
CoPhi - Mining C/C++ Packages for Conan
Ecosystem Analysis

Vivek Sarkar
University of Washington

Seattle, USA
viveksar@cs.washington.edu

Anemone Kampkötter
Department of Computer Science
Technische Universität Dortmund

Dortmund, Germany
anemone.kampkoetter@tu-dortmund.de

Ben Hermann
Department of Computer Science
Technische Universität Dortmund

Dortmund, Germany
ben.hermann@cs.tu-dortmund.de

Abstract—Large-scale analyses of software ecosystems allow
researchers to identify widespread vulnerabilities, validate de-
pendencies for safe usage, and gain an understanding of the con-
ditions of software package landscapes. In the C/C++ ecosystem
however, there are many challenges facing large-scale analyses,
due to the lack of a standard package manager or build system.
With this work, we aim to explore the Conan ecosystem by
statically analyzing it as a whole and on a large scale. We
provide a static analysis tool set named CoPhi that crawls Conan
packages and analyzes them for specific features to capture
C/C++ ecosystem metrics of interest, and also create corpora
with user-defined properties. In a case study, we demonstrate
the effectiveness of CoPhi by analyzing 620 Conan packages for
four different metrics.

Index Terms—Mining Software Repositories, C/C++, Static
Analysis, Conan Package Manager

I. INTRODUCTION

Software reuse is a common practice in software engineer-
ing that is increasingly administered by sophisticated package
managers. For the C/C++ ecosystem, Conan [1] has become
one of the most popular open-source repositories among
application-level package managers. While it is recommended
to use unifying package management tools, these are still
not yet widely used [2]. Package managers enable struc-
tured dependency management and thus facilitate the reuse
of software and the analysis of third-party libraries (TPLs)
or dependencies, especially on a large scale. The lack of a
standardized package manager for the entire software lifecycle,
which also includes the TPL dependencies, is associated with
a high level of manual effort and facilitates the infiltration of
security vulnerabilities through external and possibly incon-
sistent libraries.

Therefore, with the reuse of software and the increasing use
of open-source libraries, it becomes more and more relevant
to validate the quality of these third-party components. Many
standalone tools have been developed for the C/C++ ecosystem
with the goal of vulnerability identification to address this
issue, but such external tools have their limitations and can
be cumbersome to use [3], [4]. To advance entire ecosystem
analysis, Buchkova et al. [5] build a special dataset, for which
they mine metadata from package managers including Conan.
With this work, they can acquire metadata-related metrics by
collecting packages, versions, and dependencies. Such mining

of entire ecosystems facilitates the creation of datasets required
for large-scale static analyses.

In our work, we propose a static code analysis of unified
TPLs in Conan to explore the C/C++ ecosystem in an auto-
mated way and on a large scale. We build a static analysis
tool set called CoPhi that crawls all Conan packages from
Conan’s public repository ConanCenter and collects features
of the binaries provided by each package to capture specific
metrics. The crawled binaries are sequentially analyzed using
the PhASAR C/C++ analysis framework [6], which is capable
of solving sophisticated data-flow problems as well as a
plethora of other static analysis objectives. In a case study,
we perform extensible analyses on 620 Conan packages. We
capture the following metrics: the number of binaries in a
package that are executables as opposed to libraries, the call-
graph sizes of each binary in a package, the LLVM instruction
numbers contained in each package, and the inheritance depths
of the Conan packages under analysis.

CoPhi allows for a targeted search for software artifacts that
can further facilitate the execution of experiments and analyses
on a large scale. It enables to identify packages containing
specific software items and use them to generate special-
purpose benchmarks, inspired by the work of Reif et al. [7]
for the Java ecosystem. In particular, research and evaluation
of (new) C/C++ analyses with PhASAR can be carried out
efficiently on a large scale. To our knowledge, there has been
no such code-based Conan ecosystem analysis to date.

Our work makes the following contributions:
• We develop a metrics and static analysis pipeline for

C/C++-based software artifacts mined from Conan pack-
ages using PhASAR. This allows us to automatically
analyze a wide range of C/C++ packages.

• To exemplify our tool, we conduct a case study in
which we examine four different metrics in the C/C++
ecosystem and show that CoPhi is effective and flexible
in analyzing queries of interest.

• We offer an easy and built-in solution to perform large-
scale studies on representative C/C++ software packages
with a variety of static analysis options.

II. COPHI ARCHITECTURE

CoPhi consists of three modularized components, which are

https://orcid.org/0009-0000-4120-8973
https://orcid.org/0000-0003-4286-714X
https://orcid.org/0000-0001-9848-2017


containerized for cross-platform usage. The first is the scraper,
which traverses ConanCenter and extracts a set of packages.
Each package is made up of a set of LLVM Modules as well
as additional metadata provided by Conan. The second tool
is the extractor, which runs a set of queries on the packages
using the static analysis framework PhASAR. This creates a
map from packages to sets of features on those packages.
The third tool is the filterer, which takes the feature map
constructed by the extractor, and given a set of desired features,
outputs the packages matching those features. We describe
these components with more detail in the next three sections.

A. ConanCenter Scraper

ConanCenter [8] is the main public repository on which
Conan projects are hosted, making it an ideal target from
which to create large corpora. Conan has a concept of recipes,
which are build scripts for Conan packages. When built, these
packages contain one or more binaries (both executables and
libraries), as well as some metadata about the built package
itself. The Conan Center Index [9] contains all the recipes
for the packages hosted on ConanCenter. Our scraper has a
copy of this repository, which it uses to build the packages.
We take as input the number of packages to scrape, and then
choose that many packages randomly from the repository. We
then modify the compilation of packages in two ways to make
the results usable by PhASAR. Firstly, as PhASAR works on
LLVM bitcode Modules, and not native binaries or C/C++
source code, we need to produce LLVM Modules during the
build process. To do this, we utilize gllvm [10], which is a
wrapper around clang that saves the LLVM bitcode produced
during build time, and from them, constructs the LLVM bit-
code module for the corresponding binary. Secondly, we build
all the binaries of a package in debug mode using a Conan
option, as this provides PhASAR with more information on
the original source code. In total then, the information that
we store for each package consists of the LLVM Modules
corresponding to each of its binaries, along with some package
metadata we additionally scrape.

B. Feature Extractor

The extractor receives as input a set of packages, and
outputs a map from packages to sets of features characterizing
them. These features are produced by static analyses, a set of
which is also given as input to the extractor, along with the
order in which to run the given queries on a package.

1) Queries and Features: Queries are static analyses, which
given a package, use PhASAR to analyze it and then output a
set of features attached to that package. Queries can derive
one or more unique features, and assign zero or more of
those features to a specific package when analyzing it. Queries
are easily extendable, only requiring one to extend a single
interface, and implement a single method, which returns the
set of features. Listing 1 exemplifies the implementation of a
query that computes the number of instructions for a given
package.

bool NumInstructionsQuery::runOn(
Package const * const pkg,
Query::Result * const res,
const shared_ptr<atomic_bool> &terminate) const
{
const FeatureID fid(
*static_cast<Query const *>(this),
Type::UNIT, Attribute::Type::U_INT,
FeatureData::Type::BINMAP);
BinAttrMap num_instrs_map(Attribute::Type::U_INT

);
for (const auto &bin : pkg->bins()) {

if (*terminate)
return false;

size_t n_instrs = 0;
for (const auto &F : bin->getModuleRef())

for (const auto &BB : F)
n_instrs += distance(BB.begin(),BB.end());

num_instrs_map.insert(
bin->getID(),
Attribute(n_instrs));

}
res->emplace(fid, FeatureData(num_instrs_map));
return true;

}

Listing 1: Example of a query implementation.

A feature itself is uniquely identified by its name and which
query produced it. In addition to representing the existence
of some property, features can also carry data inside of
themselves. Currently, these data can be chosen from a handful
of primitive types. However, the user can choose, instead of
storing data on the package as a whole, to store said data
instead on the individual binaries. This, combined with the fact
that queries can derive multiple features, enables queries to be
very flexible in how they represent the results of their static
analysis. We provide an example of a query and the features it
derives in Figure 1. Note that different features derived from
the same query can hold different data (or none at all).

LongestInheritanceChainQuery

cpp notcpp

Map from Binaries to Length of LIC

Features

Query

Feature
Data

Fig. 1: Example of a query, the features it derives, and the
data that those features hold.

2) Timeouts: Due to memory constraints, we also introduce
a way to time out on packages which take too long to be
analyzed or which have too many binaries. As Conan packages
can contain any number of binaries, reifying a single package
could potentially be very costly, which is why we allow the



user to set a limit on the number of binaries a package may
have. We also allow the user to set a time limit for running all
given queries on a single package, in order to abort potentially
intractable analyses on a given hardware platform. If a package
exceeds the maximum number of binaries, it is skipped over.
If it exceeds the time limit for evaluation, the analysis is
suspended.

C. Filterer

The filterer, the final tool, takes in the feature map created
by the extractor along with a list of filters and produces a
smaller feature map consisting of the packages which pass all
the filters. Filters are, firstly, identified by the feature which
they look for. Secondly and optionally for features with data,
the filter can be accompanied by an additional restriction on
the data the feature carries. For example, if the feature carries
a boolean or a string along with it, the user can specify the
value to which it should be equal, and for integers or doubles,
the user can specify a range within which the value should
fall. For features which carry data on each of their binaries,
it can be further specified whether all binaries have to pass
the additional restriction or only one. An example of a filter
definition can be found in the following Listing 2.

{
"feature_id": {

"name": "LongestInheritanceChainQuery",
"type": "cpp",
"attr_type": "uint",
"data_type": "binmap"

},
"use_range": true,
"filter_type": "exists",
"range": {

"attr_type": "uint",
"lower_bound": 2,
"upper_bound": 5

}
}

Listing 2: Example filter that accepts packages with at least
one binary whose longest inheritance chain is in the range [2,
5).

III. TOOL USAGE

CoPhi mines and statically analyzes Conan packages and
enables the creation of corpora of C/C++ packages with
specific desired features. The tool is divided into three Docker
containers: the scraper, the feature extractor, and the filterer,
which make it easy to use. The corresponding images can be
built from the source files in our provided artifact [11]. New
queries can be implemented by extending the Query interface
and registering it accordingly. A detailed installation descrip-
tion and further information including required command-line
parameters can also be found in our artifact. We also provide
the code for the queries used in our case study below and
make the data available for reuse.

IV. CASE STUDY

To test CoPhi we randomly scraped 700 projects from
ConanCenter, from around 1600 projects in total, and ran
four queries on them, each of which is referred to in its own
subsection below. The timeout to evaluate a package was set at
15 minutes and the maximum number of binaries we allowed
in a package was 20. With these settings, the feature extractor
was able to analyze 620 out of the total of 700 packages over a
period of 33 hours. The analyses of the remaining 80 packages
were not successfully completed.

A. Executable vs. Library

This query determines whether each binary in a package
is either an executable or a library, and took an average of
0.0033 seconds to run on one package. We determined whether
a binary was an executable or not by looking for the presence
of a main method in the LLVM Module. The following Figure
2 illustrates the relative amounts of executables vs. libraries
in the packages from ConanCenter. Most packages consist of
one executable file and two libraries.

0 5 10 15 20
executables

0

100

200

300

400

pa
ck

ag
es

0 5 10 15 20
libraries

Fig. 2: Number of executables vs. number of libraries per
package.

B. Instruction Number

This query finds the total number of LLVM instructions
in each binary in a package, and took an average of 0.0358
seconds to run on a package. Figure 3 shows the distribution of
instruction numbers per binary. We can see that most binaries
include a total of between 104 and 5 · 105 instructions.

C. Inheritance Depth

This query measures the lengths of the longest (virtual)
inheritance chains in a package’s binaries. However, as this
metric is only applicable to binaries derived from C++ source
code, and not C, we must first determine whether a package
is written in C++. We do this conservatively, by analyzing



104 105 106

LLVM Instructions

Fig. 3: The distribution of LLVM instructions per binary.

packages’ metadata. Of the 620 packages, we found 287 to
be written in C++. We assigned those packages a feature with
attached data indicating the longest lengths for each binary in
the package. The query took an average of 2.69 seconds to
run on a single package. From the distribution seen in Figure
4, we see that the median chain length is 1. This low number
is most likely due to PhASAR’s restriction of only counting
virtual inheritance.

0 1 2 3 4 5 6 7 8
Longest Inheritance Chain (Depth)

Fig. 4: The distribution of the lengths of the longest inheritance
chains per binary.

D. Call-Graph Size

This query determines the call graph size for each binary
in a package - namely, the number of edges and nodes. It
took an average of 48.38 seconds to run on a single package.
Due to the timeout limit, only 533 out of the 620 were able
to be successfully analyzed. When generating the call graph,
we change the entrypoint functions depending on the type
of binary. For executables, we set the main function as the
entrypoint, while in libraries, we set all functions in the LLVM
Module as entrypoints. Figure 5 illustrates the number of call
edges on the y-axis and the amount of nodes in the call graphs
on the x-axis.

V. LIMITATIONS

The main limitation of the CoPhi tool is its reliance on
Conan, which obviously affects the number of packages able to
be analyzed. Packages not represented, such as system libraries
not present on ConanCenter, simply cannot be included in

0 10000 20000 30000 40000
Nodes in Call Graph

0

1

2

3

4

5

Ed
ge

s i
n 

Ca
ll 

Gr
ap

h

1e6

Fig. 5: Call graph nodes vs. edges per binary.

any corpora. Further, despite the convenience containerization
affords us, it also prevents us from compiling any packages
not compatible with the container environment (e.g., packages
specifically designed for only Windows).

VI. CONCLUSION

In this work, we presented CoPhi, a tool set that mines and
statically analyzes C/C++ packages in the Conan ecosystem.
CoPhi’s scraper crawls Conan packages, which are then ana-
lyzed by the C/C++ analysis framework PhASAR, and finally
filtered to summarize the packages containing the analyzed
metric. Our case study shows that CoPhi is an effective and
flexible tool to conduct Conan ecosystem analysis or to collect
a number of C/C++ packages with specific properties for
corpora creation. CoPhi can easily be extended by custom
queries, allowing others to apply their analyses at large scale.

VII. FUTURE REUSABILITY

Possible future uses for this tool include large-scale em-
pirical studies, for example dependency and vulnerability
analyses. Additionally, the development of new static analyses
could be supported through the creation of corpora used to test
said analyses.

DATA AVAILABILITY

Our artifact [11] contains the data for our case study,
the source code for CoPhi, and some example configuration
and filtering files. The file cophi_instructions.pdf
provides detailed instructions on how to make and run the
CoPhi containers. We additionally provide a sample dataset of
15 packages already scraped.

ACKNOWLEDGEMENTS

Vivek Sarkar worked on the research presented here during
his internship at TU Dortmund in Summer 2024 funded by
the German Academic Exchange Service (DAAD) in the RISE
Germany funding program. The authors would like to thank
the DAAD for enabling the collaboration which made this
project possible.



REFERENCES

[1] “Conan - C/C++ Package Manager,” https://conan.io/, accessed 2024-
11-07.

[2] W. Tang, Z. Xu, C. Liu, J. Wu, S. Yang, Y. Li, P. Luo, and
Y. Liu, “Towards understanding third-party library dependency in
c/c++ ecosystem,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’22. New
York, NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3551349.3560432

[3] S. Li, Y. Wang, C. Dong, S. Yang, H. Li, H. Sun, Z. Lang,
Z. Chen, W. Wang, H. Zhu, and L. Sun, “Libam: An area matching
framework for detecting third-party libraries in binaries,” ACM Trans.
Softw. Eng. Methodol., vol. 33, no. 2, Dec. 2023. [Online]. Available:
https://doi.org/10.1145/3625294

[4] J. Wu, Z. Xu, W. Tang, L. Zhang, Y. Wu, C. Liu, K. Sun, L. Zhao, and
Y. Liu, “Ossfp: Precise and scalable c/c++ third-party library detection
using fingerprinting functions,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023, pp. 270–282.

[5] P. Buchkova, J. H. Hinnerskov, K. Olsen, and R.-H. Pfeiffer, “Dasea:
a dataset for software ecosystem analysis,” in Proceedings of the 19th
International Conference on Mining Software Repositories, ser. MSR
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 388–392. [Online]. Available: https://doi.org/10.1145/3524842.
3528004

[6] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for c/c++,” in Tools and Algorithms
for the Construction and Analysis of Systems, T. Vojnar and L. Zhang,
Eds. Cham: Springer International Publishing, 2019, pp. 393–410.

[7] M. Reif, M. Eichberg, B. Hermann, and M. Mezini, “Hermes:
assessment and creation of effective test corpora,” in Proceedings
of the 6th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis, ser. SOAP 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 43–48. [Online].
Available: https://doi.org/10.1145/3088515.3088523

[8] “The Conan libraries and tools central repository,” https://conan.io/
center, accessed 2024-11-25.

[9] “ConanCenter Index,” https://github.com/conan-io/conan-center-index,
accessed 2024-11-25.

[10] “GLLVM,” https://github.com/SRI-CSL/gllvm, accessed 2024-11-25.
[11] V. Sarkar, A. Kampkötter, and B. Hermann, “CoPhi Artifact,” https:

//doi.org/10.5281/zenodo.14226786, November 2024.

https://conan.io/
https://doi.org/10.1145/3551349.3560432
https://doi.org/10.1145/3625294
https://doi.org/10.1145/3524842.3528004
https://doi.org/10.1145/3524842.3528004
https://doi.org/10.1145/3088515.3088523
https://conan.io/center
https://conan.io/center
https://github.com/conan-io/conan-center-index
https://github.com/SRI-CSL/gllvm
https://doi.org/10.5281/zenodo.14226786
https://doi.org/10.5281/zenodo.14226786

	Introduction
	CoPhi Architecture
	ConanCenter Scraper
	Feature Extractor
	Queries and Features
	Timeouts

	Filterer

	Tool Usage
	Case Study
	Executable vs. Library
	Instruction Number
	Inheritance Depth
	Call-Graph Size

	Limitations
	Conclusion
	Future Reusability
	References

