control-flow divergence. In Fig. 5, the model program

Model and the guide program Guide1 have very similar con-

trol flow. In general, our type system permits the guide’s

control-flow structure to diverge from the model’s, as long

as the two programs communicate with each other in a con-

sistent way, i.e., the two programs follow the same guidance

protocol for the channel over which they communicate. For

example, the program below implements a part of a Bayesian

linear-regression model with outliers [16], where the latent

variable prob_outlier describes how likely a data point does

not conform to the linear relationship, and is_outlier is a
Boolean-valued latent variable that indicates if a data point

is an outlier.

1 prob_outlier ← samplerv{latent}(Unif);
2 is_outlier ← samplerv{latent}(Ber(prob_outlier));
3 return()
For MCMC algorithms, the guide program generates a new

random sample from an old one; thus, for better inference

performance, anMCMC guide usually behaves differently for

different old samples. The following program implements

a part of a guide that branches on is_outlier from the old

sample [16]. Intuitively, this guide proposes the negation

(with a small amount of noise) of the old is_outlier , which
is bound to a program variable old_is_outlier ; i.e., if the old
is_outlier is true (resp., false), then the guide is likely to

propose false (resp., true).

1 prob_outlier ← samplesd{latent}(Beta(2; 5));
2 if old_is_outlier then
3 is_outlier ← samplesd{latent}(Ber(0.1));
4 return()
5 else
6 is_outlier ← samplesd{latent}(Ber(0.9));
7 return()
Although the model and the guide have divergent control-

flow structures, in our type system, we can express the guid-

ance protocol for channel latent asℝ(0,1) ∧𝟚∧111; that is, both

programs sample an ℝ(0,1) -valued random variable and then

sample a Boolean-valued one.

Type inference. Guide types can be automatically inferred

from code; in practice, they can still be used as specifications

of the programs for better understanding. Our implementa-

tion can infer guide types for the examples mentioned so far,

including the recursive one shown in Fig. 6.

3 A Coroutine-Based PPL
In this section, we formulate a core monadic calculus for

coroutine-based probabilistic programming.

Syntax. Fig. 7 presents the grammar of basic types 𝜏 , ex-

pressions 𝑒 , values 𝑣 , commands𝑚, and programs D in the

core calculus via abstract binding trees [26]. There is a modal

distinction in the core language: expressions describe purely
deterministic computations, while commands describe prob-
abilistic computations. Intuitively, we treat randomness as a

kind of monadic effect [42].

The purely deterministic fragment is a simply-typed

lambda calculus augmented with scalar types (i.e., nullary
products 𝟙, Booleans 𝟚, unit interval ℝ(0,1) , positive real

numbers ℝ+, real numbers ℝ, integer rings ℕ𝑛 , and natural

numbers ℕ), as well as a distribution type dist(𝜏). The syn-
tactic form op^ (𝑒1; 𝑒2) represents expressions that perform
built-in binary operations ^ on scalar values. Inhabitants of

dist(𝜏) are the primitive distributions from which probabilis-

tic programs can draw a random value of type 𝜏 ; for example,

Bernoulli distributions Ber(·) have type dist(𝟚), the uniform
distribution on unit interval Unif has type dist(ℝ(0,1) ), and
geometric distributions Geo(·) have type dist(ℕ). For each
primitive distribution 𝑑 , we assume that it admits two fields:
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𝜏 F 𝟙 | 𝟚 | ℝ(0,1) | ℝ+ | ℝ | ℕ𝑛 | ℕ | 𝜏1 → 𝜏2 | dist(𝜏)
𝑒 F 𝑥 | triv | true | false | if (𝑒; 𝑒1; 𝑒2) | 𝑟 | 𝑛 | op^ (𝑒1; 𝑒2)
| 𝜆(𝑥 .𝑒) | app(𝑒1; 𝑒2) | let(𝑒1;𝑥 .𝑒2)
| Ber(𝑒) | Unif | Beta(𝑒1; 𝑒2) | Gamma(𝑒1; 𝑒2)
| Normal(𝑒1; 𝑒2) | Cat(𝑒1, · · · , 𝑒𝑛) | Geo(𝑒) | Pois(𝑒)

𝑣 F triv | true | false | 𝑟 | 𝑛 | clo(𝑉 , 𝜆(𝑥 .𝑒))
| Ber(𝑣) | Unif | Beta(𝑣1; 𝑣2) | Gamma(𝑣1; 𝑣2)
| Normal(𝑣1; 𝑣2) | Cat(𝑣1, · · · , 𝑣𝑛) | Geo(𝑣) | Pois(𝑣)

𝑚 F ret(𝑒) | bnd(𝑚1;𝑥 .𝑚2) | call(𝑓 ; 𝑒)
| samplerv{a}(𝑒) | samplesd{a}(𝑒)
| condrv{a}(𝑚1;𝑚2) | condsd{a}(𝑒;𝑚1;𝑚2)

D F
−−−−−−−−−−−−−−→
fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚)

Figure 7. Syntax of the core calculus.

𝑑.support and𝑑.density are the support and the density func-

tion of the distribution, respectively. In the core calculus, the

type of a primitive distribution characterizes the support of

the distribution precisely: for a distribution 𝑑 of type dist(𝜏)
and a value 𝑣 , it holds that 𝑣 ∈ 𝑑.support if and only if 𝑣 is an

inhabitant of type 𝜏 . Primitive distributions can be general-

ized to density-carrying expressions [5, 6] to further improve

language expressibility.

The probabilistic fragment is a monadic calculus aug-

mented with probabilistic constructs and communication

primitives for coroutine-based programming. The sampling
commands samplesd{a}(𝑒) and samplerv{a}(𝑒) first evalu-
ate the expression 𝑒 to a primitive distribution 𝑑 . Then the

send version samplesd{a}(𝑑) draws a value from 𝑑 and sends

it on channel 𝑎, whereas the receive version samplerv{a}(𝑑)
receives a value from channel 𝑎 and treats it as a sample

from 𝑑 . The random samples can influence the likelihoods
of computations; thus, randomness can be seen as a source

of side effects. The branching commands also have a send
version condsd{a}(𝑒 ;𝑚1;𝑚2), which evaluates 𝑒 to a Boolean
value and sends it as the branch selection on channel 𝑎; and a

receive version condrv{a}(𝑚1;𝑚2), which receives a branch

selection from channel 𝑎. The syntactic form call(𝑓 ; 𝑒) rep-
resents a procedure call, where 𝑓 is a procedure name and 𝑒

is the argument.

A probabilistic program D is a collection of (mutu-

ally recursive) procedures, each of which has the form

fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚), where 𝑓 is the procedure name, 𝑥 is the

parameter,𝑚 is a command that represents the procedure

body, 𝑎 is the name of the channel consumed by 𝑓 , and 𝑏 is

the name of the channel provided by 𝑓 . Note that both 𝑎 and

𝑏 are optional; that is, the procedure 𝑓 might not consume

any channel, and it might not provide any channel.

Semantics. We develop a big-step operational semantics for

the core calculus. Details of the semantics are included in the

technical report [55]. The evaluation judgments for expres-

sions have the form 𝑉 ⊢ 𝑒 ⇓ 𝑣 , where 𝑉 is an environment
that maps program variables to values. The evaluation rules

for expressions are skipped here because they are standard.

We adopt a trace-based approach [9, 35] in our semantics

of probabilistic computations. A guidance trace 𝜎 is a finite

sequence of guidance messages exchanged on a channel;

each guidance message has the form valP (𝑣) (resp., dirP (𝑣))
for a sample value 𝑣 (resp., a branch selection 𝑣) from the

provider to the consumer, the form valC (𝑣) (resp., dirC (𝑣))
for a sample value 𝑣 (resp., a branch selection 𝑣) from the

consumer to the provider, or a procedure-call indicator fold.1
The evaluation judgments for commands have the form

𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣 , where𝑉 is an environment,𝑚

is a command that consumes channel 𝑎 and provides channel

𝑏, 𝜎𝑎 and 𝜎𝑏 are guidance traces on the channels, 𝑣 is the

evaluation result, and𝑤 ≥ 0 is a weight that expresses how
likely the guidance traces are. Intuitively, a probabilistic pro-

gram specifies a probability distribution on guidance traces,

and the weights represent probability densities with respect

to the distribution.

Fig. 8 shows the evaluation rules for selected commands.

We use the following notational conventions. We denote the

empty environment by ∅, and updating a binding of 𝑥 in an

environment 𝑉 to 𝑣 by 𝑉 [𝑥 ↦→ 𝑣]. We use the ++ operator
to concatenate two traces. We write ite as a shorthand for

if-then-else. The Iverson brackets [·] are defined by [𝜑] = 1

if 𝜑 is true and otherwise [𝜑] = 0.

The (EM:Sample:*) rules take a value from the guidance

traces as the result of the sampling, and use the density func-

tions of primitive distributions to calculate the weight for

the guidance traces. The (EM:Cond:Send:L) rule evaluates

the branch predicate to obtain a Boolean value, and enforce

that the branch selection from the guidance trace of the con-

sumed channel must be the same as the predicate’s value;

if the guidance trace sets the branch selection to a different

value, we simply set the weight of this trace to zero. The

(EM:Call) rule requires the guidance traces start with a fold
message, and proceeds by evaluating the body of the callee.

Example 3.1. Consider the command

𝑚1

def

= bnd( samplerv{a}(Normal(0; 1)); 𝑥 .
bnd( samplesd{b}(Normal(𝑥 ; 1)); 𝑦.
ret(op+ (𝑥 ;𝑦)) ) ),

which consumes a channel 𝑎 and provides a channel 𝑏. Let

𝜑
def

= 𝜆𝑥 . 1√
2𝜋
𝑒−

1

2
𝑥2

be the probability density function of

the standard normal distribution Normal(0; 1). Let 𝜎𝑎
def

=

1
The fold message is only useful in the theoretical development; it can be

seen as the introduction form for guidance traces whose type is a type-

operator instantiation (see §4).
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(EM:Ret)

𝑉 ⊢ 𝑒 ⇓ 𝑣
𝑉 | (a : []); (b : []) ⊢ ret(𝑒) ⇓1 𝑣

(EM:Bnd)

𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏 ) ⊢𝑚1 ⇓𝑤1 𝑣1

𝑉 [𝑥 ↦→ 𝑣1] | (a : 𝜎 ′𝑎); (b : 𝜎 ′
𝑏
) ⊢𝑚2 ⇓𝑤2 𝑣2

𝑉 | (a : 𝜎𝑎 ++ 𝜎 ′𝑎); (b : 𝜎𝑏 ++ 𝜎 ′𝑏 ) ⊢ bnd(𝑚1;𝑥 .𝑚2) ⇓𝑤1 ·𝑤2 𝑣2

(EM:Sample:Recv:L)

𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support 𝑤 = 𝑑.density(𝑣)
𝑉 | (a : [valP (𝑣)]); (b : []) ⊢ samplerv{a}(𝑒) ⇓𝑤 𝑣

(EM:Sample:Send:R)

𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support 𝑤 = 𝑑.density(𝑣)
𝑉 | (a : []); (b : [valP (𝑣)]) ⊢ samplesd{b}(𝑒) ⇓𝑤 𝑣

(EM:Cond:Send:L)

𝑉 ⊢ 𝑒 ⇓ 𝑣𝑒 𝑖 = ite(𝑣𝑎, 1, 2) 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏 ) ⊢𝑚𝑖 ⇓𝑤 𝑣

𝑉 | (a : [dirC (𝑣𝑎)] ++ 𝜎𝑎); (b : 𝜎𝑏 ) ⊢ condsd{a}(𝑒;𝑚1;𝑚2) ⇓𝑤 · [𝑣𝑎=𝑣𝑒 ] 𝑣

(EM:Cond:Recv:R)

𝑖 = ite(𝑣𝑏 , 1, 2) 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏 ) ⊢𝑚𝑖 ⇓𝑤 𝑣

𝑉 | (a : 𝜎𝑎); (b : [dirC (𝑣𝑏 )] ++ 𝜎𝑏 ) ⊢ condrv{b}(𝑚1;𝑚2) ⇓𝑤 𝑣

(EM:Call)

D(𝑓 ) = fix{𝑎;𝑏}(𝑓 .𝑥 𝑓 .𝑚𝑓 )
𝑉 ⊢ 𝑒 ⇓ 𝑣1 ∅[𝑥 𝑓 ↦→ 𝑣1] | (a : 𝜎𝑎); (b : 𝜎𝑏 ) ⊢𝑚𝑓 ⇓𝑤 𝑣2

𝑉 | (a : [fold] ++ 𝜎𝑎); (b : [fold] ++ 𝜎𝑏 ) ⊢ call(𝑓 ; 𝑒) ⇓𝑤 𝑣2

Figure 8. Selected evaluation rules for commands.

[valP (1̄)] and 𝜎𝑏
def

= [valP (2̄)]. Then we can derive the eval-

uation judgment

∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚1 ⇓𝜑 (1) ·𝜑 (1) 3̄,

for the command𝑚1 and the guidance traces 𝜎𝑎, 𝜎𝑏 .

Communication. There are a lot of formalisms for com-

munication in (concurrent) programming systems, such as

CCS [39], Theoretical CSP [27], and 𝜋-calculus [40, 41]. In

this paper, we use a lightweight approach to handling com-

munication; that is, in the semantics, we assume we have all

the messages exchanged on all the communication channels.

We use this formalism because (i) our focus is to reason about

soundness of Bayesian inference, rather than concurrency-

related properties (e.g., deadlock freedom); and (ii) the infer-

ence algorithms we study in §5 involve only two coroutines—

one for the model and the other for the guide—so the commu-

nication in our system is much simpler than that in general

concurrent systems.

Example 3.2. Consider the command

𝑚2

def

= bnd( samplesd{a}(Normal(3; 1)); _. ret(triv) ),
which provides a channel 𝑎 that is consumed by the com-

mand𝑚1 in Ex. 3.1. To model the communication between

𝑚2 and𝑚1, we simply use the guidance trace 𝜎𝑎 = [valP (1̄)]
as the sequence of messages exchanged on channel 𝑎 in the

semantics, and derive evaluation judgments for𝑚2 and𝑚1

separately. We showed the judgment for𝑚1 in Ex. 3.1; here,

we can derive the judgment

∅ | ∅; (a : 𝜎𝑎) ⊢𝑚′ ⇓𝜑 (−2) triv,
for command𝑚2 and guidance trace 𝜎𝑎 . We use the∅ symbol

to indicate that𝑚2 does not consume any channel.

4 Guide Types
Type formation. We take inspiration from a structuring
principle in session types [28, 29], and develop guide types to
enforce protocols for guidance traces. The grammar shown

below formulates the syntax of guide types. We write𝐴, 𝐵 for

guide types, 𝑋 for type variables,𝑇 for unary type operators,

and 𝐹 for procedure signatures.

𝐴, 𝐵 F 𝑋 | 111 | 𝑇 [𝐴] | 𝜏 ∧𝐴 | 𝜏 ⊃ 𝐴 | 𝐴 � 𝐵 | 𝐴 N 𝐵

𝐹 F 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏)

T F
−−−−−−−−−−−−−−→
typedef (𝑇 .𝑋 .𝐴)

The type 111 indicates an ended channel, where the guidance

trace is empty. The type 𝑇 [𝐴] instantiates a unary type op-

erator𝑇 with a guide type 𝐴. For sample passing and branch

selection, each type constructor has a dual version that re-

verses the role of the provider and the consumer. The type

𝜏 ∧ 𝐴 types a channel whose provider samples a random

value , sends it on the channel, and then continues with a

type 𝐴 guidance protocol; dually, the type 𝜏 ⊃ 𝐴 types a

channel whose consumer samples and sends a random value.

Similarly, the type 𝐴 � 𝐵 types a channel whose provider
evaluates a branch predicate, sends a branch selection on the

channel, and then continues with a type𝐴 guidance protocol

or a type 𝐵 protocol based on the branch selection; dually,

the type 𝐴 N 𝐵 types a channel whose consumer evaluates
and sends a branch selection.

Remark 4.1. In the rest of this paper, we will not use the
dual types 𝜏 ⊃ 𝐴 and 𝐴� 𝐵. We introduce these types here for
theoretical completeness, and they may be used in some future
development.

Type operators prescribe guidance protocols for proce-

dures by parameterizing with a continuation type that de-

scribes the guidance protocol after a procedure call. A proce-

dure signature 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏) types a procedure
that takes a parameter of type 𝜏1, returns a result of type 𝜏2,

consumes a channel 𝑎, and provides a channel 𝑏, such that if

the guidance protocols for 𝑎 and 𝑏 after a procedure call are
𝐴 and 𝐵, respectively, then the guidance protocols for 𝑎 and

𝑏 before the procedure call are𝑇𝑎 [𝐴] and𝑇𝑏 [𝐵], respectively.
A type definition typedef (𝑇 .𝑋 .𝐴) declares a unary type

operator 𝑇 that takes a type parameter 𝑋 and produces a

guide type𝐴, which can reference𝑋 . Because type operators

are used to prescribe procedure signatures, we assume that a
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(TM:Ret)

Γ ⊢ 𝑒 : 𝜏

Γ | (a : 𝐴); (b : 𝐵) ⊢ ret(𝑒) .∼. 𝜏 | (a : 𝐴); (b : 𝐵)

(TM:Bnd)

Γ | (a : 𝐴); (b : 𝐵) ⊢𝑚1

.∼. 𝜏1 | (a : 𝐴′); (b : 𝐵′)
Γ, 𝑥 : 𝜏1 | (a : 𝐴′); (b : 𝐵′) ⊢𝑚2

.∼. 𝜏2 | (a : 𝐴′′); (b : 𝐵′′)
Γ | (a : 𝐴); (b : 𝐵) ⊢ bnd(𝑚1;𝑥 .𝑚2) .∼. 𝜏2 | (a : 𝐴′′); (b : 𝐵′′)

(TM:Sample:Recv:L)

Γ ⊢ 𝑒 : dist(𝜏)
Γ | (a : 𝜏 ∧𝐴); (b : 𝐵) ⊢ samplerv{a}(𝑒) .∼. 𝜏 | (a : 𝐴); (b : 𝐵)

(TM:Sample:Send:R)

Γ ⊢ 𝑒 : dist(𝜏)
Γ | (a : 𝐴); (b : 𝜏 ∧ 𝐵) ⊢ samplesd{b}(𝑒) .∼. 𝜏 | (a : 𝐴); (b : 𝐵)

(TM:Cond:Send:L)

Γ ⊢ 𝑒 : 𝟚 Γ | (a : 𝐴1); (b : 𝐵) ⊢𝑚1

.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)
Γ | (a : 𝐴2); (b : 𝐵) ⊢𝑚2

.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)
Γ | (a : 𝐴1 N𝐴2); (b : 𝐵) ⊢ condsd{a}(𝑒;𝑚1;𝑚2) .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

(TM:Cond:Recv:R)

Γ | (a : 𝐴); (b : 𝐵1) ⊢𝑚1

.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)
Γ | (a : 𝐴); (b : 𝐵2) ⊢𝑚2

.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)
Γ | (a : 𝐴); (b : 𝐵1 N 𝐵2) ⊢ condrv{b}(𝑚1;𝑚2) .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

(TM:Call)

Σ(𝑓 ) = 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏 ) Γ ⊢ 𝑒 : 𝜏1

Γ | (a : 𝑇𝑎 [𝐴]); (b : 𝑇𝑏 [𝐵]) ⊢ call(𝑓 ; 𝑒) .∼. 𝜏2 | (a : 𝐴); (b : 𝐵)

Figure 9. Selected typing rules for commands.

probabilistic program is always accompanied by a collection

T of (mutually recursive) type definitions.

Example 4.2. We can formally declare the type opera-

tor Recur for the PcfgGen procedure shown in Fig. 6 as

typedef ( R. 𝑋 . ℝ(0,1) ∧ ((ℝ ∧ 𝑋 ) N R[R[𝑋 ]]) ).

Typing rules. The typing judgments for expressions have

the form Γ ⊢ 𝑒 : 𝜏 , where Γ is a typing context that maps

program variables to basic types (defined in Fig. 7). A full

list of typing rules is included in the technical report [55].

The typing rules for expressions are skipped here because

they are standard.

The typing judgments for commands have the form

Γ | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′),
where Σ maps procedure identifiers to procedure signatures.

The intuitive meaning of the typing judgment is that if the

channels 𝑎 and 𝑏 are of the guidance protocols 𝐴 and 𝐵,

respectively, then we can evaluate the command𝑚 to a value

of type 𝜏 , and after the evaluation, the channels 𝑎 and 𝑏 are

of the guidance protocols 𝐴′ and 𝐵′, respectively.
Fig. 9 presents the typing rules for commands. We assume

a fixed global Σ that we omit from the rules. Intuitively, the

rules formulate a backward-reasoning system: we start with

continuation types 𝐴′ and 𝐵′ for the channels 𝑎 and 𝑏, re-

spectively, and then prepend the guidance messages sent or

received by the command𝑚 to𝐴′ and 𝐵′, to obtain the guide

types 𝐴 and 𝐵 for the channels 𝑎 and 𝑏 before the evaluation

of𝑚, respectively. For sample passing and branch selection,

each guide type has two derivation rules: one for the con-

sumed channel 𝑎, and the other for the provided channel

𝑏. For example, the type 𝜏 ∧𝐴 represents a channel whose

provider sends a sample of type 𝜏 ; thus, if the consumed chan-

nel 𝑎 has such a type, the rule (TM:Sample:Recv:L) receives a
sample from the provider of 𝑎, and if the provided channel 𝑏

has such a type, the rule (TM:Sample:Send:R) sends a sample

to the consumer of 𝑏.

The rule (TM:Call) handles procedure calls. For a pro-

cedure call call(𝑓 ; 𝑒), the rule fetches from Σ the procedure

𝑓 ’s signature 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏), and then instanti-

ates the type operators 𝑇𝑎,𝑇𝑏 with continuation types 𝐴, 𝐵,

respectively, to obtain the guide types 𝑇𝑎 [𝐴] and 𝑇𝑏 [𝐵] for
the channels 𝑎 and 𝑏 before the procedure call, respectively.

Example 4.3. Consider the command

𝑚3

def

= bnd( call(𝑓 ;𝑘); _.

bnd( samplerv{Normal(0; 1)}(𝑎); _.

bnd( call(𝑓 ;𝑘); _.

ret(triv) ) ) ),
where the variable 𝑘 has type ℝ(0,1) and the procedure 𝑓

has signature ℝ(0,1) { 𝟙 | (a : 𝑇 );∅, i.e., the procedure 𝑓

consumes channel 𝑎 but does not provide any channel, and

channel 𝑎 is associated with a type operator𝑇 . Now we show

that we can derive a typing judgment for𝑚3 by backward

reasoning. First, by (TM:Ret), we have

𝑘 : ℝ(0,1) | (a : 111);∅ ⊢Σ ret(triv) .∼. 𝟙 | (a : 111);∅.
Then by (TM:Call), we derive

𝑘 : ℝ(0,1) | (a : 𝑇 [111]);∅ ⊢Σ call(𝑓 ;𝑘) .∼. 𝟙 | (a : 111);∅.

Define𝑚4

def

= bnd(call(𝑓 ;𝑘); _.ret(triv)). Thus, by (TM:Bnd),

𝑘 : ℝ(0,1) | (a : 𝑇 [111]);∅ ⊢Σ 𝑚4

.∼. 𝟙 | (a : 111);∅.

Define 𝑚5

def

= bnd(samplerv{a}(Normal(0; 1)); _.𝑚4). By
(TM:Sample:Recv:L) and (TM:Bnd), we have

𝑘 : ℝ(0,1) | (a : ℝ ∧𝑇 [111]);∅ ⊢Σ 𝑚5

.∼. 𝟙 | (a : 111);∅.
Finally, we again apply (TM:Call) and (TM:Bnd) to derive

𝑘 : ℝ(0,1) | (a : 𝑇 [ℝ ∧𝑇 [111]]);∅ ⊢Σ 𝑚3

.∼. 𝟙 | (a : 111);∅.

Type safety. We present some theoretical results about type

safety of guide types. Proofs are included in the technical

report [55].

We first formulate two judgments for well-formedness of

values and guidance traces. The judgment 𝑣 : 𝜏 means that

value 𝑣 has type 𝜏 . The judgment 𝜎 : 𝐴 means that the guid-

ance trace is a sequence of messages that satisfies protocol

𝐴. Rules for these judgments are straightforward; we omit

them here but include them in the technical report [55].
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The theorem below states that if𝑚 is a well-typed closed

command, and it evaluates to a value 𝑣 under guidance traces

𝜎𝑎, 𝜎𝑏 , then 𝑣 is a well-typed value, and 𝜎𝑎, 𝜎𝑏 are well-typed

guidance traces.

Theorem 4.4. If · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111)
and ∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢ 𝑚 ⇓𝑤 𝑣 , then 𝜎𝑎 : 𝐴, 𝜎𝑏 : 𝐵, and
𝑣 : 𝜏 .

Furthermore, we can show some normalization properties

of guide types. The theorem below states that if𝑚 is a well-

typed closed command, and 𝜎𝑎, 𝜎𝑏 are well-typed guidance

traces, then𝑚 can evaluate to some well-typed 𝑣 under 𝜎𝑎, 𝜎𝑏 .

Theorem 4.5. If · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111),
𝜎𝑎 : 𝐴, and 𝜎𝑏 : 𝐵, then there exist 𝑤, 𝑣 such that ∅ | (a :

𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣 and 𝑣 : 𝜏 .

We can strengthen the normalization property when a

command will not send out any branch selections. The theo-

rem below states that if a well-typed command𝑚 consumes

a channel 𝑎 with a type 𝐴 that does not contain N and pro-

vides a channel 𝑏 with a type 𝐵 that does not contain �, and

𝜎𝑎, 𝜎𝑏 are well-typed guidance traces, then𝑚 can evaluate to

some well-typed value 𝑣 under 𝜎𝑎, 𝜎𝑏 with a strictly positive
weight𝑤 .

Theorem 4.6. If · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111),
𝐴 is N-free, 𝐵 is �-free, 𝜎𝑎 : 𝐴, and 𝜎𝑏 : 𝐵, then there exist
𝑤, 𝑣 such that ∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣 , 𝑣 : 𝜏 , and𝑤 > 0.

Type-inference algorithm. Wenow sketch a type-inference

algorithm that derives guide types automatically from the

implementation. In the algorithm, we assume we have infor-

mation about basic types—such as the parameter and result

types for procedures and the typing contexts that map pro-

gram variables to basic types—because without guide types,

our core language is a simply-typed lambda calculus, for

which type inference is decidable.

First, for each procedure fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚) in the program,

we create two fresh type operators𝑇𝑎 and𝑇𝑏 for the channels

𝑎 and 𝑏, respectively, and obtains 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏)
as the signature of this procedure. Then we collect signatures

of all the procedures in the program to obtain the map Σ.
Now the task is to derive definitions of the type operators.

We observe that the rules in Fig. 9 are syntax directed, and

they can be turned into an algorithmic system by interpreting

Γ | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)
as a function from Σ, Γ,𝑚, 𝜏, 𝑎, 𝑏, 𝐴′, 𝐵′ to 𝐴, 𝐵; i.e., we as-

sume we know all the basic types, and we perform backward

reasoning to infer guide types. Therefore, for each procedure

fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚) with signature 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏),
we create two fresh type variables 𝑋𝑎 and 𝑋𝑏 , derive two

guide types 𝐴 and 𝐵 through

𝑥 : 𝜏1 | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏2 | (a : 𝑋𝑎); (b : 𝑋𝑏),
and then add type definitions typedef (𝑇𝑎 .𝑋𝑎 .𝐴) and

typedef (𝑇𝑏 .𝑋𝑏 .𝐵).

5 Soundness of Bayesian Inference
In this section, we use guide types to reason about Bayesian

inference. We first present a measure-theoretic formulation

of Bayesian inference in the coroutine-based PPL, and prove

that guide types are certificates of absolute continuity (§5.1).

We then sketch how guide types ensure key soundness condi-

tions for multiple Bayesian-inference algorithms (§5.2). The

technical report [55] includes the details (e.g., formalizations

and proofs) of this section.

5.1 Verification of Absolute Continuity
We use the following notions from measure theory: 𝜎-

algebras, measurable spaces, measurable functions, measures,

and Lebesgue integration.

Semantic domains. For each scalar type 𝜏 , we equip it with

a standard Borel space J𝜏K on the inhabitants of 𝜏 , i.e., J𝜏K is
a measurable space isomorphic to a countable set or the real

line. We then equip each type 𝜏 with a stock measure 𝜆J𝜏K:

if J𝜏K is a countable set, we define 𝜆J𝜏K to be the counting

measure; otherwise, J𝜏K is a subset of the real line, so we

define 𝜆J𝜏K to be the Lebesgue measure.

Because guidance traces are finite sequences of messages

that contain values of scalar types, we can define J𝐴K as a
standard Borel space on guidance traces that satisfy protocol

𝐴. We then construct the stock measure 𝜆J𝐴K for𝐴 by decom-

posing 𝐴 to products and/or sums of scalar types, and then

combining the stock measures for scalar types via product

and/or coproduct measures.

Denotation of commands. For a well-typed closed com-

mand𝑚, i.e., · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111), we
define the density function of𝑚 as

P𝑚 (𝜎𝑎, 𝜎𝑏)
def

=

{
𝑤 if ∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣

0 otherwise

.

We can prove that P𝑚 is a measurable function from J𝐴K ⊗
J𝐵K—the product measurable space of J𝐴K and J𝐵K—to non-

negative real numbers. Thus, we construct a measure deno-

tation J𝑚K for𝑚, by integrating P𝑚 with respect to the stock

measure on the product space J𝐴K ⊗ J𝐵K, i.e.,

J𝑚K(𝑆𝑎,𝑏)
def

=

∫
𝑆𝑎,𝑏

P𝑚 (𝜎𝑎, 𝜎𝑏)𝜆J𝐴K⊗J𝐵K (𝑑 (𝜎𝑎, 𝜎𝑏)),

where 𝑆𝑎,𝑏 is a measurable set in J𝐴K ⊗ J𝐵K.

Bayesian inference. Let us fix a well-typed model program

𝑚m that consumes latent random variables on a channel

latent and provides observations on a channel obs, i.e.,
· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m

.∼. 𝜏m | (latent : 111); (obs : 111).
Usually, the program 𝑚m does not receive any branch se-

lections, i.e., 𝐴 is �-free and 𝐵 is N-free. Given a concrete

observation 𝜎𝑜 : 𝐵 such that

∫
P𝑚m (𝜎ℓ , 𝜎𝑜 )𝜆J𝐴K (𝑑𝜎ℓ ) > 0,
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Bayesian inference is the problem of approximating the pos-
terior J𝑚mK𝜎𝑜 , a measure conditioned with respect to 𝜎𝑜 , de-

fined by

J𝑚mK𝜎𝑜 (𝑆ℓ )
def

=

∫
𝑆ℓ
P𝑚m (𝜎ℓ , 𝜎𝑜 )𝜆J𝐴K (𝑑𝜎ℓ )∫
P𝑚m (𝜎ℓ , 𝜎𝑜 )𝜆J𝐴K (𝑑𝜎ℓ )

, (5)

where 𝑆ℓ is a measurable set in J𝐴K, i.e., a set of guid-

ance traces of type 𝐴. Note that if we fix the observation

𝜎𝑜 , then the denominator of eq. (5) is a constant indepen-

dent of 𝑆ℓ . Thus, it is sufficient for an inference algorithm

to ignore the denominator and approximate the measure

𝑆ℓ ↦→
∫
𝑆ℓ
P𝑚m (𝜎ℓ , 𝜎𝑜 )𝜆J𝐴K (𝑑𝜎ℓ ).

Guide programs. Bayesian-inference algorithms usually

require some guide programs, such as proposals for impor-

tance sampling and approximating families for variational

inference. These guide programs specify measures on latent

random variables; in our system, we implement a guide pro-

gram𝑚g as a coroutine that works with the model program

𝑚m and provides the latent channel with guide type 𝐴 that

𝑚m consumes, i.e.,

· | ∅; (latent : 𝐴) ⊢Σ 𝑚g
.∼. 𝜏g | ∅; (latent : 111),

· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m
.∼. 𝜏m | (latent : 111); (obs : 111).

The guide and model have the same guide type𝐴 on channel

latent. Because the guide provides the channel and the model

consumes the channel, the two programs interpret the guide

type 𝐴 dually; thus, their communication is compatible.

The coroutine-based paradigm folds the model and guide

programs into a single entity; thus, during the inference, both

the model and guide coroutines execute. To model possible
combinations of traces for a model-guide system, we intro-

duce a reduction relation 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢red 𝑚 ⇓ 𝑣 ,

where 𝑉 is an environment,𝑚 is a command, 𝜎𝑎 and 𝜎𝑏 are

guidance traces on channel 𝑎 and channel𝑏, respectively, and

𝑣 is the reduction result. The reduction relation is essentially

the same as the evaluation relation for the operational seman-

tics, except that reduction does not account for probabilities.
Below are two example rules.

(RM:Sample:Send:R)

𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support

𝑉 | (a : []); (b : [valP (𝑣)]) ⊢red samplesd{b}(𝑒) ⇓ 𝑣

(RM:Cond:Send:L)

𝑉 ⊢ 𝑒 ⇓ 𝑣𝑒 𝑖 = ite(𝑣𝑒 , 1, 2) 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏 ) ⊢red 𝑚𝑖 ⇓ 𝑣
𝑉 | (a : [dirC (𝑣𝑒 )] ++ 𝜎𝑎); (b : 𝜎𝑏 ) ⊢red condsd{a}(𝑒;𝑚1;𝑚2) ⇓ 𝑣
With the reduction relation, we say that a combination of

traces (𝜎ℓ , 𝜎𝑜 ) is possible for the model program𝑚m and the

guide program𝑚g, if ∅ | (latent : 𝜎ℓ ); (obs : 𝜎𝑜 ) ⊢red 𝑚m ⇓ 𝑣m
and ∅ | ∅; (latent : 𝜎ℓ ) ⊢red 𝑚g ⇓ 𝑣g for some values 𝑣m and

𝑣g. We prove a lemma that connects the reduction relation

with command denotations.

Lemma 5.1. Suppose that 𝐴 is �-free, 𝐵 is N-free, and
· | ∅; (latent : 𝐴) ⊢Σ 𝑚g

.∼. 𝜏g | ∅; (latent : 111),
· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m

.∼. 𝜏m | (latent : 111); (obs : 111).
Then a combination of traces (𝜎ℓ , 𝜎𝑜 ) is possible for the model
𝑚m and the guide𝑚g if and only if P𝑚m (𝜎ℓ , 𝜎𝑜 ) ≠ 0.

We can now define a denotation for the guide 𝑚g, ac-

companied by the model𝑚m and conditioned on a concrete

observation 𝜎𝑜 : 𝐵, as a measure defined on possible traces:

J𝑚gK𝑚m
𝜎𝑜
(𝑆ℓ )

def

=

∫
𝑆ℓ

[P𝑚m (𝜎ℓ , 𝜎𝑜 ) ≠ 0] · P𝑚g (𝜎ℓ )𝜆J𝐴K (𝑑𝜎ℓ ),

where 𝑆ℓ is a measurable set in J𝐴K.
Absolute continuity. A measure 𝜇 is said to be absolutely
continuous with respect to a measure 𝜈 , if 𝜇 and 𝜈 are de-

fined on the same measurable space, and 𝜈 (𝑆) ≠ 0 for every

measurable set 𝑆 for which 𝜇 (𝑆) ≠ 0.

We prove that for a model-guide pair, guide types serve

as certificates for absolute continuity.

Theorem 5.2. Suppose that 𝐴 is �-free, 𝐵 is N-free,
· | ∅; (latent : 𝐴) ⊢Σ 𝑚g

.∼. 𝜏g | ∅; (latent : 111),
· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m

.∼. 𝜏m | (latent : 111); (obs : 111),
and 𝜎𝑜 : 𝐵 such that

∫
P𝑚m (𝜎ℓ , 𝜎𝑜 )𝜆J𝐴K (𝑑𝜎ℓ ) > 0. Then the

measure J𝑚mK𝜎𝑜 is absolutely continuous with respect to the
measure J𝑚gK𝑚m

𝜎𝑜 , and vice versa.

5.2 Soundness of Inference Algorithms
We now describe how guide types can help us reason about

inference algorithms.

Importance sampling (IS). IS approximates the posterior

distribution by drawing latent variables using the guide pro-

gram, and then reweights the samples by their importance.
The operational rule below formulates a single step in the

algorithm: given a model program𝑚m, a guide program𝑚g,

and a concrete observation 𝜎𝑜 , IS performs joint execution

of the two programs to draw a sample 𝜎ℓ with density 𝑤g
and compute

𝑤m
𝑤g

as the importance of 𝜎ℓ .

∅ | ∅; (latent : 𝜎ℓ ) ⊢𝑚g ⇓𝑤g
_

∅ | (latent : 𝜎ℓ ); (obs : 𝜎𝑜 ) ⊢𝑚m ⇓𝑤m
_

𝑚g;𝑚m;𝜎𝑜 ⊢
𝑤g
is
⟨𝜎ℓ , 𝑤m/𝑤g⟩

By Thm. 5.2, if the model and guide programs are well-typed,

then the posterior J𝑚mK𝜎𝑜 is absolutely continuous with

respect to J𝑚gK𝑚m
𝜎𝑜 ; thus, IS is able to sample any possible

latent variables 𝜎ℓ in the posterior. With the importance

ratios, IS can be seen as generating 𝜎ℓ with density𝑤g · 𝑤m
𝑤g

=

𝑤m. Thus, IS generates a measure proportional to J𝑚mK𝜎𝑜 .
Markov-Chain Monte Carlo (MCMC). MCMC uses a tran-

sition kernel to generate iteratively a new random sample

from an old one. A popular MCMC algorithm is Metropolis-
Hastings (MH), which constructs the transition kernel from

a proposal subroutine. To implement proposal subroutines in

our system, we extend the core calculus such that guidance
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traces can be used as first-class data. Then we implement

the proposal subroutine as a procedure 𝑔 whose argument is

a guidance trace on the channel for latent random variables.

The operational rule below formulates a single step in the

MH algorithm; given a proposal procedure 𝑔, a model𝑚m,

an observation 𝜎𝑜 , and the current latent trace 𝜎ℓ , MH first

performs joint execution of call(𝑔;𝜎ℓ ) and𝑚m to generate

a new latent trace 𝜎 ′ℓ with density 𝑤fwd, and then uses the

new 𝜎 ′ℓ and the old 𝜎ℓ to calculate a backward density𝑤bwd.

MH then computes an acceptance ratio 𝛼 def

= min(1, 𝑤
′
m ·𝑤bwd

𝑤m ·𝑤fwd
),

and accepts the new sample 𝜎 ′ℓ with probability 𝛼 .

∅ | ∅; (latent : 𝜎 ′ℓ ) ⊢ call(𝑔;𝜎ℓ ) ⇓𝑤fwd
_

∅ | (latent : 𝜎 ′ℓ ); (obs : 𝜎𝑜 ) ⊢𝑚m ⇓𝑤
′
m _

∅ | ∅; (latent : 𝜎ℓ ) ⊢ call(𝑔;𝜎 ′ℓ ) ⇓
𝑤bwd

_

∅ | (latent : 𝜎ℓ ); (obs : 𝜎𝑜 ) ⊢𝑚m ⇓𝑤m
_

𝑔;𝑚m;𝜎𝑜 ⊢mh 𝜎ℓ
𝑤fwd ·𝛼
=======⇒ 𝜎 ′ℓ

Similar to IS, MH requires that the command call(𝑔;𝜎ℓ ) be
able to sample any possible latent variables𝜎 ′ℓ in the posterior.
We prove the soundness of MH by a variant of Thm. 5.2,

where the programs do not need to be closed so that they

can reference data in the environment (e.g., the old samples).

Variational inference (VI). VI uses optimization to find a

candidate from an approximating family of guide programs

that minimizes the distance from the posterior distribution

to the guide distribution. We focus on verifying if the dis-

tance is well-defined, whereas VI requires extra conditions

for the optimization problem to be well-formed. Here, we

parameterize the guide𝑚g,𝜃 by a vector 𝜃 ∈ Θ of parameters,

and use KL divergence as the distance, which is defined by

KL(𝜇 ∥ 𝜈) def

=

∫
𝑝𝜇 (𝜎ℓ ) (log𝑝𝜇 (𝜎ℓ ) − log𝑝𝜈 (𝜎ℓ ))𝜆J𝐴K (𝑑𝜎ℓ ),

where 𝜇 and 𝜈 are measures on J𝐴K with densities 𝑝𝜇 and 𝑝𝜈 ,

respectively, and 𝜇 is absolutely continuous with respect to 𝜈 .

The rule below formulates the computation of KL divergence

for a specific 𝜃 , via joint execution of the two programs.

∅ | ∅; (latent : 𝜎ℓ ) ⊢𝑚g,𝜃 ⇓𝑤g
_

∅ | (latent : 𝜎ℓ ); (obs : 𝜎𝑜 ) ⊢𝑚m ⇓𝑤m
_

𝑚g,𝜃 ;𝑚m;𝜎𝑜 ⊢
𝑤g
vi
⟨𝜎ℓ , log𝑤m − log𝑤g⟩

The rule can be seen as defining a map 𝜎ℓ ↦→ 𝑤g ·
(log𝑤m − log𝑤g), which is the integrand of the divergence

KL(J𝑚g,𝜃 K𝑚m
𝜎𝑜 ∥ J𝑚mK𝜎𝑜 ). By Thm. 5.2, if the model and guide

programs are well-typed, then J𝑚g,𝜃 K𝑚m
𝜎𝑜 is absolutely contin-

uous with respect to J𝑚mK𝜎𝑜 ; thus, the KL divergence used

in VI is well-defined.

6 Experimental Evaluation
Implementation. We implemented the coroutine-based PPL

in OCaml. Our implementation consists of about 2,000 LOC;

it contains a parser, a type checker with automatic inference

of guide types, and a prototype compiler from our PPL to

Pyro [7]. Our implementation extends the core calculus with

tensors (i.e., multi-dimensional matrices) and primitive iter-

ation operators for them. The prototype compiler supports

code generation for importance sampling and variational in-

ference. We use the Python package greenlet [57] to support
coroutines in the compiled code.

Evaluation setup. We evaluated our implementation to

answer the following two research questions:

1. How expressive is the coroutine-based PPL, compared to a

state-of-the-art probabilistic programming language that

ensures soundness of programmable inference [37]?

2. How efficient is our implementation, in terms of the time

for type inference, and the performance of Bayesian infer-

ence on the compiled code?

For the first question, we obtained 23 benchmarks from prior

work [37] and collected 6 new benchmarks. The 29 bench-

mark programs consist of (i) example models from Angli-

can [58], Turing [19], and Pyro [7], as well as (ii) PCFG mod-

els, including a Gaussian-process domain-specific language

(DSL) [46] and synthetic models (such as examples shown in

this paper). Compared to prior work [37], a larger subset of

benchmark models are expressible and type-checked in our

PPL. Particularly, our PPL is capable of expressing models

with recursion and general conditional branches, whereas

prior work [37] is not.

For the second question, we ran Bayesian inference on

the compiled code, and compared the performance with non-

coroutine-based, but equivalent, Pyro code. We obtained

guide programs from where we obtained the benchmark

models, and then reimplemented them in our PPL; for exam-

ple, we implemented the encoder component of a variational

autoencoder as the guide program [7]. For those benchmark

models without guides, we first invoked our PPL to type-

check the model program and infer a guide type for the

model, and then implemented a guide program whose type

was the guide type. The compiled model and guide use Pyro’s

primitives (such as pyro.sample) to sample random data

and condition on given data, as well as exchange messages

and switch control with each other using the concurrent-

programming package greenlet. We leveraged Pyro’s infer-

ence engines to carry out importance sampling or variational

inference. Type inference is very fast in practice; our imple-

mentation completed the type-inference phase in several mil-

liseconds on all of the benchmarks. Our experiments showed

that coroutines (implemented via messaging passing) do not

introduce significant overhead in actual Bayesian inference.

The experiments were performed on a machine with an

Intel Core i7 3.6GHz processor and 16GB of RAM under

macOS Catalina 10.15.7.

Results. Tab. 1 gives an overview of selected benchmark

models. Our benchmarks cover a wide range of Bayesian

models, such as linear regression, Gaussian mixtures, hidden

Markov models, Bayesian networks, and variational autoen-

coders. Our benchmarks also include the classic Marsaglia
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1 proc Ptrace(𝜆) consume latent provide obs =
2 𝑘 ← call PtraceHelper(𝑒−𝜆 , 0, 1);

3 samplesd{obs}(Normal(𝑘 ; 0.1))
4

5 proc PtraceHelper(𝑙 , 𝑘 , 𝑝) consume latent provide . =
6 𝑢 ← samplerv{latent}(Unif);
7 ifsd{latent} 𝑝 · 𝑢 ≤ 𝑙 then
8 return(𝑘)
9 else
10 call PtraceHelper(𝑙 , 𝑘 + 1, 𝑝 · 𝑢)

Figure 10. An algorithm to generate Poisson-distributed

numbers given by Knuth [34].

Table 1. Selected benchmark descriptions. T? = is type-

checked in our PPL; LOC = #lines of code of the model

in our PPL; TP? = is type-checked by prior work [37].

Program Description T? LOC TP?
lr Bayesian Linear Regression ✓ 16 ✓

gmm Gaussian Mixture Model ✓ 44 ✓

kalman Kalman Smoother ✓ 32 ✓

sprinkler Bayesian Network ✓ 22 ✓

hmm Hidden Markov Model ✓ 31 ✓

branching Random Control Flow ✓ 19 ✗

marsaglia Marsaglia Algorithm ✓ 22 ✗

dp Dirichlet Process ✗ N/A ✗

ptrace Poisson Trace ✓ 11 ✗

aircraft Aircraft Detection ✓ 32 ✓

weight Unreliable Weigh ✓ 8 ✓

vae Variational Autoencoder ✓ 26 ✓

ex-1 Fig. 5 ✓ 13 ✗

ex-2 Fig. 6 ✓ 21 ✗

gp-dsl Gaussian Process DSL ✓ 58 ✗

algorithm (which generates a normal distribution from a

uniform distribution), a Poisson-trace algorithm (shown in

Fig. 10, which generates a Poisson distribution from a uni-

form distribution), and a Gaussian-process DSL (which uses a

PCFG to generate the kernel function of a Gaussian process).

As shown in Tab. 1, our coroutine-based PPL is capable of

expressing most of the benchmarks, except those involving

stochastic memoization [23], such as the program dp. The
programs branching, marsaglia, ptrace, and ex-1 have non-
trivial branching, and the programs marsaglia, ptrace, ex-2,
and gp-dsl define recursive models; our implementation suc-

cessfully inferred guide types for these programs, whereas

prior work [37] could not express them. Our implementation

derived guide types for 25 of the 29 benchmarks, whereas

prior work was able to express only 18 of them.

For all the benchmarks, we assume that each guide pro-

gram samples random variables in the same order as its

corresponding model program does. However, this assump-

tion can sometimes be too restrictive: it has been shown

that the ability to allow the model and the guide to sample

random variables in different orders is desirable for inference

Table 2. Selected performance statistics. BI = Bayesian-

inference algorithm (IS or VI); CG (ms) = time for type in-

ference and code generation in milliseconds; GLOC = #lines

of code in compiled code (model + guide); GI (s) = time for

Bayesian inference on compiled code in seconds; HLOC =

#lines of code in handwritten code (model + guide); HI (s) =
time for Bayesian inference on handwritten code in seconds.

Program BI CG (ms) GLOC GI (s) HLOC HI (s)
ex-1 IS 0.75 57 5.44 16 5.27

branching IS 1.74 58 8.49 16 7.48

gmm IS 8.03 185 64.13 38 56.00

weight VI 0.66 35 2.76 7 2.66

vae VI 10.36 72 34.96 26 32.69

amortization methods [56]. Prior work [37] allows different

sampling orders in the model and the guide, whereas our

system cannot handle such scenarios.

Tab. 2 presents performance statistics of selected bench-

mark programs. We evaluated our PPL’s performance under

two criteria: (i) the time for type inference and code gener-

ation, and (ii) the time for Bayesian inference compared to

handwritten inference code under the same set of hyperpa-

rameters (e.g., iteration rounds, optimization algorithms, and

initial values of parameters). Our experiments showed that

our implementation usually completes type inference and

code generation in several milliseconds, and the compiled

code, although using coroutines, has similar performance to

handwritten inference code.

7 Related Work
Sound Bayesian inference. Most closely related to our

work are techniques for reasoning about soundness of trace-

based programmable inference. Lee et al. [36] developed a

static analysis of stochastic variational inference with guide

programs, which describe custom approximating families

in Pyro. Their analysis supports nontrivial features of Pyro,

such as tensor manipulation and plates, i.e., vectors of condi-
tionally independent samples. Their approach aims at prov-

ing that the model and guide programs have the same sup-

port and satisfy differentiability-related conditions. Their

static analysis does not handle the case when a conditional

statement determines the set of random samples. Lew et al.

[37] proposed trace types as precise signatures for sampling

traces of probabilistic programs, and then used the type

system to prove absolute continuity in multiple kinds of

inference algorithms. Trace types can be seen as a type-and-

effect system, where a trace type records the precise set of

samples drawn by a single program. Trace types support

higher-order functions, stochastic branches that can influ-

ence the set of random samples, as well as three forms of

loops, including stochastic while-loops with an unbounded

number of iterations, but not general recursion. Because the

value of a conditional predicate cannot be determined in
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general at static-analysis time, trace types do not support

general conditional statements that can influence the set of

random samples. Both Lee et al. [36]’s and Lew et al. [37]’s

approach allow the model and the guide to sample random

variables in different orders. In this paper, we propose a new

PPL that guarantees absolute continuity between a model-

guide pair, and features general programming constructs,

including recursion and branching. A key innovation of our

work is the coroutine-based paradigm of writing inference

code; this paradigm makes the relational reasoning of the

support-match property explicit, and in particular enables

precise analysis of complex control flow. However, compared

to prior work, our system only supports scenarios where the

model and the guide sample random variables in the same

order.

There has been a line of work on validating Monte-Carlo

inference algorithms. Ścibior et al. [49] developed a semantic

framework to verify the soundness of Monte-Carlo inference

algorithms with generic proposal distributions. Atkinson

et al. [4] presented a type system for verifying hand-coded

Monte-Carlo algorithms that explicitly manipulate densities,

rather than use proposal distributions. For MCMC methods,

Borgström et al. [9] and Hur et al. [32] developed provably

correct MH algorithms. Castellan and Paquet [13] proposed

an intensional semantics, which captures execution traces of

programs, to validate an incremental MH algorithm. Several

systems [4, 8, 31, 37] studied sound combinators for kernels

used by MCMC. In contrast to the aforementioned work,

our PPL is based on trace-based programmable inference. It

would be interesting to develop programmable versions of

those sound inference algorithms in our PPL.

Narayanan et al. [44] and Zinkov and Shan [59] validated

the soundness of program transformations in Hakaru, which

contains a programmable MH algorithm. The development

of Hakaru is not centered around sample traces, and it uses

symbolic disintegration [14, 50] to calculate the marginal

densities for computing the acceptance ratio in an MH step.

In this paper, we focus on a trace-based scheme for pro-

grammable inference. Establishing the relationship among

different schemes of programmable inference is an interest-

ing future research direction.

Session types. Honda et al. [28, 29] introduced session types

to prescribe binary communication protocols for message-

passing processes. Session types can be interpreted either

classically [54], or intuitionistically [10, 11]. To enable non-

binary communication, researchers proposed multiparty ses-

sion types [15, 30, 47]. The tail-recursive structure of stan-

dard session types imposes communication protocols that

can be described by a regular language. Recently, several
systems have been developed to go beyond tail-recursive

protocols, such as context-free [51], label-dependent [52],

and nested [17] session types.

In our development of guide types, we took inspiration

from the structuring principle of session types. Compared

to session types, guide types have different semantics (i.e.,

sending and receiving random samples drawn from prob-

ability distributions), have simpler forms (i.e., no process

spawning or higher-order channels), and enjoy an efficient

type-inference algorithm, which can also analyze non-tail-

recursive communication protocols. Developing a truly con-

current probabilistic programming system, and concurrent

Bayesian inference algorithms with general session types,

would be interesting future work.

8 Conclusion
We have presented a new probabilistic programming lan-

guage that supports programmable Bayesian inference, and

guarantees model-guide absolute continuity, thereby ensur-

ing key soundness properties of multiple kinds of inference

algorithms. Our language implements the model and guide

programs as coroutines, and we develop guide types to pre-

scribe the communication protocols between coroutines. We

have proved that well-typed model and guide coroutines ex-

ecute safely, and they are guaranteed to enjoy absolute con-

tinuity. We have also developed an efficient type-inference

algorithm that reconstructs guide types directly from the

code. Finally, we have implemented our language with a pro-

totype compiler to Pyro, and evaluated our implementation

on a suite of diverse probabilistic models.
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