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This supplementary material provides the derivation of both the transversely isotropic rheology
(Supplementary A) and the spectral grain rotation model (Supplementary B) used in the main article.
The notation follows that introduced in the main article.

SUPPLEMENTARY A:
TRANSVERSELY ISOTROPIC RHEOLOGY
Starting from the flow rule of steady-state creep theory

ε̇ =
∂W(σ)
∂σ

, (A1)

where ε̇ = (∇u + (∇u)T)/2 is the strain-rate tensor and
W(σ) is the creep potential, constitutive equations may be
constructed by demanding that W is unchanged under relevant
coordinate (symmetry) transformations, Q, in the sense that
W(Q · σ ·QT) = W(σ). Objectivity implies that W must depend
on the stress-tensor invariants of the symmetry transformations.
In the case of transverse isotropy, five unique stress-tensor
invariants exist under coordinate transformations that leave the
symmetry axis m unchanged (Naumenko and Altenbach, 2007):

I1 = tr(σ), I2 = tr(σ2), I3 = tr(σ3),

I4 = σ · ·mm, I5 = σ2
· ·mm.

Consider expressing the dependence of W on I1, · · · , I5 in
terms of an effective stress, σE(I1, · · · , I5), such that W(σ) =

W(σE(I1, · · · , I5)). If one posits that the relationship between
the effective stress and effective strain rate is a power law
corresponding to a Norton–Bailey creep potential, implying
∂W(σE)/∂σE = Aσn

E = ε̇E, then (A1) becomes

ε̇ =
∂W(σE)
∂σE

∂σE

∂σ
=

A
2
σn−1

E

∂σ2
E

∂σ
, (A2)

where the chain rule was used twice.
In the general-most case, the functional form of σE(I1, · · · , I5)

is taken to be a linear combination of products of I1, · · · , I5
resulting in first-, second- and third-order dependence on σ,
with square and cubic roots taken of the second- and third-
order terms, respectively (Naumenko and Altenbach, 2007).
Disregarding nonclassical effects (no third-order dependencies
on σ) and requiring conformity with Glen–Nye’s law in the
isotropic limit (no first-order dependencies on σ), the effective
stress becomes

σ2
E = λ1I2

1 + λ2I2 + λ3I1I4 + λ4I2
4 + λ5I5, (A3)

where λ1, · · · , λ5 are free material parameters.

By imposing incompressibility, a reduction of the number
of free material parameters is possible. Let us adopt the usual
decomposition

σ = τ − pI, (A4)

where τ is the deviatoric stress, p = − tr(σ)/d is the pressure,
and d = dim(u) is the dimensionality of the problem.

Applying the stress decomposition to (A2) requires in turn
applying it to σn−1

E and ∂σ2
E

/
∂σ . In the case of σ2

E, one finds

σ2
E = F(p) + λ2I2(τ) + λ4I2

4 (τ) + λ5I5(τ), (A5)

where terms depending on p have been grouped into F(p):

F(p) = − (dλ3 + 2λ4 + 2λ5) pI4(τ)

+
(
d2λ1 + dλ2 + dλ3 + λ4 + λ5

)
p2. (A6)

In the case of ∂σ2
E

/
∂σ , the derivatives of the invariants must be

calculated, yielding

∂I1

∂σ
= I,

∂I2
1

∂σ
= 2I1I,

∂I2

∂σ
= 2σ,

∂I4

∂σ
= mm,

∂I2
4

∂σ
= 2I4mm,

∂I5

∂σ
= {σ,mm},

where the anti-commutator is defined as

{σ,mm} = σ ·mm + mm · σ. (A7)

It follows using (A4) that

∂σ2
E

∂σ
= G(p) + 2λ2τ + λ3I4(τ)I

+ 2λ4I4(τ)mm + λ5{τ,mm}, (A8)

where terms depending on p have been grouped into G(p):

G(p) = − (dλ3 + 2λ4 + 2λ5) pmm
− (2dλ1 + 2λ2 + λ3) pI. (A9)

Incompressibility implies no dependence on the pressure terms
F(p) and G(p), and each parenthesis must therefore vanish in
(A6) and (A9). Solving the resulting set of equations, it follows
that λ3 is constrained by λ3 = −2(λ4 + λ5)/d, and the rheology
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upon combining (A5) and (A8) with (A2), becomes (Johnson,
1977)

ε̇ = η−1
(
λ2τ − λ4 + λ5

d
I4I + λ4I4mm +

λ5

2
{τ,mm}

)
, (A10)

η−1 = A
(
λ2I2 + λ4I2

4 + λ5I5
)(n−1)/2

, (A11)

where Ii = Ii(τ) is implied.

Interpretation of material parameters
The rheology (A10)–(A11) may be posed in form that is more
relevant to glaciology by expressing λ2, λ4 and λ5 in terms
of an isotropic rate factor (A) and enhancement factors of the
longitudinal and shear components of ε̇ w.r.t. m. If a factor of
λ(n+1)/2

2 is absorbed into A, calculating the longitudinal and shear
components w.r.t. m, gives

ε̇mm = η−1 (1 + (1 − 1/d) (λ4/λ2 + λ5/λ2)) τmm, (A12)

ε̇mt = η−1 (1 + (λ5/λ2)/2) τmt, (A13)

where t ⊥ m, which suggests defining the two enhancement
factors as

Emm = 1 + (1 − 1/d) (λ4/λ2 + λ5/λ2) , (A14)

Emt = 1 + (λ5/λ2)/2. (A15)

Expressing λ4/λ2 and λ5/λ2 in terms of Emm and Emt, the
rheology (A10)–(A11) takes the form

ε̇ = η−1
(
τ − Emm − 1

d − 1
I4I

+

[
d (Emm + 1) − 2

d − 1
− 2Emt

]
I4mm

+ (Emt − 1) {τ,mm}
)
, (A16)

η−1 = A
(
I2 +

[
d (Emm + 1) − 2

d − 1
− 2Emt

]
I2
4

+ 2 (Emt − 1) I5

)(n−1)/2

. (A17)

In the main text, we consider the three-dimensional problem
(d = 3) with a vertical symmetry axis (m = ẑ). For this special
case, (A16) becomes

ε̇
(
m = ẑ

)
=

η−1

τxx + 1
2 (1 − Emm) τzz τxy Emtτxz

τxy τyy + 1
2 (1 − Emm) τzz Emtτyz

Emtτxz Emtτyz Emmτzz

 .
(A18)

Notice that shear strain rates are not enhanced in the plane of
isotropy.

Inverse rheology
Posing the rheology (A10)–(A11) in a closed inverse form,
τ(ε̇), is algebraically tedious compared to inverting the Glen–
Nye isotropic law. While inverting the isotropic law amounts to
solving one equation with one unknown, inverting (A10)–(A11)
requires solving an anticommutator matrix equation followed by
three equations with three unknowns due to the existence of three
invariants.

Starting out by collecting the terms in (A10) that depend
tensorially on τ, yields

λ2τ +
λ5

2
{τ,mm} = η(τ)ε̇ − λ4I4(τ)mm +

λ4 + λ5

d
I4(τ)I,

which is an anticommutator matrix equation with respect to τ. Its
solution requires vectorizing each term by the stacking columns
according to

V(Xi j) = (X11, X21, X31, X12, · · · , X33) ,

giving

Pd2 ·V(τ) = η(τ)V(ε̇) − λ4I4(τ)V(mm)

+
λ4 + λ5

d
I4(τ)V(I), (A19)

where

Pd2 = λ2Id2 +
λ5

2
(mm ⊗ Id + Id ⊗mm)

is a d2×d2 matrix, Id is the d×d identity, and ⊗ is the generalized
outer product (Kronecker product). Applying the inverse P−1

d2 to
an arbitrary vectorized symmetric matrix,V(X), gives

P−1
d2 ·V(X) = V(X)

+
λ5

λ5 + 2

(
λ5

λ5 + 1
I4(X)V(mm) −V({X,mm})

)
. (A20)

Applying the inverse P−1
d2 to both sides of (A19) using (A20) and

subsequently reverting the vectorization gives

τ = η(τ)
(
ε̇ +

λ5

λ5 + 2

(
λ5

λ5 + 1
I4(ε̇)mm − {ε̇,mm}

))
− λ5

λ5 + 1

(
λ4

λ5
+
λ4 + λ5

d

)
I4(τ)mm +

λ4 + λ5

d
I4(τ)I. (A21)

The rheology (A21) is, however, not in a closed form due to the
right-hand side dependencies on τ, which requires expressing the
three unknowns I2(τ), I4(τ), and I5(τ) in terms of I2(ε̇), I4(ε̇), and
I5(ε̇). By invoking the definition I4(ε̇) = ε̇ · ·mm, and requiring
that the rate of energy dissipation (both total and the contribution
due to deformation along m) is identical in both the forward and
inverse rheology, the unknowns may be determined by solving
(not expanded for brevity)

I4(ε̇) = ε̇(τ) · ·mm,
τ(ε̇) · · ε̇ = τ · · ε̇(τ),

(τ(ε̇) · ε̇) · ·mm = (τ · ε̇(τ)) · ·mm,

where τ(ε̇) is given by (A21) and ε̇(τ) is given by (A10). Upon
writing the material parameters in terms of the enhancement
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factors (A14)–(A15), the inverse rheology finally becomes

τ = η

(
ε̇ − E−1

mm − 1
d − 1

I4I

+

d
(
E−1

mm + 1
)
− 2

d − 1
− 2E−1

mt

 I4mm

+
(
E−1

mt − 1
)
{ε̇,mm}

)
, (A22)

η = A−1/n
(
I2 +

d
(
E−1

mm + 1
)
− 2

d − 1
− 2E−1

mt

 I2
4

+ 2
(
E−1

mt − 1
)

I5

)(1−n)/2n

, (A23)

where Ii = Ii(ε̇) is implied.

SUPPLEMENTARY B:
SPECTRAL GRAIN ROTATION
Vector identities allow the continuous grain rotation model,
ṅ(θ, φ) = −∇ · (n(θ, φ)ċ(θ, φ)), to be written as

ṅ(θ, φ) = −n(θ, φ)∇ · ċ(θ, φ) − ċ(θ, φ) · ∇n(θ, φ), (B1)

where the gradient and divergence operators act on S 2. In
spherical coordinates, the identity

ċ(θ, φ) = θ̇θ̂ + φ̇ sin(θ)φ̂ (B2)

applies, where

r̂(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ),

θ̂(θ, φ) = (cos θ cos φ, cos θ sin φ,− sin θ),

φ̂(θ, φ) = (− sin φ, cos φ, 0).

Inserting (B2) into (B1), yields

ṅ(θ, φ) = −Rn(θ, φ), (B3)

where R is the linear operator

R = θ̇ cot(θ) +
∂θ̇

∂θ
+
∂φ̇

∂φ
+ θ̇

∂

∂θ
+ φ̇

∂

∂φ
. (B4)

If n(θ, φ) is expanded in terms of spherical harmonics, it is
convenient to adopt the bra-ket notation by writing the fabric
state in terms of the state vector (n = n(θ, φ) and Ym

l = Ym
l (θ, φ)

assumed implicit)

|n〉 =

∞∑
l=0

l∑
m=−l

nm
l |Ym

l 〉 , (B5)

and hence

|ṅ〉 = −R |n〉 . (B6)

The rate-of-change of the expansion coefficients, ṅm
l , then follow

from calculating the overlap integral

ṅm
l = 〈Ym

l |ṅ〉 =

∞∑
l′=0

l′∑
m=−l′

〈Ym
l |R|Ym′

l′ 〉 nm′
l′ . (B7)

Determining the matrix elements 〈Ym
l |R|Ym′

l′ 〉 requires specifying
the angular velocities θ̇ and φ̇ in (B4). Equating the discrete grain

rotation model, ċ = ω · c − (ε̇ · c − cc · ε̇ · c), with (B2), and
forming the inner product with θ̂ and φ̂, respectively, gives

θ̇ = θ̂ · ω · c − θ̂ · ε̇ · c, (B8)

φ̇ sin θ = φ̂ · ω · c − φ̂ · ε̇ · c. (B9)

Before inserting (B8)–(B9) into (B4), considerable notational
simplicity may be achieved in the final result by expressing ε̇ and
ω in terms of the expansion coefficients ε̇m

l and ωm
l of the quadric

surfaces ε̇ · · r̂r̂ and ω · · θ̂φ̂, respectively, defined as

ε̇m
l =

∫
S 2
ε̇ · · r̂r̂

(
Ym

l

)∗
dΩ ,

ωm
l =

∫
S 2
ω · · θ̂φ̂

(
Ym

l

)∗
dΩ ,

which evaluate exactly to (i.e. higher wave-number coefficients
vanish)

ε̇0
0 =

2
3
√
π tr(ε̇), ε̇0

2 = −2
3

√
π

5

(
ε̇xx + ε̇yy − 2ε̇zz

)
,

ε̇−1
2 = 2

√
2π
15

(
ε̇xz + iε̇yz

)
, ε̇1

2 = −
(
ε̇−1

2

)∗
,

ε̇−2
2 =

√
2π
15

(
ε̇xx − ε̇yy + 2iε̇xy

)
, ε̇2

2 =
(
ε̇−2

2

)∗
,

and

ω0
1 =

√
4π
3
ωxy, ω−1

1 =

√
2π
3

(
ωyz − iωxz

)
, ω1

1 = −
(
ω−1

1

)∗
.

Given the above quadric expansion coefficients, ε̇ and ω may be
rewritten as (exactly)

ε̇ =
1
4

√
15
2π

×


ε̇−2

2 + ε̇2
2 −

√
2
3 ε̇

0
2 −i

[
ε̇−2

2 − ε̇2
2

]
ε̇−1

2 − ε̇1
2

−ε̇−2
2 − ε̇2

2 −
√

2
3 ε̇

0
2 −i

[
ε̇−1

2 + ε̇1
2

]
sym. 2

√
2
3 ε̇

0
2


(B10)

and

ω =
1
2

√
3

2π


0

√
2ω0

1 i
[
ω−1

1 + ω1
1

]
0 ω−1

1 − ω1
1

anti sym. 0

. (B11)

Inserting (B8)–(B9) with (B10)–(B11) into (B4), it follows
from long but arithmetically straight-forward calculations that

R = Y · (g0 + gzLz + g−L− + g+L+) , (B12)

where

Y =
(
Y0

0 ,Y
−2
2 ,Y−1

2 ,Y0
2 ,Y

1
2 ,Y

2
2

)
,

g0 = 3
(
0, ε̇−2

2 , ε̇−1
2 , ε̇0

2 , ε̇
1
2 , ε̇

2
2

)
,

gz =
(
−i
√

3ω0
1,−ε̇−2

2 , 0, 0, 0, ε̇2
2

)
,

g− =
1
2


√

5
6
ε̇−1

2 −
√

6iω−1
1 , 0, ε̇−2

2 ,

√
2
3
ε̇−1

2 ,

√
3
2
ε̇0

2 , 2ε̇
1
2

 ,
g+ =

1
2


√

5
6
ε̇1

2 +
√

6iω1
1, 2ε̇

−1
2 ,

√
3
2
ε̇0

2 ,

√
2
3
ε̇1

2 , ε̇
2
2 , 0

 .
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The angular momentum operators Lz and L± are defined as

Lz |Ym
l 〉 = m |Ym

l 〉 ,
L± |Ym

l 〉 =
√

(l ∓ m)(l ± m + 1) |Ym±1
l 〉 .

Reaching the above result requires invoking the recurrence
relations (identities)

∂ |Ym
l 〉

∂φ
= iLz |Ym

l 〉 ,

2
∂ |Ym

l 〉
∂θ

= e−iφL+ |Ym
l 〉 − eiφL− |Ym

l 〉 ,
−2 cot(θ)Lz |Ym

l 〉 = e−iφL+ |Ym
l 〉 + eiφL− |Ym

l 〉 .
Notice that because Y depends only on Ym

l of even l,
an initially antipodally symmetric distribution will remain
antipodally symmetric.

Finally, we note that calculating the matrix elements in
(B7) using (B12) involves integrals over triple products of
Ym

l . Such integrals may be evaluated by leveraging the mutual
orthogonality of Ym

l , which requires reducing the triple products
to sums over products between two harmonics using the
contraction rule (expanding the product of any two spherical
harmonics in terms of a spherical harmonic series)

Ym′
l′ Ym′′

l′′ =

√
(2l′ + 1)(2l′′ + 1)

4π

×
∞∑

l=0

l∑
m=−l

(−1)m
√

2l + 1
 l′ l′′ l

m′ m′′ −m

l′ l′′ l
0 0 0

Ym
l ,

(B13)

where the Winger 3 j symbols determine which harmonics are
selected.

Structure tensors
Provided that the c-axis distribution n(θ, φ) is expanded in terms
of spherical harmonics, calculating the corresponding structure
tensors 〈ck〉 is a matter of expressing ck in terms of spherical
harmonics, too (Advani and Tucker, 1987).

Consider an arbitrary c-axis

c = c(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) (B14)

characterized by the two angles θ and φ. Expressing c(θ, φ) in
terms of Ym

l (θ, φ) gives

c =

√
2π
3

(
Y−1

1 − Y1
1 , i

[
Y−1

1 + Y1
1

]
,
√

2Y0
1

)
. (B15)

Calculating the dyad c2 using (B15) results in products between
Ym

1 that may be re-expressed as a sum over spherical harmonics
using the contraction rule (B13):

c2 =

√
4π
3

Y0
0 I +

√
2π
15

×


Y−2

2 + Y2
2 −

√
2
3 Y0

2 i
[
Y−2

2 − Y2
2

]
Y−1

2 − Y1
2

−Y−2
2 − Y2

2 −
√

2
3 Y0

2 i
[
Y−1

2 + Y1
2

]
sym. 2

√
2
3 Y0

2

.
(B16)

100 101 102

l + 1
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10−1

100

S
(l

)

εzz = −0.24
εzz = −0.50
εzz = −0.75
εzz = −0.90
εzz = −0.95
δ(r̂− ẑ)

Fig. B1. Power spectrum of n(θ, φ) as εzz → −1 (unconfined vertical pure
shear).

Calculating c4, in turn, follows by repeating the procedure
w.r.t. the outer product c2c2. For ck, the largest occurring
wavenumber modes are Ym

k . Notice that successive applications
of the contraction rule produces very large tensors for k ≥ 4 that
we used a symbolic solver to determine.

The k-th order structure tensor is defined as

〈ck〉n(θ,φ) =

∫
S 2 ckn(θ, φ) dΩ∫

S 2 n(θ, φ) dΩ
. (B17)

The numerator therefore consists of integrals over products of Ym
l

that are easily evaluated by noting their mutual orthogonality,∫
S 2 Ym

l (Ym′
l′ )∗ dΩ = δll′δmm′ , and (Ym

l )∗ = (−1)mY−m
l . The

denominator is simply n0
0

√
4π. In this way, the entries of 〈ck〉

are linear combinations of nm
l for l ≤ k.

Regularization
As n(θ, φ) evolves and becomes anisotropic, the coefficients nm

l
associated with high wavenumber modes (large l and m, and thus
small-scale structure) must increase in magnitude relative to the
low wavenumber coefficients (small l and m). If the series (B5)
is truncated at l = L, then l > L modes cannot evolve, and
the truncated solution will reach an unphysical quasi-steady state
(not shown). To prevent this, regularization must be introduced.
Applying Laplacian diffusion to the expansion,

ṅ(θ, φ) = ν∇2n(θ, φ), (B18)

is a useful approach that conveniently allows the growth of high
wavenumber modes to be disproportionately damped depending
on a diffusion coefficient, ν. The associated rate-of-change of nm

l
is

ṅm
l = 〈Ym

l |ṅ〉 = −νl(l + 1)nm
l . (B19)

The value of ν must be adjusted depending on L: if ν is too
large then the high wavenumber coefficients do not evolve and
hence small-scale structure can not be represented, while if ν too
small the solution eventually evolves in the undesirable manner
described above. For the simulations presented in the main text,
L = 40 and ν = 0.5 × 10−2 were used.

As the fabric strengthens due to unconfined vertical pure shear
(εzz → −1), Fig. B1 shows the corresponding power spectrum of
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n(θ, φ), defined as

S (l) =
1

2l + 1

l∑
m=−l

∣∣∣nm
l

∣∣∣2. (B20)

With increasing fabric strength the high wavenumber compo-
nents (large l) become non-negligible, but with increasing l
these components are also disproportionally dampened by the
regularization. As a reference, the power spectrum of n(θ, φ) =

δ(r̂ − m) is plotted too (black dashed line), which is the ideal
limit of the unregularized and untruncated solution as εzz → −1.
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