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Abstract

Objectives: Recently, a new strategy has been developed to directly reprogram one cell type towards another
targeted cell type using small molecule compounds. Human fibroblasts have been chemically reprogrammed into
neuronal cells, Schwann cells and cardiomyocyte-like cells by different small molecule combinations. This study
aimed to explore whether stem cells from apical papilla (SCAP) could be reprogrammed into endothelial cells (ECs)
using the same strategy.

Materials and methods: The expression level of endothelial-specific genes and proteins after chemical induction
of SCAP was assessed by RT-PCR, western blotting, flow cytometry and immunofluorescence. The in vitro functions
of SCAP-derived chemical-induced endothelial cells (SCAP-ECs) were evaluated by tube-like structure formation
assay, acetylated low-density lipoprotein (ac-LDL) uptake and NO secretion detection. The proliferation and the
migration ability of SCAP-ECs were evaluated by CCK-8 and Transwell assay. LPS stimulation was used to mimic the
inflammatory environment in demonstrating the ability of SCAP-ECs to express adhesion molecules. The in vivo
Matrigel plug angiogenesis assay was performed to assess the function of SCAP-ECs in generating vascular
structures using the immune-deficient mouse model.

Results: SCAP-ECs expressed upregulated endothelial-specific genes and proteins; displayed endothelial
transcriptional networks; exhibited the ability to form functional tubular-like structures, uptake ac-LDL and secrete
NO in vitro; and contributed to generate blood vessels in vivo. The SCAP-ECs could also express adhesion
molecules in the pro-inflammatory environment and have a similar migration and proliferation ability as HUVECs.

Conclusions: Our study demonstrates that the set of small molecules and growth factors could significantly
promote endothelial transdifferentiation of SCAP, which provides a promising candidate cell source for vascular
engineering and treatment of ischemic diseases.
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Introduction

Postnatal angiogenesis plays an essential role in the re-
covery of ischemic tissues and survival of engineered tis-
sue constructs after implantation [1, 2]. During this
process, locally elevated angiogenic factors, such as vas-
cular endothelial growth factor (VEGF) and basic fibro-
blast growth factor (b-FGF), activate endothelial cells’
proliferation, migration and self-assembling to form
primitive vascular networks, which is followed by step-
wise mural cell recruitment and stabilization of the nas-
cent vessels [3]. In the developed vasculature,
endothelial cells (ECs) not only are the principal compo-
nents of forming the inner layer of blood vessels, but
also associated with smooth muscle cells and pericytes
for maintaining the physiological functions of blood ves-
sels [4]. Therefore, the role of ECs in vascular develop-
ment and vascular tissue engineering would never be
overemphasized.

For vascular tissue engineering and its translational ap-
plication, the first step is to obtain adequate number of
ECs. Autologous endothelial cells like human umbilical
vein endothelial cells (HUVECs) and human micro-
vascular endothelial cells (HMECs) are the most suitable
cell sources for vascularization. But their scarce availabil-
ity and low proliferation rates limit the large-scale appli-
cation of these cells [5]. Endothelial progenitor cells
(EPCs) derived from the human peripheral blood, bone
marrow, and umbilical cord blood have been investi-
gated for augmenting angiogenesis [6]. However, limited
yield of EPCs, such as 0.01% from the peripheral blood,
0.05% from the bone marrow and 0.2 to 1% in the um-
bilical cord blood [6, 7], restricts the potential in transla-
tional applications. There are also some concerns on the
effects of long-term cryopreservation on EPCs’ functions
and in vivo efficacies [8]. Generation of ECs from pluri-
potent stem cells (PSCs), such as embryonic stem cells
(ESCs) and induced pluripotent stem cells (iPSCs), has
been reported [9, 10]. However, ethical issues, tumori-
genicity and the concerns of genome instability hinder
the clinical application of these cells [11-13]. Alterna-
tively, mesenchymal stem cells (MSCs) extracted from
the bone marrow, adipose tissues and dental tissues are
relatively easy to obtain in sufficient quantities for trans-
lational application. Particularly, dental-derived stem
cells, which express several pluripotency markers not
usually expressed by other adult stem cells, such as
SOX2, NANOG and OCT4, could be a potential substi-
tute cell source for endothelial differentiation [14].

Direct reprogramming, defined as the direct gener-
ation of targeted cell types from another cell type with-
out passing through an intermediate pluripotent stage, is
commonly achieved by overexpression of cell/tissue-spe-
cific transcription factors [15]. For example, human fi-
broblasts have been successfully reprogrammed into ECs
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by transfection of FOXO1, ETV2, KIF2, TAL1 and
LMO?2 or even single factor ETV2 [16, 17]. The repro-
gramming process could be achieved via a chemical
cocktail composed of epigenetic modulators, signalling
pathway regulators and other factors that induce the
characteristics of the designated cell types [18, 19].
Neuronal cells, Schwann cells and cardiomyocyte-like
cells have been successfully reprogrammed from human
fibroblasts by different small molecule compound com-
binations [20-22]. SCAP, a unique type of mesenchymal
stem cells derived from the tooth apical papilla, have
been shown to possess higher multipotent differentiation
potential and constitutively expressing pluripotency
markers [14, 23]. Therefore, it is reasonable to
hypothesize that SCAP could differentiate into
endothelial-like cells via the chemical approach.

In this study, we identified a chemical protocol com-
posed of five small molecule compounds (VPA,
CHIR99021, Repsox, Forskolin and Y-27632) and three
key growth factors (VEGF, BMP-4 and 8-Br-cAMP),
which could efficiently induce SCAP into EC-like cells
that possess the vascular identity in vitro and in vivo.
This approach could be used as a prospective basic strat-
egy for endothelial induction, through which ECs can be
produced for vascular engineering and management of
ischemic diseases.

Materials and methods
Cell culture
SCAP were kindly provided as a gift by Dr. Anibal Di-
ogenes (Department of Endodontics, University of Texas
Health Science Center). The cells were cultured and ex-
panded in a-MEM supplemented with 10% FBS, 100 g/L
streptomycin and 100000 U/L penicillin (Gibco, Carls-
bad, CA, USA). When reaching 80% confluence, the cells
were trypsinized using 0.25% trypsin (Gibco), harvested
and serially passaged. The cells from 3rd to 6th passage
were utilized for experiments. SCAP were characterized
by flow cytometric analysis of the expressions of CD45,
CD73, CD90 and CD105 as well as multi-lineage differ-
entiation assays (Additional file 1: Appendix Figure 1).
HUVECs and pericytes were commercially purchased
(ScienCell Research Laboratories, San Diego, CA) and
cultured in endothelial cell medium (ECM) and pericyte
medium (PM) respectively (ScienCell Research Labora-
tories) at 37°C with 5% CO,. Cells below passage 6 were
used for further experiments.

Generation of endothelial-like cells from SCAP with small
molecules

SCAP (3x10°) were seeded on 0.1% gelatin-coated 6-well
plates in a-MEM and incubated at 37°C in a humidified
atmosphere with 5% CO,. At 40-50% cell confluence,
the culture medium was changed to EGM-2 (Lonza,
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Walkersville, MD, USA), plus 50 ng/mL VEGF
(rhVEGF165, Peprotech, NJ, USA), 20 ng/mL BMP-4
(R&D Systems, Minneapolis, MN, USA) and the chem-
ical cocktail 0.5 mM VPA (Sigma-Aldrich, St. Louis,
MO, USA), 3 uM CHIR99021 (Stemgent, Beltsville, MD,
USA), 1 uM Repsox (Selleck, Houston, TX, USA), 10
puM Forskolin (Caymen, Ann Arbor, MI, USA), 5 uM Y-
27632 (Sigma-Aldrich) for a 4-day induction, and then
BMP-4 was replaced by 100 uM 8-Br-3,5-cAMP (Sigma-
Aldrich) in the next 4 days (Appendix Table 1). The
medium was changed every 2 days. The obtained cells
are passaged and cultured in a maintenance medium
composed of EGM-2 and 0.5 mM VPA, 3 puM
CHIR99021, 1 pM Repsox, 10 pM Forskolin and 5 pM
Y-27632.

Quantitative real-time polymerase chain reaction, western
blotting, flow cytometry immunofluorescence and RNA
sequencing

See Additional file 1 for detailed materials and methods.
The primer sequences and antibodies used in this study
are listed in Additional file 1: Appendix Tables 2 and 3.

Tube-like structure formation assay

To assess the angiogenic capacity of SCAP-ECs, a tubu-
lar formation assay was conducted on Matrigel. Briefly,
48-well cell culture plates were coated with 150-pL
chilled Matrigel solutions (Corning, NY, USA) per well
using a precooled pipette. The 48-well plates were then
incubated in a cell culture incubator for 30 min to allow
the solidification of the Matrigel. SCAP only, SCAP in
EGM2, SCAP-ECs and HUVECs were collected, counted
and resuspended in EGM-2. Subsequently, 3x 10* cells
of a single-cell suspension were reseeded onto the top of
the solidified Matrigel within each well. Images were
captured at different time points (12h, 24h) with a digital
camera attached to an inverted microscope (Olympus,
Tokyo, Japan). The number of nodes, meshes, junctions
and total tube length were quantified using Image] ana-
lyser. Pericytes provide support around ECs and modu-
late the EC behaviours including the formation of
endothelial cell-cell junctions. In order to evaluate the
integration effect, SCAP-ECs and pericytes were labelled
using CellTracker® fluorescent probes (Life Technolo-
gies, CA, USA) and seeded on the Matrigel surface at a
density of 3 x 10* cells/well and 7.5x 10® cells/well re-
spectively. Images were captured at 12h.

Acetylated low-density lipoprotein uptake

To assess acetylated low-density lipoprotein (ac-LDL)
uptake, SCAP-ECs were incubated with Dil ac-LDL
(Invitrogen, Waltham, MA) at 37°C for 6 h at a concen-
tration of 10 pg/mL then fixed with 4% paraformalde-
hyde and counterstained with DAPI. To detect ac-LDL
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uptake, cells were imaged using a fluorescence micro-
scope (Olympus).

Nitric oxide secretion detection

The ability of the cells to produce nitric oxide (NO) was
assessed by measuring the concentration of NO in the
culture medium containing 2 ng/mL VEGF (thVEGF165,
Peprotech) and 1pM Calcium Ionophore A23187
(Sigma-Aldrich) with the use of the NO detection kit
(Invitrogen, Waltham, MA) according to the manufac-
turer’s instructions. The amount of nitrate was deter-
mined by converting it to nitrite, followed by the
colorimetric determination of the total concentration of
nitrite as a coloured azo dye product of the Griess reac-
tion that absorbed visible light at 540 nm with the use of
a microplate reader (MTX Lab Systems, WA).

Expression of adhesion molecules in an inflammatory
environment

To detect the expression of adhesion molecules in a pro-
inflammatory environment, SCAP-ECs were incubated
with ECM containing 1lpg/mL Escherichia coli LPS
(Sigma-Aldrich) for 24 h. The expression of interleukin-
6 (IL-6) and interleukin-8 (IL-8) mRNA in SCAP-ECs
and HUVECs after stimulation were detected by RT-
PCR. Western blot was utilized to determine the expres-
sion of intercellular adhesion molecule 1 (ICAM-1) and
vascular cell adhesion molecule 1 (VCAM-1) of SCAP-
ECs, with HUVEC:s as the positive control.

Transwell migration assay

Twenty-four-well Transwell Permeable Supports with 8-
pum pores (Corning, NY, US) were used. SCAP-ECs and
HUVECs were trypsinized, resuspended by ECM with
0.1% FBS and seeded on the upper chamber of inserts at
a density of 8 x 10*/200 L. Then, 600uL of ECM with
5% FBS was added to the lower compartment of each
well. After 24 h, the medium was removed and the
upper side of the permeable membrane was cleansed
with a cotton swab to remove the cells that have not
passed through the membrane. The cells on the lower
surface of the membrane were fixed by 4% paraformal-
dehyde for 30 min and stained with 0.1% crystal violet
(Sigma) for 20 min. The number of cells on the lower
surface of the permeable membrane was calculated
under the inverted microscope (Olympus) and an aver-
age of 5 fields per each well was taken as the final value.

CCK-8 assay

To evaluate the proliferative ability of SCAP-ECs, the
cell counting kit-8 (CCK-8, Sigma-Aldrich) assay was
performed. Cell suspensions (5 x 10° cells/well) of
SCAP-ECs or HUVECs were added into 96-well plates
at a volume of 100 puL per well. The SCAP-ECs were
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cultured in a maintenance medium and HUVECs were
cultured in ECM with 5% FBS. At indicated time points
(day 1, 3, 5 and 7), the culture medium was replaced
with a medium containing CCK-8 solution and incu-
bated at 37°C in 5% CO, for 2 h. The absorbance read-
ings of the wells were then measured on a microplate
reader (MTX Lab Systems) at 450 nm to assess the num-
ber of viable cells in each well. The readings of the back-
ground absorbance of the wells containing medium and
CCK-8 solution without cells were also measured. Cell
proliferation was represented as mean + SD of absorb-
ance readings of 6 wells from each group.

In vivo Matrigel angiogenesis assay

All animal experiment protocols were approved by the
Committee on the use of live animals in the Stomatology
School of Shandong University, Shandong, China.
Briefly, a total of 4 x 10° cells (group 1, SCAP; group 2,
SCAP in EGM-2 and with + SCAP 1:1; group 3, SCAP-
ECs + SCAP 1:1; group 4, HUVEC + SCAP 1:1) were re-
suspended in 400 pL Matrigel (Corning, NY, USA).
Three mice were allocated to each group and two Matri-
gel plugs were bilaterally injected into each mouse. A
pre-chilled syringe with a 25-gauge needle was used to
inject the Matrigel/cell mixture into the subcutaneous
space of 6-week-old NOD/SCID mice. After 7 days, the
implants were retrieved, fixed in 4% formaldehyde for
24h, embedded in paraffin and sectioned (5-um thick-
ness). Haematoxylin and eosin (H&E) staining was per-
formed to detect the presence of newly formed blood
vessels in the Matrigel. For visualization of luminal
structures derived from SCAP-ECs, the sections were
stained with immunofluorescence for a human-specific
vWEF antibody (Sigma-Aldrich) and then incubated with
Alexa Fluor-594-conjugated secondary antibody (Invitro-
gen, Carlsbad, CA). A mouse-specific CD31 antibody
(Abcam) was used to demonstrate the interaction of hu-
man SCAP-derived ECs and host cells. The images were
captured with an Olympus IX-81 confocal laser scanning
microscope (Olympus, Tokyo, Japan).

Statistical analysis

All experiments were performed in triplicates, and the
results were presented as mean * standard deviation
(SD). Statistical comparisons were performed by Stu-
dent’s t test and 1-way analysis of variance (ANOVA),
with P values less than 0.05 considered statistically
significant.

Results

Reprogramming SCAP into endothelial-like cells by small
molecule cocktail

We have recently demonstrated that TGF-B signalling
inhibitor SB431452 could significantly enhance the
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capacity of VEGF to induce SHED differentiation into
ECs [24]. This study indicated that small molecule com-
pounds modulating key cell signalling pathways could
drive dental stem cells towards endothelial differenti-
ation. However, the conversion of SCAP into endothelial
lineage by using a cocktail of small molecules has never
been investigated. We first used VPA, CHIR99021,
Repsox, Forskolin and Y-27632 (VCRFY) with EGM-2
supplemented with 50 ng/mL VEGF as a basic chemical
endothelial-induction system. After inducing for 8 days,
SCAP changed from spindle to round shape and overex-
pressed CD31 protein. However, the essential endothe-
lial marker VEGFR2 could not be detected (Additional
file 1: Appendix Figure 2A and B). BMP-4 is a key cyto-
kine in the commitment of mesodermal progenitors for
pluripotent stem cells (PSCs) and is often used for the
early stage of EC differentiation [25]. 8-Br-cAMP could
enhance endothelial reprogramming efficiency in the
later stage [17, 26]. Therefore, in order to improve the
reprogramming efficiency, we sequentially introduced
BMP-4 and 8-Br-cAMP, which led to VEGFR2 protein
expression in the induced SCAP. Accordingly, the final
induction scheme was optimized as follows: EGM-2 plus
VEGF, BMP4 and the chemical cocktail VCRFY for a 4-
day induction, and BMP4 was replaced by 8-Br-cAMP in
the next 4 days (Fig. 1a). At the end of the chemical in-
duction, compared to SCAP, the morphology of the ob-
tained cells gained a significant change, which is a
rounded shape that resembles primary endothelial cells
(Fig. 1b). After 8 days of induction, small molecules up-
regulated the mRNA and protein expression levels of
CD31 and VEGFR? in a time-dependent manner (Fig. 1c—
e). Collectively, the proposed compounds, including epi-
genetic modulators, signalling pathway regulators and spe-
cific culture medium containing angiogenic growth
factors, could induce endothelial differentiation of SCAP.
The live/dead assay showed that small molecule cocktail
did not significantly affect the cell viability, as compared
with the non-treated SCAP (Fig. 1f).

Characterization of endothelial identity after small
molecule cocktail-based lineage conversion of SCAP

We first characterized the endothelial identity after
chemical reprogramming of SCAP by assessing
endothelial-specific gene and protein expressions. Small
molecules could significantly upregulate the expression
of EC-specific genes (Fig. 2a). After 8 days of induction,
SCAP-ECs showed much higher expression of CD3l,
VEGFR2, VEGFR1 and TIE2, compared with that of
SCAP cultured in EGM-2 alone and the non-treatment
group. In particular, compared with the non-treatment
group, the VEGFR2 mRNA expression of the small mol-
ecule induction group was 400 times greater, indicating
its strong effect on endothelial lineage induction.
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Fig. 1 The induction of SCAP into endothelial-like cells using small molecules and growth factors. a Schematic diagram of the induction protocol.
b Representative morphological changes of SCAP after SM exposure. Scale bar = 500 pm. ¢ The gene expression levels of CD31 and VEGFR2 in
SCAP during SM treatment. All of the results represent the mean + SEM of 3 independent experiments (n = 3). d, e The protein expression levels
of CD31 and VEGFR2 in SCAP during SM treatment. The band intensities were analysed using ImageJ software; GAPDH was used as an internal
control. All of the results represent the mean + SEM of 3 independent experiments (n = 3). f Assessment of the viability of SCAP after SM
exposure using live/dead assay. Scale bar = 500 pm. "P < .05, P < 01

Withdrawal of each small molecule would attenuate the enhanced the expression levels of EC-specific proteins
expression of VEGFR2 (Additional file 1: Appendix Fig- CD31, VEGFR2 and VE-CADHERIN compared with the
ure 2C). Small molecule cocktail also significantly non-treatment group and EGM-2+VEGF group (Fig. 2b,
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c). Surprisingly, VEGFR2 protein could only be detected
in SCAP-ECs. After re-plating on the glass slices, the
SCAP-ECs were mainly positive for CD31, VEGFR2 and
von Willebrand factor (VWF) (Fig. 2d). Consistent with
the western blotting results, the small molecule cocktail
could also significantly enhance the protein expression
level of EC-specific proteins CD31, VEGFR2 and vWF

compared with the non-treatment and EGM-2+VEGF
groups (Additional file 1: Appendix Figure 3A). Accord-
ing to flow cytometry analysis, the SCAP-ECs expressed
moderately high levels of VEGFR2 (42.88%), TIE2
(39.20%) and CD31 (14.10%) (Fig. 2e), while the cells
that were not treated with small molecule compounds
showed much lower levels of expression (Additional file
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1: Appendix Figure 3B). We further compared transcrip-
tome profiles of SCAP, SCAP-ECs and HUVECs. Heat
map analyses demonstrated SCAP-derived ECs showed
enriched EC-related gene expression and that the pat-
tern of EC gene expression was closer to HUVECs than
to SCAP (Fig. 2f). Gene ontology term enrichment ana-
lysis showed that the differentiated genes expressed in
SCAP and SCAP-ECs were related to the production of
endothelial growth factors, angiogenesis and extracellu-
lar matrix organization (Fig. 2g).

In vitro functional evaluation of the induced endothelial
cells

The ability of induced endothelial cells to generate vas-
cular tube-like networks was assessed by plating undif-
ferentiated SCAP, SCAP cultured in EGM-2 containing
50 ng/mL VEGF, SCAP-ECs and HUVECs on Matrigel.
The SCAP-ECs demonstrated elevated vascular tube for-
mation as shown by significantly higher network forma-
tion parameters compared with the EGM-2 group and
SCAP only. A significantly higher number of nodes,
junctions, meshes and total tube length were observed in
SCAP-ECs at 12h (Fig. 3a). At 24h, only SCAP-ECs and
HUVEC: still maintained the tubular network, while the
capillary-like structures of the non-treated SCAP or
EGM-2 group collapsed (Fig. 3b). Pericytes (green) in
both SCAP-ECs (red) group and HUVECs (red) group
were localized along tube-like structures, mimicking the
architecture of capillary in vivo, where pericytes were
wrapped around endothelial cells (Fig. 3d). In addition,
SCAP-ECs showed higher levels of ac-LDL uptake com-
pared to the EGM-2 group and SCAPs only (Fig. 3c),
with HUVECs as a standard control. In another func-
tional assay to characterize ECs, where the release of ni-
tric oxide was assessed, the SCAP-ECs possessed the
ability of generating NO and showed higher NO gener-
ation capacity than that of SCAP (Fig. 3e).

Adhesive molecule expression, migration, maintenance
and proliferation of the induced endothelial cells

To determine whether SCAP-ECs respond to pro-
inflammatory cytokines by adopting a pro-adhesive
phenotype, 1 pg/mL LPS was used to mimic the inflam-
matory environment. After 24 h of LPS stimulation,
SCAP-ECs and HUVECs both showed increased IL-6
and IL-8 mRNA levels (Fig. 4a, b). Similar to HUVECs,
SCAP-ECs could also express VCAM-1 and ICAM-
1protein, as shown by western blot results (Fig. 4c, d).
The Transwell migration assay demonstrated no signifi-
cant difference in the cell migration after 24h between
SCAP-ECs group and HUVECs group, implicating that
SCAP-ECs showed similar migration ability as HUVECs
(Fig. 4e, f). We used a “maintenance medium” composed
of EGM-2, VPA CHIR99021, Repsox, Forskolin and Y-

Page 7 of 13

27632 (VCRFY) for expanding and culturing the SCAP-
ECs. The representative images for passage 1 to passage
3 cells were presented in Fig. 4g, which demonstrated an
endothelial cell-like morphology with a rounded shape.
The passage 1-3 cells could still express the key endo-
thelial cell markers CD31 and VEGFR2, as demonstrated
by western blot (Fig. 4h). SCAP-ECs cultured in the
maintenance medium were assessed by the CCK-8 assay
at different time points (1, 3, 5 and 7 days), with
HUVECs as the positive control. There is no significant
difference in the OD450 value between SCAP-ECs and
HUVECs at days 1, 3, 5 and 7 (Fig. 4i). After the diges-
tion by trypsin and re-plating on a 96-well plate, SCAP-
ECs still showed a similar proliferative ability to
HUVECSs, implicating their potential in the cell therapy.

In vivo functional evaluation of the induced endothelial
cells

To sufficiently assess the function of SCAP-ECs in gen-
erating blood vessels, the in vivo Matrigel plug angiogen-
esis assay was performed. The experimental work flow
of the in vivo Matrigel plug angiogenesis assay is shown
in Fig. 5a. The plugs were retrieved and analysed 7 days
after implantation. The Matrigel encapsulating SCAP +
SCAP-ECs was much more vascularized than the plugs
encapsulating SCAP only or SCAP + SCAP in the EGM-
2+VEGF group, indicating the angiogenic capacity of
SCAP-ECs (Fig. 5b). H&E staining showed more blood
vessels in the SCAP-ECs than in SCAP only and SCAP
+ SCAP in EGM-2+VEGF groups. Furthermore, the ma-
jority of blood vessels were perfused with erythrocytes,
suggesting that these blood vessels were anastomosed to
the host vasculature (Fig. 5¢, Additional file 1: Appendix
Figure 4A). Immunofluorescence staining for human
vWE confirmed that the newly formed blood vessels
were mainly generated by SCAP-derived ECs (Fig. 5d,
Additional file 1: Appendix Figure 4B). Quantitative ana-
lysis showed that vWE-positive blood vessel density in
the SCAP-EC group was much higher than that of SCAP
only or SCAP + SCAP in EGM-2+VEGF groups (Fig.
5e). Mouse CD31 and human vWF double staining
showed the interaction of human SCAP-derived ECs and
host cells in the newly generated blood vessels (Fig. 5f).

Discussion

Non-pluripotent human somatic cell lines have been re-
programmed into several cell types by different small
molecule combinations [20-22, 27]. Compared to other
methods, small molecules have several unique advan-
tages, such as availability, flexible combination based on
the targeted cell types, and easy to control in a time and
concentration-dependent manner [19]. To the best of
our knowledge, there is only one study that used small
molecule activators to generate endothelial cells from
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human fibroblasts [26]. Sayed et al. used a toll-like re-
ceptor 3 (TLR3) agonist Poly I:C, which stimulates in-
nate immune  signalling, in the endothelial
reprogramming protocol. Poly I:C could activate TLR3
to induce global changes in the gene expression and ac-
tivity of epigenetic modifiers and facilitate the cells to
convert into ECs under the specific culture system.
Transplantation of the induced endothelial cells (iECs)

in the hind limb ischemia mouse model increased the
blood flow and capillary density. This study promoted us
to explore whether small molecule compounds cocktail-
based reprogramming strategy could reprogram dental-
derived stem cells into endothelial cells.

For most of the small molecule combinations, no mat-
ter what the targeted cell types are, there is a core cock-
tail, including epigenetic modulators, key signalling
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pathway regulators and other factors that induce the
characteristics of the designated cell types [18, 19].
Therefore, we hypothesized that the combination of core
cocktails with specific culture conditions (endothelial
differentiation medium) could induce dental stem cells
into the endothelial lineage. VPA is the most widely used
epigenetic  modulator  in  different  chemical

reprogramming protocols for overcoming the epigenetic
barrier between different types of cells. TGF- signalling
inhibitor Repsox and GSK signalling inhibitor
CHIR99021 are most commonly used for suppressing
the characteristics of the starting cells. It was reported
that if the starting cells are mouse embryonic fibroblasts
(MEFs), these compounds which suppress mesenchymal
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phenotype and promote mesenchymal-to-epithelial tran-
sition (MET) are necessary [28, 29].

The chemicals CRFY used in this study were also re-
ported to be involved in the endothelial differentiation
of human pluripotent stem cells or dental stem cells.
The synergistic modulation of multiple signalling path-
ways by CRFY might be critical for the endothelial
lineage switch. SB431452, an inhibitor of TGF-p1 recep-
tor, could enhance endothelial differentiation of SHED
[24]. CHIR99021 inhibits phosphorylation levels of GSK-
3B and upregulates the expression of P-catenin, VEGF
R2, VE-Cadherin, CD31 and TIE2 on VEGF-induced
endothelial differentiation of DPSCs and SHED [30].
Forskolin is commonly used to upregulate the levels of
cyclic adenosine monophosphate (cAMP). It was re-
ported that 8-Br-cAMP could enhance the endothelial
reprogramming efficiency by 4-fold (3.85% efficiency) as
shown by the number of CD31-positive cells at day 28
[17]. Sayed et al. had also used 8-Br-cAMP in their in-
duction protocol and had obtained a 2% efficiency of
conversion rate as demonstrated by the number of
CD31-positive cells [26]. Furthermore, Rho-associated
protein kinase (ROCK) inhibitor Y-27632 could improve
differentiation and expansion of embryonic stem cell-
derived ECs [31], which was also included in our small
molecule combination.

SCAP are a unique type of dental stem cells at a rela-
tively early stage of development confined within the ap-
ical papilla. It was reported that angiogenic factors could
promote the endothelial differentiation of SCAP. After
exposure to an angiogenic induction medium (M199
medium supplemented endothelial cell growth supple-
ment) for 28 days in normoxic condition, SCAP gained
the endothelial phenotype in vitro, with upregulation of
CD31, vWF, VEGFR2, angiopoietin-1/2 and Tie-1 ex-
pression [32]. Koutsoumparis et al. treated SCAP with
erythropoietin (rhEPOa) and found that CD31, CDH5
and VEGFR2 were upregulated and MMP2-pathway was
activated [33].

In this study, by using the designated small molecules
and endothelial-specific differentiation medium, we have
successfully and efficiently reprogrammed SCAP into
endothelial cells. These reprogrammed cells displayed
biological characteristics of ECs. RT-PCR, western blot-
ting, immunofluorescence and flow cytometry data
showed that gene and protein expression of endothelial
markers were significantly upregulated after small mol-
ecule treatment. Endothelial cells derived from dental
stem cells are also always assessed by functional tests.
Compared to our former methods driving endothelial
differentiation of dental stem cells (TGF-p signalling in-
hibitor [24] and decellularized extracellular matrix of
HUVEC [34] treatment), the SCAP-ECs could maintain
the tubular structure for a longer time (up to 24h).
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These induced ECs also showed LDL uptake ability at a
comparable level to, and NO production capacity slightly
lower to that of HUVECs. In addition, the RNA-
sequencing analysis demonstrated that induced ECs
share more similar transcriptome to that of HUVECs
than non-induced cells. The SCAP-derived ECs could be
expanded and cultured in maintenance medium,
expressed adhesion molecules with LPS stimulation and
showed similar proliferation and migration ability as
HUVECs. The SCAP-derived ECs could promptly gener-
ate new blood vessels and well anastomose with the host
circulation in the presence of SCAP. The results of this
study corroborated that the small molecule cocktail can
efficiently reprogrammed SCAP into a functional endo-
thelial lineage. This pioneering study on direct repro-
gramming dental stem cells into endothelial cells by
chemical molecules may provide a promising protocol
for producing sufficient ECs for vascular engineering
and treatment of ischemic diseases. However, the large-
scale expansion and maintenance of these induced ECs
and the mechanism behind chemical induction remain
to be addressed in our future work.

Conclusion

The present study demonstrated that the combination of
small molecules and growth factors could induce SCAP
into endothelial-like cells. These cells exhibited some
key endothelial characteristics and could generate blood
vessels in vivo, which may provide a promising cell
source for vascular engineering and treatment of ische-
mic diseases.
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