
Interactive Relationship Discovery via the

Semantic Web

Philipp Heim1, Steffen Lohmann2, and Timo Stegemann3

1 Visualization and Interactive Systems Group, University of Stuttgart, Germany
philipp.heim@vis.uni-stuttgart.de

2 DEI Laboratory, Carlos III University of Madrid, Spain
slohmann@inf.uc3m.es

3 Interactive Systems and Interaction Design, University of Duisburg-Essen, Germany
timo.stegemann@uni-due.de

Abstract. This paper presents an approach for the interactive discovery
of relationships between selected elements via the Semantic Web. It em-
phasizes the human aspect of relationship discovery by offering sophisti-
cated interaction support. Selected elements are first semi-automatically
mapped to unique objects of Semantic Web datasets. These datasets are
then crawled for relationships which are presented in detail and overview.
Interactive features and visual clues allow for a sophisticated explo-
ration of the found relationships. The general process is described and
the RelFinder tool as a concrete implementation and proof-of-concept is
presented and evaluated in a user study. The application potentials are
illustrated by a scenario that uses the RelFinder and DBpedia to assist
a business analyst in decision-making. Main contributions compared to
previous and related work are data aggregations on several dimensions, a
graph visualization that displays and connects relationships also between
more than two given objects, and an advanced implementation that is
highly configurable and applicable to arbitrary RDF datasets.

1 Introduction

Today’s world is complex, and so are the relationships within most knowledge
domains. Even experts in a field are often not aware of all relationships that exist
between certain elements of interest. However, overlooking relevant relationships
can have fatal consequences in many situations. To name just two examples of
the financial and medical domains: Not considering crucial relationships when
developing a portfolio of investments might be disastrous for a broker. Even
more fatal could be the result if a physician overlooks negative effects caused by
a combination of several drugs.

Typical reasons for overlooking and therefore not considering relevant rela-
tionships in decision-making and related activities are:

1. A large number of relationships that cannot all be cognitively grasped.
2. Relationships that do not follow logical human thinking.
3. Indirect relationships that are hard to derive by purely cognitive reasoning.

Preprint of a paper to appear in the proceedings of the
7th Extended Semantic Web Conference (ESWC 2010)
published by Springer in LNCS vol. 6088, pp. 303-317
(http://dx.doi.org/10.1007/978-3-642-13486-9_21)



The Semantic Web offers suitable opportunities to assist humans in getting an
overview on existing relationships. Since the information objects of the Semantic
Web are interlinked via their properties, they altogether describe a “giant global
graph” [3] that can be crawled for relationships4 by appropriate algorithms [12].
That way, it is possible to find relationships that, in particular, deal with the
above-mentioned challenges and therefore ideally supplement the relationships
that are considered by human thinking.

However, since the information objects in the Semantic Web are ideally
strongly interlinked, simply crawling for relationships and listing them is not
sufficient in most cases. Instead, user-centered processes and interactive tools
are needed that provide comprehensive assistance in the discovery of even very
large numbers of relationships. Users must be able to efficiently get an overview
on found relationships, to interactively explore them and to easily spot and
separate relationships that are of relevance in a certain situation.

In this paper, we therefore define relationship discovery via the Semantic
Web as a highly user-centered process. Even though the relationships are found
automatically in the datasets, all steps of the process can be controlled and
monitored by the user, allowing for a powerful combination of interactive and
automatic mechanisms. The process is defined on an abstract level making it
applicable in a wide range of domains. It consists of four steps: object mapping,
relationship search, visualization, and interactive exploration.

With the RelFinder, we present a concrete implementation of this process.
Each step is supported by sophisticated visualization and interaction techniques
that aim to move the process on to the subsequent step. The mapping of selected
elements to unique objects in the Semantic Web is supported by auto-completion
and semi-automatic disambiguation features. Starting from these objects, an al-
gorithm then automatically searches for relationships by following links in the
dataset. After relationships are found, they get presented to the user by both
a detailed view that shows a limited set of relationships in a graph visualiza-
tion and an overview that shows the whole set of found relationships aggregated
according to topological and semantic dimensions in lists. The aggregated repre-
sentations can be used to determine what relationships should be shown in the
graph visualization and to highlight nodes and edges according to their prop-
erties in the different dimensions. In addition, nodes in the graph visualization
can be selected to get further information about them.

In the following sections we first define the process for interactive relation-
ship discovery via the Semantic Web in general and present the RelFinder as a
concrete implementation of it. With the RelFinder we aim to proof the appli-
cability of our process definition and therewith also the potential of the general
approach. We use a scenario to illustrate the benefits of using the RelFinder
and evaluate it against existing approaches from the common Web. We conclude
with a discussion and future work.

4 Between two objects o0 and on exists a relationship o0 l1 o1 l2 o2, ... ln−1 on−1 ln

on (n > 0) if for each link and the two neighboring objects oi−1 li oi (0 < i ≤ n) in
the relationship, either oi−1 li oi or oi li oi−1 is a triple in the dataset (cp. [7]).



2 Process Definition

In this section we define the general process for our approach of interactive rela-
tionship discovery via the Semantic Web. We describe the process on an abstract
level, independently from any concrete implementation or domain. We call it the
ORVI process according to the initial letters of its four sequential steps (Object
mapping, Relationship search, Visualization, and Interactive exploration). It can
be used in any situation, in which relationships between certain elements are of
interest. Knowing the labels of at least two elements is sufficient in order to
trigger the process.5 The selection of these elements is not part of the process
as it can be realized in multiple ways. For instance, elements of interest can be
manually chosen, the result of natural language processing or any other manual,
automatic, or semi-automatic selection process.

In addition, it must be decided on which dataset the process is executed.
This decision is also not part of the general process since it depends strongly
on the domain in focus and the user goals. It might, for instance, be a large
public dataset which covers general knowledge (such as DBpedia [4] or the LOD
cloud6) or a domain-specific dataset that is privately hosted and maintained by
a company.7

After the elements have been selected and the decision for a dataset has been
made, the four steps of the ORVI process are sequentially executed. They are
summarized in the following (cp. Fig. 1):

1. Object Mapping: As a common requirement of the Semantic Web, the
selected elements must first be mapped to unique objects of the datasets.
In order to minimize effort, manual disambiguation should only be required
in cases where a unique automatic mapping is not feasible (e.g., in case of
ambiguity). In addition, all manual disambiguation should be accompanied
by appropriate user support (e.g., auto-completion).

2. Relationship Search: After all selected elements have been mapped to
unique objects, the dataset is automatically crawled for relationships be-
tween these objects by appropriate algorithms. Since it is hard to generally
determine which relationships are of relevance in a certain situation and
which are not [1], filtering should at best only be used to clean the search
results in this process step (e.g., suppressing cycles8). Thus, the general goal

5 In contrast to related work, the process does explicitly not limit the elements between
which relationships are to be found to only two but supports relationship discovery
also between more than two elements.

6 http://linkeddata.org/
7 Since we defined the process with the average user in mind who has usually little or
no expertise in Semantic Web topics, a dataset might be preselected in most cases
that is appropriate for the user’s tasks (i.e., contains interrelated objects that the
user is interested in).

8 “Suppressing cycles” means that the same object occurs at most once in the same
relationship [9].



Visualization (3)
Interactive

Exploration (4)

Relationship

Search (2)

Object

Mapping (1)
e
m
e
n
t2

e
m
e
n
t4

e
m
e
n
t3

e
m
e
n
t1 Detailed view

e
le

e
le

e
le

e
le

Overview:

Fig. 1. The ORVI process: Selected elements are mapped to objects in the dataset (1)
which are then used as starting objects to find relationships between them (2). The
found relationships are visualized (3) and can be explored by the user (4).

in this step is to find as many relationships as possible since each single
relationship could be valuable in a certain situation.9

3. Visualization: The found relationships are then presented to the user. The
visualization must be capable to handle even large numbers of relationships.
In many cases, only a small subset of the found relationships can be presented
in a detailed view due to spatial limitations of the display area (usually,
screen size is limited). Therefore, an overview is required that can aggregate
the found relationships according to different dimensions (e.g., statistical,
topological, or semantic ones) and thus facilitate users’ understanding of the
whole result set.

4. Interactive Exploration: The last step of the process is the interactive
exploration of the found relationships. The main goal is the discovery of re-
lationships that are of relevance in a certain situation. In order to reach this
goal, interactive features (e.g., dynamic filtering) and visual clues (e.g., high-
lighting) are needed that enable a sophisticated exploration on the different
views of the visualization.

3 RelFinder – An Implementation of the ORVI Process

We developed the RelFinder, a tool that demonstrates the applicability of the
ORVI process and illustrates the support it can provide in real-world-contexts.10

It is implemented in Adobe Flex11 and gets compiled to a Flash movie which

9 Though filtering should only be carefully applied in this process step, it might, how-
ever, in practice be necessary due to performance issues and/or resource limitations.

10 A demo installation of the RelFinder can be tested online at: http://relfinder.
semanticweb.org

11 http://www.adobe.com/products/flex



runs in all Web browsers with installed Flash Player. SPARQL queries are gen-
erated on the client side and can be sent to any SPARQL endpoint that is
available either locally or via the Web. Thus, the RelFinder can be used to find
relationships in datasets of various domains without a need of modifying them.

In order to illustrate how the RelFinder implements the ORVI process and to
show its application potentials, we present a complete walkthrough and describe
the implemented features by means of a scenario. In this scenario, we simulate
the situation of a business analyst who uses the RelFinder to explore a large
number of relationships that were found between companies she is interested in.
We assume the analyst to hold shares from the following German automotive
companies: BMW, Porsche, Volkswagen, and MAN SE. Against the background
of recent developments in the German automotive sector12, the analyst needs
a deeper understanding of the relationships between the four companies to es-
tablish an optimal trading strategy. She decides to use the RelFinder to get
supported in these tasks.

Fig. 2. Screenshot of the RelFinder with relationships between BMW, Porsche, Volks-
wagen and MAN SE found in the DBpedia dataset.

3.1 Object Mapping

The labels of the elements are entered as strings in separate input fields in the
upper left corner of the user interface (Fig. 2, A). Initially, two input fields are

12 VW to buy half of Porsche by 2010. BBC News. 2009-10-20. http://news.bbc.co.
uk/2/hi/business/8317010.stm. Retrieved 2009-12-13.



presented but additional ones can easily be added. The business analyst from
the scenario, for instance, adds two more input fields, since she is interested
in relationships between four elements (“BMW”, “Porsche”, “Volkswagen” and
“MAN SE”). As detailed in the following, the RelFinder assists the mapping of
entered strings to objects in the dataset in various ways.

While the user is entering the element labels, possibly matching objects are
displayed in a drop-down list below each input field. These suggestions are re-
trieved by SPARQL queries against selected properties of the dataset13 and are
ranked according to their popularity, if supported14 (else according to string
similarity using the Jaro-Winkler distance measure).

The user is not forced to use the auto-completion feature while she inputs her
element labels.15 Hence, all elements that have not been disambiguated via auto-
completion need to get mapped to objects of the dataset before the relationship
search can be performed. The RelFinder implements a semi-automatic mapping
strategy that aims to maintain an optimal trade-off between user effort and false
mappings (which should both be minimized). Automatic mapping is triggered
in two cases: 1) if the user input matches exactly the property string of an
object and the object’s ranking value is above a certain threshold compared
to the top-ranked object16 , 2) if the ranking value of the top-ranked object is
above a certain threshold compared to the object that is ranked second. Hence,
both thresholds are relative; their values are configurable so that they can be
optimized for each dataset separately.

Following this implementation, the user inputs “BMW” and “Porsche” can
be automatically mapped to corresponding objects of the DBpedia dataset in
the scenario, since they meet the first case (exact match and top-ranked object).
“Volkswagen” is ranked second but can also be automatically mapped since it is
an exact match and its ranking value is above the defined threshold compared
to the top-ranked object (“Volkswagen Group”).17 The user input “MAN” can-
not be automatically mapped as it has no exact match with one of the label

properties of DBpedia and as the ranking value of the top-ranked object is not
above the defined threshold.

If no automatic mapping is feasible, manual disambiguation is supported by
an enhanced suggestion list displayed in a pop-up dialog. This dialog provides
additional features such as links to the URIs of the suggested objects or a possi-

13 Configuration allows to freely define the queried dataset and the property types that
are included in the search for suggestions (by default, the label property of the RDF
Schema vocabulary is used).

14 The RelFinder uses the count command for popularity ranking that is, however, not
(yet) part of the SPARQL standard but was proposed as extension.

15 Demanding a manual disambiguation for all elements would be against the ORVI
principle of minimizing user effort.

16 This case is only applicable for the popularity ranking based on the count value.
17 The suggestions were ranked according to their count value (not string similarity)

in the scenario. This results in ’Volkswagen Group’ being ranked higher than ’Volk-
swagen’.



bility to directly input and validate object URIs.18 The dialog can also be used
to correct false disambiguations. Thus, the RelFinder provides twofold support
for manual disambiguation with lightweight auto-completion during user input
and more advanced functionalities in unclear cases (i.e., if no automatic mapping
is possible or if entered strings match with more than one object). Ultimately,
it ensures that each user input gets mapped to a unique object of the dataset
with minimized effort for manual disambiguation. These objects serve as starting
objects in the subsequent relationship search.

3.2 Relationship Search

Relationship search can be realized in various ways. The RelFinder uses an
algorithm that was first introduced in [9] and further developed in [6]. It defines
several parameters that can be configured to adapt relationship search and that
are also used in related algorithms [1,7], such as length19 and directionality20.

As defined by the ORVI process, the general goal of this process step should
be the extraction of as many relationships as possible since each single relation-
ship can be valuable depending on the situation. Therefore, the parameters of
the relationship search should generally be configured with this goal in mind.
However, this idealized vision cannot be fully realized in many situations due
to performance reasons or resource limitations. Thus, the RelFinder allows a
configuration of the length and directionality parameters. In addition, it allows
the definition of properties that should be ignored as they provide no benefits
for relationship discovery (e.g., contain no valuable semantics).

The RelFinder installation of the scenario has been configured to search for
all relationships that have a maximum length of two and contain no more than
one change in the link directions. Furthermore, it has been defined to ignore the
wikilink property of the DBpedia ontology [4] since it simply represents hyper-
links and provides therefore no valuable semantics for relationship discovery. In
addition, all links of types subject from the SKOS vocabulary21 and type from
the RDF Schema vocabulary are ignored. Overall, this results in 64 relationships
that were found between the four starting objects by the algorithm (26 of length
1 and 38 of length 2), with 16 object classes belonging to the YAGO ontology22,

18 If the URIs of the objects are known in advance, they can also be directly entered
in the input fields.

19 We define the “length” of a relationship by the number of intermediate objects that
are contained within this relationship. According to this definition, direct relation-
ships (i.e., the starting objects are directly linked without intermediate objects) are
of length 0 and indirect relationships that contain x + 1 links and x intermediate
objects are of length x.

20 The “directionality” expresses the number of changes in the directions of the links
that a relationship consists of. See [7] for more information about this concept.

21 http://www.w3.org/2004/02/skos/
22 http://www.mpi-inf.mpg.de/yago-naga/yago/



four to OpenCyc23 and three to DBpedia, and with 37 different link types.24

The next challenge addressed by the RelFinder in accordance with the ORVI
process is the visualization of these relationships in a user-centered way.

3.3 Visualization

The visualization of relationships in the RelFinder is organized in two separate
parts, a detailed view of a limited number of relationships in the main area (Fig.
2, B) and an overview of the whole set in the sidebar on the left (Fig. 2, C).

Detailed View: The detailed view consists of a graph visualization that repre-
sents objects as nodes and links as directed labeled edges between them.25 The
nodes representing starting objects (all objects the selected elements got mapped
to) are marked by a stronger border (Fig. 2, D) and are elliptically arranged in
an oval on fixed positions on the screen. The found objects and links that are
contained in the relationships between the starting objects span a graph between
these fixed nodes and get automatically arranged by a force-directed layout [5].

Since the found energy level is not necessarily a global minimum, i.e. the
graph layout is probably suboptimal, or the user might want to arrange nodes
according to individual preferences, single nodes can be picked by the user and
pinned at fixed positions on the screen decoupling them from the automatic
layout.26 Whether a node is pinned or not is indicated by a needle symbol (Fig.
2, E). By clicking the needle symbol of an already pinned node, this node releases
its fixed position and gets again coupled to the automatic layout.

The graph building is animated incrementally by displaying the found rela-
tionships one after the other. This has three advantages: 1) An early impression
of found relationships: Even though the search is still in progress, first results are
already displayed; 2) Time for cognitive processing: Having a delay between each
newly added relationship gives users time to adjust to the graph visualization
(especially new users without any familiarity with graphs are often overstrained
by their complexity); 3) An easy traceability of relationships: Since relation-
ships are stepwise added to the graph, the layout needs to integrate only a few
nodes and edges at a time and thus the nodes are changing their positions rather
smoothly allowing the eyes to keep track of them.

Overview: In the overview, the found relationships get aggregated according
to two topological and two semantic dimensions. The two topological dimensions
are:

23 http://www.cyc.com/opencyc/
24 These were the results at time of writing.
25 Actually, edge labels are also handled as nodes in the graph layout for readability

reasons.
26 We call the manual adaption of the positions of single nodes in the graph pick-and-

pin operation.



– Relationship lengths (see Section 3.2 and Footnote 19).
– Connectivity levels of found objects contained in the relationships.27

The two semantic dimensions are:

– Link types contained in the relationships.
– Classes of found objects contained in the relationships.

For each of the four dimensions, all aggregated properties of the relationships
are organized in lists that can be accessed via a tab menu in the sidebar (Fig.
2, C). Each row in the lists stands for a distinct property and contains its label,
the numbers of aggregated relationships that are visible in the detailed view, the
total number of aggregated relationships, and information whether the property
is generally set visible or not (by an eye symbol).

If the number of found relationships exceeds a certain threshold, which defines
the maximum number of relationships that can clearly be arranged in the graph
visualization, not all of them get visualized in the detailed view initially. In order
to decide which relationships should initially be visible in the graph visualization,
we define a measure of importance. The questions are: In which relationships are
the users most likely interested in? And even more important: What properties
can be used to calculate the importance of relationships automatically?

Unfortunately, the definition of the importance of relationships seems to
change profoundly with the current user task. Nevertheless, since we do not ask
for the current user task in advance, at least in the current RelFinder implemen-
tation, we chose the relationship length as a general property to automatically
measure the importance of relationships (cp. [1]). Thus, direct relationships or
relationships with few intermediate objects are more likely to be shown in the
initial graph visualization than relationships with more intermediate objects. If
a property, as for example a certain relationship length, is set invisible, this is
indicated in the corresponding row of the list in the overview by a closed eye
symbol.

3.4 Interactive Exploration

The found relationships in the RelFinder can be explored by interacting with
both the properties in the overview and the nodes and edges in the detailed view.
The user can control what relationships are shown in the graph visualization,
can highlight nodes, edges and relationships, and can get additional information
about selected objects.

By interacting with the properties in the overview, relationships can be shown
or hidden in the detailed view and nodes and edges can be highlighted. Clicking
on the open eye symbol of a certain relationship length removes all relation-
ships of this length from the graph visualization (e.g., all direct relationships).

27 We define the connectivity level of a found object by the number of distinct starting
objects it connects in the graph. Each found object connects at least 2 and at most
all starting objects.



Clicking on the open eye symbol of a certain link type removes all relationships
that contain links of this type and thus allows users to ignore links that are
possibly irrelevant for the current analysis (e.g., “companyType”). Clicking on
the open eye symbol of a certain connectivity level or ontology class removes all
relationships that contain corresponding objects. This facilitates focusing on re-
lationships via objects that belong to certain classes (Fig. 2, C) or that connect a
certain number of starting objects (e.g., all starting objects). Selecting one of the
properties in any of the four aggregation dimensions highlights all corresponding
nodes and edges in the detailed view (e.g., selecting the class “HybridElectricVe-
hicles” of the YAGO ontology highlights the “Porsche Cayenne” node in Fig. 2,
E).

In the detailed view, nodes can be selected in order to highlight related in-
formation in both the detailed view and the overview. First, the properties of
the selected object are highlighted in the aggregated lists to provide informa-
tion about its class and connectivity level. Second, objects in the detailed view
that share the same properties as the selected one are highlighted to provide
some awareness of similar information in the graph. Third, all relationships that
contain the selected object are highlighted as “red threads” in the detailed view
helping the user to visually track relationships within the graph (e.g., all relation-
ships that contain “Volkswagen Group” in Fig. 2, G). Furthermore, additional
information about the selected node, such as an image and a short description, is
shown in the sidebar (Fig. 2, F) to help users to interpret possibly unknown ob-
jects that were found between the starting objects and thus to better understand
the found relationships in general.

The business analyst in the scenario interactively explores the found relation-
ships mainly by using the semantic dimensions “class” and “link type”. Since
relationships based on spatial correlations (e.g., companies located in the same
city) or on similar organizational structures (e.g., companies with a chief execu-
tive officer) are not of much interest to her, she sets all relationships that contain
objects like “cities” or “countries” and links like “companyType” and “death-
Place” invisible in the detailed view. Thus, the graph visualization shows only
a limited but possibly valuable set of found relationships like those containing
persons (e.g., “Bernd Pischetsrieder”), products (e.g., “Porsche Cayenne”), or
organizations (e.g., “Volkswagen Group”). Such relationships can be indicators
for personal, structural, or financial connections and dependencies between the
four automotive companies and are thus of interest to the business analyst. A
very prominent insight that can be gained by studying the graph visualization
in Fig. 2 is the important role of the “Volkswagen Group” as a connector of all
four starting objects. Dependencies based on this object should be considered
very carefully when developing a trading strategy.

4 Evaluation

We performed a user study in which we compared relationship discovery via
the Semantic Web according to the ORVI with relationship discovery as it can



be commonly performed by Web users nowadays. We used the RelFinder as
implementation of the ORVI process and decided for Google and Wikipedia as
reference applications for relationship finding in the “common” Web.28

4.1 Study Design

The user study consisted of three tasks that had to be accomplished with all
three applications (Google, Wikipedia, and RelFinder). One relationship had to
be found in the first task and three relationships in the second. The third task
also asked for three relationships but additionally defined an object class that
should be included in the found relationship (e.g., person, location, etc.). The
relationships had always to be found between two given elements that varied
across the applications.29 Likewise, the class varied that was asked for in the
third task.

The elements were selected from three thematic categories – persons, loca-
tions, and culture –, whereas each study participant received elements from each
category. We run a pre-test to ensure that relationships between the given ele-
ments could be found in all three applications with relatively small effort.30 For
example, one text for the third task in the category culture was: “Name three
movies that relate Quentin Tarantino and Samuel L. Jackson. Give also the kind
of relationship” (with “Quentin Tarantino” and “Samuel L. Jackson” as given
elements and “movie” as given class).

The time limit for each task was three minutes. If a study participant was
not able to solve a task within this time, its execution was aborted and it was
continued with the next task. The study participants were advised to disregard
previous knowledge as much as possible. They were only allowed to name rela-
tionships they evidently found with the applications. Correspondingly, they were
not permitted to use further terms for search that are based on their own knowl-
edge. The DBpedia dataset was used for the RelFinder in the user study. We
ensured that the study participants did not access Web pages from Wikipedia
via Google. Further restrictions were not made so that participants could use
their own preferred strategies to solve the tasks in each application.31

28 We selected Google and Wikipedia for the following reasons: 1) These two applica-
tions were mentioned by most people in an informal poll when we asked for Web
applications they would use for relationship discovery, 2) They are very popular rep-
resentatives for the application classes search engine and Wiki, 3) We expected a
high familiarity with these applications among the study participants lowering the
need for explanations or trainings.

29 We restricted relationship finding to only two elements in the user study since it is
highly challenging to find relationships between more than two elements via Google
and Wikipedia. Even more challenging is the selection of examples that work in all
three applications if more than two given elements are considered.

30 For instance, we ensured in the case of Google that relationships were preferable
displayed on the first, at least on the second result page.

31 The high diversity of the datasets accessed by the applications (DBpedia, Wikipedia,
Google-indexed WWW) could not be avoided but was also not considered as a



4.2 Procedure

Twelve participants, mainly students, took part in the study. Their familiar-
ity with Google and Wikipedia was high32 (Google: M=9, SD=1.2; Wikipedia:
M=8.8, SD=1.0)33.

The study began with a short introduction and explanation of the three tasks.
Subsequently, the three applications (Google, Wikipedia, and RelFinder) were
presented in systematically varying order. The tasks had to be accomplished
with all three applications.34 For each task, the participants had to rate their
satisfaction with the found relationships.35 In addition, after the presentation of
all three tasks, they had to rate how much the respective application helped in
the discovery of relationships.36

4.3 Results

Fig. 3 shows the average number of tasks that were solved with each applica-
tion (upper left diagram, separately listed for each task type). In this direct
comparison, the RelFinder provides generally the best support. A similar result
is shown by the satisfaction values that were measured after each task’s solu-
tion (Fig. 3, lower left diagram). These results indicate that the ORVI process
as implemented in the RelFinder is generally preferred to relationship discov-
ery as it is currently possible in common Web applications such as Google and
Wikipedia. This is also reflected by the answers on the statement: “If I would
need to search for relationships between two elements, I would use the following
tool”. Eight participants decided for the RelFinder and only two for Google and
two for Wikipedia.37

The diagram on the right of Fig. 3 shows the ratings of the participants
on the dimensions efficiency, satisfaction, and control that we collected directly
after the presentation of each application via the twelve Likert-scaled items. The
relationship discovery support as implemented in the RelFinder reached once
again the highest satisfaction values on average. The ratings on the dimension
control were nearly the same for all three applications. This result indicates

problem since the pre-tests ensured that all tasks could principally be solved with
all applications and within the given time frame of three minutes.

32 Familiarity was measured on a scale of 1 to 10 (with 1 = “unfamiliar” and 10 =
“very familiar”).

33 M = mean; SD = standard deviation
34 Since the given elements in the tasks were presented in the same order each time,

they also varied systematically across the applications.
35 Satisfaction was measured on a scale of 1 to 10 (with 1 = “not satisfied at all” and

10 = “totally satisfied”).
36 Support was measured according to twelve pre-defined items on a five-point Likert

scale (with 1 = “not agree” and 5 = “fully agree”). The items were then mapped to
aggregated measures on the dimensions efficiency, satisfaction, and control.

37 The decision for Google and Wikipedia was mainly motivated with a higher famil-
iarity with these applications.



100% ControlRelFinder%

80%

60%

40% s
 s

o
lv

e
d

p
e

rc
e

n
t)

4

5

RelFinder

Wikipedia

Google

40%

20%

0

T
a

s
k
s

(i
n
 p

h
 p
s

1

2

3

2

4

6

s
fa

c
ti
o

n
 w

it
h

 r
e

la
ti
o

n
s
h

i
0
-p

o
in

t-
s
c
a
le

)

0

1

8

10
Task 1 Task 2 Task 3

S
a

ti
s

fo
u

n
d

(1
0

Efficiency Satisfaction

Fig. 3. Left: Average number of tasks solved (in percent) and average value of satis-
faction with the task solutions (on scale of 1 to 10) for each application and task type;
Right: User ratings for the three applications on the dimensions control, satisfaction,
and efficiency (measured by 12 items on a five-point Likert-scale).

a successful interaction design of the RelFinder since familiarity with Google
and Wikipedia was much higher among the participants. The satisfaction values
support this interpretation and the results given above. The largest differences
shows the efficiency dimension: The RelFinder has foremost been considered as
much more efficient than the other two applications.

5 Discussion

Overall, the RelFinder performed very well in the user study. This is not surpris-
ing since it has been developed exactly for the kind of tasks that were investigated
in the study. Nevertheless, the results demonstrate the high applicability of this
approach and the general potentials and benefits it offers for relationship dis-
covery compared to common Web applications. Interestingly, the RelFinder was
considered as very efficient, although the manual disambiguation and relation-
ship search took longer time than entering and searching for terms in Google
and Wikipedia. It seems as if this additional effort pays off and is ultimately
appreciated by the users when they recognize its benefit. These results argue
for the generally high suitability of the Semantic Web to support relationship
discovery. They also argue for viewing relationship discovery as a highly user-
oriented process that consists of several interactive steps, as proposed by our
approach.

5.1 Related Work

This view on relationship discovery as an iterative and highly interactive process
is a main difference to related work which mainly investigates querying strate-
gies and algorithms for relationship search in the Semantic Web. Considerable



research in this area has been conducted in the SemDis project38. A specific
focus of this project was on the development of ranking measures for found rela-
tionships. The authors distinguish between semantic and statistical metrics and
define a SemRank value that combines these metrics in different configurations
[2]. In contrast to our topological and semantic classification dimensions, their
ranking criteria do not include aggregations. However, our dimensions showed
to provide very powerful assistance in the interactive exploration of the found
relationships. This limitation holds also for the “DBpedia Relationship finder”
[9] that has largely inspired our work and provided the basic algorithms for rela-
tionship search. The found relationships are simply listed as text strings in this
tool but are neither aggregated nor extended by interactive functionalities.

Another related approach is SPARQLeR [7] that defines additional language
constructs for SPARQL designed for relationship search. Unfortunately, SPAR-
QLeR is not supported by common endpoints and could therefore not be used in
the RelFinder. Further related work can be found in the research areas of ontol-
ogy matching, learning, and enrichment. However, these approaches are rather
interested in relationships on the conceptual level [11]. More distantly related
research on the identification of semantic relationships in other data sources
(e.g., text documents [10]) provides only few valuable input to the topic of in-
teractive relationship discovery via the Semantic Web.39 Though information
seeking processes are generally a topic in related work [8], to the best of our
knowledge it exists no approach for relationship discovery via the Semantic Web
that covers the whole process, from object mapping to interactive exploration.
Our approach aims to close this gap and, with the RelFinder, proposes an imple-
mentation that applies interactive relationship discovery via the Semantic Web
to real-world-contexts.

5.2 Conclusion and Future Work

The most notable difference of our approach compared to related work is the em-
phasis on the interactive aspect of relationship discovery. In this understanding,
“real” discovery is only possible with a human involved, since only the user can
ultimately decide if a found relationship is relevant in a certain situation or not.
However, this notion of “discovery” does explicitly not exclude any pre-selection
and ranking of relationships as long as these are meant to support the interaction
and do not restrict search results. An improved pre-selection of search results
that are initially presented in the detailed view is therefore a main topic for fu-
ture work. This will require some kind of context- or situation-awareness in order
to adapt the pre-selection criteria to the users’ information needs. Future work
includes also the application of the RelFinder to use cases of different domains
(e.g., health care, eLearning, etc.) and on datasets of different size (e.g., LODD40,
Semantic Wikis datasets, etc.) in order to get an improved understanding of the
application potentials, benefits, and scalability of our approach.

38 http://lsdis.cs.uga.edu/projects/semdis/
39 Refer to [12] for an overview on different types of semantic relationships in the Web.
40 http://esw.w3.org/topic/HCLSIG/LODD



Acknowledgments

We are grateful to Sebastian Hellmann and Jens Lehmann for the fruitful discus-
sions and their contributions to the RelFinder implementation. We also thank
Jürgen Ziegler for his valuable input and Lena Tetzlaff for assisting us with the
user study. Last but not least, we thank Jörg Schüppel, Jens Lehmann, and Sören
Auer for the development of the “DBpedia Relationship Finder” [9] which has
largely inspired this work and provided basic algorithms for relationship search.

References

1. Boanerges Aleman-Meza, Christian Halaschek-Wiener, I. Budak Arpinar, Cartic
Ramakrishnan, and Amit P. Sheth. Ranking complex relationships on the semantic
web. IEEE Internet Computing, 9(3):37–44, 2005.

2. Kemafor Anyanwu, Angela Maduko, and Amit P. Sheth. SemRank: ranking com-
plex relationship search results on the semantic web. In Proc. of the 14th Interna-
tional World Wide Web Conference (WWW ’05), pages 117–127, 2005.

3. Tim Berners-Lee. Giant Global Graph [last access: 2009/12/20]. http://dig.

csail.mit.edu/breadcrumbs/node/215, 2007.
4. Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. DBpedia – a crystallization point for
the web of data. Web Semantics: Science, Services and Agents on the World Wide
Web, 7(3):154–165, 2009.

5. Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129–1164, 1991.

6. Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo
Stegemann. Relfinder: Revealing relationships in RDF knowledge bases. In Proc.
of the 4th International Conference on Semantic and Digital Media Technologies
(SAMT’09), volume 5887 of LNCS, pages 182–187. Springer, 2009.

7. Krys Kochut and Maciej Janik. SPARQLeR: Extended SPARQL for semantic
association discovery. In Proc. of the 4th European Semantic Web Conference
(ESWC ’07), volume 4519 of LNCS, pages 145–159. Springer, 2007.

8. Carol Collier Kuhlthau. Seeking meaning: a process approach to library and infor-
mation services. Libraries Unlimited, 1993.

9. Jens Lehmann, Jörg Schüppel, and Sören Auer. Discovering unknown connections –
the DBpedia relationship finder. In Proc. of the 1st Conference on Social Semantic
Web (CSSW’07), 2007.

10. Cartic Ramakrishnan, Krys Kochut, and Amit P. Sheth. A framework for schema-
driven relationship discovery from unstructured text. In Proc. of the 5th Interna-
tional Semantic Web Conference (ISWC ’06), pages 583–596, 2006.

11. Marta Sabou, Mathieu d’Aquin, and Enrico Motta. Relation discovery from the
semantic web. In Proceedings of the Poster and Demonstration Session at the
7th International Semantic Web Conference (ISWC ’08), volume 408 of CEUR.
CEUR-WS.org, 2008.

12. Amit P. Sheth and Cartic Ramakrishnan. Relationship web: Blazing semantic
trails between web resources. IEEE Internet Computing, 11(4):77–81, 2007.


