

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

RESTful Web Services for Service Provisioning in

Next Generation Networks: A Survey

Fatna Belqasmi

*1
, Chunyan Fu

#2
, Roch Glitho

*3

*
Concordia University, Canada

1
fbelqasmi@alumni.concordia.ca

3
glitho@ece.concordia.ca

#
Ericsson Canada, Montreal, Canada

2
chunyan_fu@hotmail.com

Abstract—Next Generation Networks (NGNs), as envisioned by

ITU-T, are packet-based networks, capable of provisioning

consistent and ubiquitous services to end-users, independently of

the network, the access technology and the devices used.

RESTful Web services are now being contemplated as a

technology for service provisioning in NGNs. They are emerging

as an alternative, which may be more adequate than SOAP-

based Web services in some cases. SOAP-based Web services are

modular applications that can be discovered and invoked over a

network. RESTful Web services, on the other hand, are defined

as a network architectural style for distributed hypermedia

systems. This paper presents a survey on RESTful Web services

for service provisioning in NGNs. It introduces the concept of

RESTful Web services and reviews the state-of-the-art of

RESTful-based-service provisioning in NGNs. It also provides an

evaluation of the overall suitability of RESTful Web services for

service provisioning in NGNs, and discusses research directions.

RESTful Web services do show significant potential for service

provisioning in NGNs. However, open issues such as

publication/discovery and mechanisms for the development of

complex session-based services need to be solved before its full

potential can be realized.

Keywords— RESTful Web services, SOAP-based Web services,

Next Generation Networks

I. INTRODUCTION

Next Generation Networks (NGNs), as envisioned by the

International Telecommunication Union (ITU), are packet-

based networks, capable of provisioning consistent and

ubiquitous services to end-users, independently of the network

and the access technology used [1]. The concept of NGNs has

emerged in the mid-2000s’ to provide a long term vision for

telecommunication networks after realizing that the first

generation of packet-based telecommunications networks

deployed in the early-2000s’ did not cater to all the needs

introduced by new applications. [2] provides an overview of

the ITU-T NGN vision and explains how the 3GPP IP

Multimedia System (IMS) is a first step towards this long term

vision. IMS is a key component of the third generation

telecommunication networks that are currently being

deployed. It is also a key component of the emerging fourth

generation telecommunications networks. NGNs with varying

features have now been deployed by most telecommunications

network operators.

Figure 1 depicts a generic NGN that embeds the ITU-T

vision. It comprises a transport layer and a service layer.

NGNs decouple the service and transport layers as shown in

the figure. Furthermore, they provide support for generalized

mobility, which enables end-users to communicate and access

services, independently of their location, and the access

technology and devices they use. In addition, NGNs endow

end-users with unrestricted access to different service

providers, allowing them to access transport and services

provided by different business entities. NGNs support as well

the provisioning of a wide range of services, including voice

(e.g. telephone service), data (e.g. Web-based services), video

(e.g. IP-TV), and combined services (e.g. video telephony).

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

Figure 1: Generic NGN architecture

Much work has already been done on the use of the SOAP-

based Web services for service provisioning in

telecommunication networks in general, including NGNs [3].

The use of RESTful Web services is now being contemplated.

The key reason is that RESTful Web services rely on Web

technologies (e.g. HTTP, HTML) that are widely deployed

and could be easily re-used. This can only speed up service

provisioning in NGNs.

SOAP-based Web services provide a standard means for

interoperating between software applications. RESTful Web

services are designed following the Representational State

Transfer (REST) design style. REST, a technology neutral

design style, is defined as a network architectural style for

distributed hypermedia systems. Hypermedia systems enable

the storage and retrieval of information that may include

different media such as text, audio, video, and (hyper)links.

RESTful Web services are being promoted as an

alternative that may be more adequate than SOAP-based Web

services in some cases. Service provisioning remains a big

challenge and RESTful Web services may aid in tackling the

challenge. This is a key motive to evaluate the state-of-the-art

in RESTful–based service provisioning for NGN, and identify

the research directions. It is the goal assigned to this paper.

Section II gives an overview of REST, with conferencing

service as illustration. Section III discusses the state-of-the-art

of RESTful-based service provisioning in NGNs. Section IV

evaluates the overall suitability of RESTful Web services for

the purpose and discusses research directions. We conclude in

section V.

II. REST OVERVIEW

In this section, we first introduce SOAP-based Web

services seeing that they are very often contrasted with

RESTful Web services. The principles of REST are then

presented, followed by the description of a RESTful Web

service for conferencing service used for illustration purpose.

Readers interested in the comparison between SOAP-based

Web services and RESTful Web services can consult [4].

II.1 SOAP-BASED WEB SERVICES IN A NUTSHELL

The SOAP-based Web service architecture [5] defines three

entities: service provider, service registry, and service

requester (Figure 2). The service provider creates a SOAP-

based Web service and publishes the service description in the

service registry. The service requester finds the service by

querying the service registry, retrieves the service description,

and then uses the description to bind to the service

implementation and start interacting with it. The service

registry aims at the on-line discovery of services. However, it

is rarely used today, because most requesters have prior

knowledge of existing services, thanks to off-line business

agreements.

The communications (operations) among the three Web

service entities are based on XML and use the Simple Object

Access Protocol (SOAP). SOAP messages are commonly

exchanged over HTTP, even though other bindings are

possible. The service descriptions are published using the

Web Services Description Language (WSDL). WSDL

provides information on how to use a Web service, including

a description of the service operations and binding

information. The most commonly used service registry for

SOAP-based Web services is the Universal Description,

Discovery and Integration (UDDI) registry. The UDDI

specifications define a set of programming interfaces (APIs)

for both publication and discovery.

Service Requestor

Service Registry

(e.g. UDDI)

Service Provider

WSDL Service

Description

Publish

WSDL

Find

WSDL

Bind

SOAP/HTTP

WSDL Service

Description

Service

WSDL Service

Description

WSDL Service

Description

WSDL Service

Description

WSDL Service

Description

Figure 2: SOAP-based Web services architecture

The operations exposed by a SOAP-based Web service

(e.g. createConference, addParticipant, in the case of a SOAP-

based Web service for conferencing) are defined by the

service provider and each provider can define its own

operations (i.e. an operation’s name, parameters and

behavior). However, SOAP-based Web services can be

standardized as a means to increase interoperability; as with

Parlay-X multimedia conferencing Web service [6]. The list

of exposed operations is then included in the service

description.

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

II.2 REST PRINCIPLES

REST adopts the client-server architecture of the web.

REST does not restrict client-server communication to a

particular protocol, but REST is most commonly used with

HTTP because HTTP is the primary transfer protocol of the

Web. RESTful Web services can be described using the Web

Application Description Language (WADL) [7]. A WADL

file describes the requests that can legitimately be addressed

to a service, including the service’s Uniform Resource

Identifier (URI) and the data the service expects and serves.

REST relies on three main design principles [8]:

addressability, uniform interface, and statelessness. For

addressability, REST models the data-sets to operate on as

resources, and identifies each resource via a URI. A resource

is any form of information that can be named and that is

important enough to be referenced (e.g. a document, a row in

a database, a search result).

REST resources are accessed via a uniform and standard

interface. A uniform interface offers a number of advantages

among which are familiarity (i.e. the set of operations a

RESTful Web service may expose are known) and

interoperability. Statelessness means that each REST request

is self-contained with all the information that the server needs

to fulfill the request. No client-session data is stored on the

server and the server never relies on information from

previous requests to answer a new request. The following

advantages are usually associated with statelessness: easy

application development, good scalability, and easy load

balancing.

REST is not an architecture, but a set of design criteria.

Resource-Oriented Architecture (ROA) is a RESTful

architecture that provides a commonsense set of rules and a

step-by-step procedure for designing RESTful Web services

following these design criteria. The fundamental mindset of

ROA is the concept of resources. Each resource has a name

(i.e. a URI) and a representation, and it may be linked to other

resources via hyperlinks. A resource representation is what the

client receives when it sends a request concerning a resource.

The representation can be defined as any useful information

about the current state of the resource. An example in the case

of conferencing is the list of participants.

REST (and ROA) supports a wide range of representation

formats, including plain text, HTML, XML and JavaScript

Object Notation (JSON). ROA uses HTTP as the

communication protocol. Therefore, the ROA uniform

interface consists of HTTP operations, the most commonly

used being GET, PUT, POST, and DELETE. We can design a

RESTful Web service using ROA in the following steps. We

first figure out the data set on which the service will operate,

and split it into resources. After that for each resource we

proceed as follows.

• First, we name the resource using a URI.

• Second, we identify the subset of the uniform interface

that is exposed by the resource.

• Third, we design the representation(s) of the resource as

received (in a request) from and sent (in a reply) to the

client.

• Fourth, we consider the typical course of events by

exploring and defining how the new service behaves and

what happens during a successful execution.

For a detailed description of these steps, the reader can

consult [8].

II.3 RESTFUL WEB SERVICE EXAMPLE

The proposed illustrative service provides the same

functionalities as the SOAP-based Web service described in

Parlay-X Multimedia Conference specification [6].

Conferencing is one of the main services in NGNs.

The Parlay-X conferencing service is technology neutral

and allows applications to create and manage a multimedia

conference. The underlying model of the Web service is based

on three entities: conference, participant and media. The

conference is the uniquely-identified context, to which

participants can be added and removed. The participant is any

party that participates in the conference. The media represents

the media stream to support a participant's communication

(e.g. audio, video, chat) and the stream direction (i.e. in, out,

bidirectional).

In this example, ‘conference’, ‘participant’ and ‘media’ are

the data set on which to operate. For sake of simplicity, we

focus on conference and participant. The data-set is then split

into three resources: ‘conference’, ‘list of participants’, and

‘participant’. The first resource represents a specific

conference. The second lists the participants of the

conference, and the last represents individual participants.

The ‘conference’ resource is named with the URI:

http://www.confexample.com/{confId}/, confId being the

unique identifier of the conference, the ‘list of participants’

with: http://www.confexample.com/{confId}/participants/,

and the individual participant with URI:

http://www.confexample.com/{confId}/participants/{participa

ntURI}/, since every participant is identified by his/her URI.

The three resources can be read, created and deleted at

runtime. The first column of Table 1 lists the resources, and

the second lists the subset of the uniform interface that is

exposed by each resource. The last column gives the

representations accepted from the client and those served by

the server for each operation.

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

Figure 3 presents a sample sequence diagram that shows

what should happen during a successful execution of the

service. The client (i.e. Alice) sends a POST request to the

service URI, to request the creation of a new conference. The

server creates a new ‘conference’ resource and sends the

resource URI to the client. When the conference is created and

the necessary resources reserved, the server sends a 200 OK

message. In step 4 of the figure, the client asks for the

conference status, which she will get in the 200 OK response.

In step 6, the client requests the addition of a new participant.

She is first informed that the request is accepted, then she gets

a 200 OK when the participant is actually added to the

conference.

III. THE STATE-OF-THE-ART

REST has been widely used outside of NGNs. Some

examples are read-only Web applications (e.g. static websites

and search engines), Amazon’s Simple Storage Service (S3),

twitter, and most of Yahoo!’s Web services. The use of REST

for service provisioning in NGNs is rather recent and includes

both standardization efforts and work done outside standards

bodies.

III.1 STANDARDIZATION EFFORTS

Figure 3: Sample sequence diagram

Alice Conf App

BobREST Client REST Server

1 : POST(http://www.confexample.com)

2 : 202 Accepted(http://www.confexample.com/conf1@confexample.com)

3 : 200 OK

4 : GET(http://www.confexample.com/conf1@congexample.com)

5 : 200 OK

The server creates the conference

6 : POST(http://www.confexample.com/conf1@confexample.com/participants, bob@ericsson.com)

7 : 202 Accepted

8 : INVITE

9 : OK
10 : ACK

11 : 200 OK

The server adds the participant(s) to the conference

Resource

Exposed subset of the uniform interface Data representation

Operation

HTTP action

Client->Server Server->Client

Conference

Create: establish a

conference
POST: http://confexample.com/

<conference>

 <description> discuss project </description>

 <maxParticipants>10</maxParticipants>
</conference>

http://www.confexample/conf23@example.com

Read: Get

conference status

GET: http://confexample.com/{confId}

None <status>Active</status>

Delete: end a

conference

DELETE: http://confexample.com/{confId}

None None

List of

participants/
Participant

Read: Get list of
participants

GET: http://confexample.com/{confId}/participants

None

<participants>

 <participant>
 <uri>alice@ericsson.com</uri>

 <status>Connected</status>
 </participant>

 ….

</participants>

Create: Add a

participant

POST: http://confexample.com/{confId}/participants

<participant>

 alice@ericsson.com

</participant>

<participant>

 <uri>alice@ericsson.com</uri>

 <link>http://confexample.com/{confId}/

participants/alice@ericsson.com</link>

</participant>

Read: Get a

participant status

GET:

http://confexample.com/{confId}/participants/{participantURI}
None <status>Invited</status>

Delete: remove a

participant

DELETE:

http://confexample.com/{confId}/participants/{participantURI}
None None

Table I: Resource description and data representation

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

Several bodies are attempting to produce standard

specifications for REST-based service provisioning in NGNs.

We review here the Open Mobile Alliance (OMA) and the

IETF efforts.

The OMA is working on a REST binding (ParlayREST) for

Parlay-X Web services. Thus far, the OMA has focused on

relatively simple non-session based services. The

specifications include Short Messaging, Multi Media

Messaging, Payment and Terminal Location Parlay-X Web

Services. They have defined the resources and use HTTP as

their message transfer protocol. As for resource representation

formats, XML and JSON are used for all resources, but other

formats may be used for some specific resources.

The ParlayREST specification for Short Messaging

Service [9] is used in this paper for the purpose of illustration.

It provides support to:

• Send text messages to a terminal and check their delivery

status.

• Check, retrieve and delete the incoming messages.

• Create and delete subscriptions for notifications for

inbound/outbound messages.

Table II summarizes some of the service resources, their

URIs and the operations they accept.

Figure 4 presents a sample scenario for sending and

receiving a message. In the first part of the figure (i.e. SMS

sending), the application sends an ‘SMS sending’ request to

the URI of the ‘outbound SMS message requests resource’,

using the POST operation. The SMS to be sent is included in

the request body. The server creates a new resource and sends

its URI to the application (including the requestId).

In step 3, the application checks the delivery status using a

GET request sent to the URI of the newly created resource. In

the second part of the figure, the receiving application

subscribes to the notifications for inbound messages by

sending a POST request to the URI of the ‘Inbound SMS

message subscription’. The server creates a new ‘Individual

inbound SMS message subscription resource’ and transmits its

URI to the application. The application may use this URI later

to delete or get information about the subscription. When the

server receives a SMS destined to the application, it notifies

the application whose URI is specified in the subscription

request, using a POST request.

The IETF is working on REST-based approach for the

Centralized Conferencing Manipulation Protocol (CCMP).

CCMP is a stateless, XML-based, client-server protocol for

conference control [10]. The CCMP specification includes a

general (i.e. non-REST specific) discussion of the protocol,

and a discussion of a RESTful approach to the protocol.

The CCMP allows users to create, manipulate (e.g.

add/remove participants, add/remove media streams) and

delete conference objects. A conference object is a logical

representation of a conference instance, representing the

current state and capabilities of a conference. The RESTful

approach for the CCMP uses HTTP as the transfer protocol

for CCMP messages, models the conference objects as

resources identified by URIs, and uses XML for data

representation.

III.2 WORK DONE OUTSIDE THE STANDARDS BODIES

Examples of work done outside the standardization bodies

are presented in [11] and [12].

Figure 4: Sample scenario for SMS handling

SMS

sending

Inbound

SMS

notification

To another

application

specified as

notifyURL

Application Server

Create resource and allocate requestId

Short wait

1 : POST outbound SMS request

2 : Response with created resource including requestId

Create resource and allocate subscriptionId

3 : GET delivery status of request using requestId

4 : Response with delivery status

5 : POST inbound SMS online subscription

6 : Response with created resource incl. subscriptionId

7 : POST notification to the notifyURL specified in the subscription

Some time later

8 : Response
At later time

9 : DELETE the subscription

10 : Response

Resources

URL
Base URL:

http://{serverRoot}/{apiVersi
on}/smsmessaging

HTTP action

Outbound SMS

message requests

/outbound/{senderAddress}/requests

GET: read pending outbound message

requests
POST: create new outbound messages

request

Outbound SMS
message request and

delivery status

/outbound/{senderAddress}/requests

/{requestId}

GET: read a given sent message, along

with its delivery status

Inbound SMS

message

subscriptions

/inbound/subscriptions
GET: read all active subscriptions

POST: create new message subscription

Individual inbound

SMS message

subscription

/inbound/subscriptions/{subscriptionId}

GET: read individual subscription

DELETE: remove subscription and stop

corresponding notifications

Table II: A subset of ParlayREST SMS resources

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

 [11] discusses three approaches for exposing telecom

capabilities (e.g. SMS, presence) with REST. The first

approach uses an existing service delivery platform (SDP) as a

middle-layer over which the RESTful API is provided (Figure

5). The SDP may belong to the NGN network operator or to a

third party. The API can be built as an application inside the

SDP that provides the necessary mappings to the actual

network elements that provide the capabilities to expose. This

option has the advantage of lowering the integration effort of

the RESTful API to the network capability. However, the SDP

may become an unnecessarily heavy middleware if it is only

used to provide the RESTful API.

Figure 5: Integration via an SDP

The second approach is to have the RESTful API deployed

on a separate system that is integrated to the appropriate

network element as-needed. This approach bypasses the SDP

overhead, but it requires substantial work on integration. The

mapping layer is integrated with the RESTful API, which is

directly integrated to a specific network element.

In the third approach, the RESTful interface and the service

logic are run as a standalone system, with no integration to the

operator network. One example is to provide a RESTful SMS

service by integrating to a third-party SMS service provider.

This approach allows for the service to be run by any party,

but it has the disadvantage of not allowing access to the

resources and information residing on the operator

network/system (e.g. subscribers’ information).

 [12] proposes a generic REST approach to expose the

session-based capabilities of the 3G IP Multimedia Subsystem

(IMS). This approach models the sessions (e.g. multimedia

sessions) as resources, and each resource represents a session

associated with a specific service. A conferencing session

initiated by Alice for instance is named with

www.example.com/aliceURI/Conferencing/sessionID. Each

resource considers the session’s state, list of participants,

media description and links to the session’s media

components.

 [12] also proposes an architecture for IMS and Web 2.0

convergence, and discusses two guidelines for exploiting Web

2.0 services and technologies to enrich telecom operator’s

services. Web 2.0 is a concept that promotes interactive

information sharing and collaboration over the Web, as well

as Web application consumption by software programs. The

first guideline is to incorporate Web 2.0 content (e.g. user-

generated video) and events (e.g. contextual information

associated with social networks) into telecom services. This

can enhance user experience and increase service

customization.

The second guideline is IMS services’ delivery via web

pages. Web 2.0 technologies are used to build on-line

applications. The applications use directly the services offered

by the operator. An example is a virtual IMS terminal that

runs in an end-user’s browser. The major benefits here are

service ubiquity, the reuse of the major advances achieved by

Web 2.0 applications in the field of user interfaces, and a

significant simplification of the service development process

and deployment.

IV. SUITABILITY AND RESEARCH DIRECTIONS

We use NGN service provisioning requirements as

identified by ITU-T to evaluate the overall suitability of REST.

The requirements are presented first. The overall suitability is

then discussed in light of the requirements. Research

directions are discussed last.

IV.1 NGN REQUIREMENTS

Some NGN requirements impact all layers, including the

service layer, while others impact only specific layers [1]. The

main layer independent requirement deals with QoS and

security. A mechanism for end-to-end QoS should be defined

and security mechanisms should be provided to protect the

exchange and the use of sensitive information, including

authentication, authorization and encryption. The layer

specific requirements are discussed below.

One fundamental requirement of NGNs is the support of a

wide range of services, and more specifically, making the

creation, deployment and management of all kinds of known

and unknown services possible and easy. This aspect includes

enabling service providers (or operators) to find and reuse

services offered by other providers (operators) to build new

services. This requires support for service description, and

service publication and discovery.

Still another requirement is to allow for applications to be

based on service building blocks and functional entities. This

enables the reuse of existing services and allows the building

of composed applications.

NGNs also require the support of a wide range of terminals

such as telephones, cell phones, PDAs and laptops to access

the NGN services, which implies that client applications must

be simple and adaptive.

The last requirement is to provide unified characteristics for

the same service as perceived by the user. This can be

provided via the provisioning of standardized and open

interfaces for the provided services.

IV.2 REST AND NGN REQUIREMENTS

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

Regarding QoS and security, current RESTful Web

services are mostly based on HTTP, and therefore reuse the

HTTP best-effort QoS mechanism. In terms of security, the

services rely on Web/HTTP security mechanisms, such as

Transport Layer Security (TLS), to secure access to RESTful

Web services. HTTP defines two authentication and

authorization schemes (i.e. simple challenge/response and

digest authentication), but there is a standard means to

integrate other authentication schemes into HTTP, such as the

schemes defined for SOAP-based Web services [8].

Regarding the layer-dependent requirements, RESTful Web

services enable a wide range of end-user services because they

enable easier development and deployment of these services.

The development paradigm is based on the natural way the

Web works.

However, the development of complex session-based

services may not be so obvious, due in part to the statelessness

of REST. This is especially the case for services for which the

server needs to maintain some states. One example is floor

control-based conferencing where a floor is granted to a

requester only if nobody already holds it. It is important to

mention that REST statelessness does not mean that the

service cannot have a state. The server can store and manage

the state of the resources it exposes. For instance, upon

reception of a conference creation request, the server creates

the conference and maintains its state (e.g. the current list of

participants and the participant(s) that hold(s) the floor). The

client can ask the server about the new state of the conference

at any time but the request is independent of any previous

request. The point here is to draw attention to the fact that

designing session-based services with REST principles is not

straightforward. The design does require much more detailed

thought and consideration. However, the design of these

services does not necessarily require extensions to REST.

For service publication and discovery, RESTful Web

services can be described using WADL, but no appropriate

service publication and discovery platform has been defined

thus far. RESTful Web services also meet the requirement for

building blocks. Elementary building blocks can be composed

into more complex Web services through mashups [13].

Mashup is a Web concept where data, presentation or

functionality from two or more sources are combined in order

to create new services. One example is to get a user location

using a location service and display it using a Google map.

However, the lack of an automatic service discovery

mechanism limits the number of the composed services (we

can only compose the services we already know about).

A RESTful Web service can be accessed by a wide range of

end-user devices, including laptops, cellphones and PDAs.

However, service adaptation to different devices without any

changes is not fully achievable. Nevertheless, depending on

the particular service, the adaptation level may be controlled

by limiting the client complexity (e.g. a simple service may be

executed over a Web browser).

In regards to open interfaces, there are ongoing efforts to

provide standardized RESTful APIs for telecommunication

services (e.g. ParlayREST APIs). However, the fact that the

RESTful services may use different data models and resource

representation formats may result in interoperability issues.

Therefore, the standard should also specify the data models

and formats supported by each service.

In summary, RESTful Web services show a strong potential

for service provisioning in NGNs. They meet most of the

NGN requirements related to service provisioning. However,

research remains to be done in certain areas in order to realize

its full potential. It is important to stress that extensions to

REST may not always be required.

IV. 3 RESEARCH DIRECTIONS

Research directions related to RESTful Web services

include open issues related to REST in general but pertinent to

service provisioning in NGNs, and open issues specific to

service provisioning in NGNs. A general open issue is service

publication and discovery. [14] talks about REST registries

where the RESTful Web services are published but it does not

give any details about how the registry is designed or how the

services are published and discovered. Before a client can start

interacting with a RESTful Web service, it needs to know the

starting URI of the service and the representation format

accepted. The same applies for each of the service resources.

Currently, a client can discover such information offline, such

as from the service provider web site or by using a Web

search engine.

Some potential approaches for starting URI publication and

discovery are the use of an enhanced Domain Name System

(DNS) or the design of a RESTful Web services registry,

along with the publication and discovery interface. Another

research direction related to the design of a RESTful Web

services registry is to adapt the SOAP-based solutions (e.g.

UDDI and WSDL) to the specificities of RESTful Web

services.

A key open issue specific to service provisioning is

resource-definition for complex session-based services (e.g.

conferencing). Indeed, as discussed earlier, the design of such

services is not obvious and resource definition is the corner

stone. Exposing session-based services with a stateless

architectural style requires special attention. Furthermore,

besides resource definition, there are other challenges related

to the provisioning of these services. An example is the design

of enhanced features such as floor control.

Parlay-X, for example, provides a specification for a

conferencing SOAP-based Web service. However, to the best

of our knowledge, there is no comprehensive RESTful

session-based Web service, including conferencing. OMA

ParlayREST specifications do not cover session-based

services, and the CCMP work is still preliminary.

The conferencing service described in this article is a good

starting point for a session-based service. It can be extended to

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

provide more functionalities such as media manipulation (e.g.

add/remove/update a media stream) and floor control, by

defining new resources ‘media’ and ‘floor’ resources.

Potential approaches for notification support include using

HTTP 1.1 persistent connections and long-polling, which

provide the HTTP server the possibility to push data to clients.

Another open issue is the design of middleware that expose

NGN capabilities via RESTful interfaces. This should respond

to the requirement of having a common and open RESTful

interface to access these capabilities. It will also ease the

development of new services based on these capabilities. A

Parlay- X gateway, for instance, is a standard way to expose

the capabilities via a SOAP-based Web services interface, but

to the best of our knowledge, no comprehensive RESTful

middleware was proposed in the literature.

A potential approach for designing a such middleware is as

follows. First, identify the different mapping alternatives

between the RESTful API and the capabilities’ interfaces.

Second, define a general mapping pattern that can be applied

to most (or all) of the capabilities, if any. Third, optimize the

middleware performance.

The approaches presented in [11] (and discussed in section

III.2) can be used as starting point. The most promising

approach can be reused and eventually enhanced to provide a

suitable middleware. The middleware should mainly include a

mapping functionality, provide an easy to use interface and

allow for easy support of additional network capabilities and

nodes.

V. CONCLUSIONS

REST has been widely used outside NGNs. However,

several standards bodies are attempting to produce standard

specifications for REST-based service provisioning in NGNs

(e.g. OMA and IETF). Some work has also been done in the

area outside standards bodies.

RESTful Web services meet many NGN service

provisioning requirements. They enable easy development and

deployment of a wide range of services, support a wide range

of terminals (e.g. laptops, cell phones), and allow for service

composition through mashups.

 However, some issues are still open, such as RESTful Web

services publication and discovery, resource definition for

session-based services and the provisioning of an adequate

middleware. RESTful Web services do indeed show a great

potential for service provisioning in NGNs. Nevertheless, the

open issues need to be solved before their full potential can be

realized.

REFERENCES

[1] “Next Generation Networks – Frameworks and functional
architecture models”, ITU-T recommendation Y.2001, December
2004

[2] K. Knightson et al, NGN Architecture: Generic Principles,
Functional Architecture, and Implementation, IEEE
Communications Magazine, October 2005

[3] D. Griffin and D. Pesch, “A Survey on Web Services in
Telecomminications”, IEEE Communications Magazine, July
2007, Pages: 28-35

[4] C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web
Services vs. “Big”Web Services: Making the Right Architectural
Decision”, In Proceedings of the 17th International World Wide
Web Conference, pages 805–814, Beijing, China, April 2008,
ACM Press.

[5] E. Newcomer, “Understanding Web Services: XML, WSDL,
SOAP, and UDDI”, Addison-Wesley, ISBN 0-201-75081-3, May
2002

[6] ETSI TS 129 199-12, Parlay X Web services; Part 12: Multimedia
conference, 3GPP TS 29.199-12 version 9.0.0 Release 9, January
2010

[7] W3C Member Submission, “Web Application Description
Language”, 31 August 2009

[8] L. Richardson and S. Ruby, “RESTful Web Services”, O’ Reilly
& Associates, ISBN 10: 0-596-52926-0, May 2007

[9] Open Mobile Alliance, “RESTful bindings for Parlay X Web
Services –Short Messaging”, Candidate Version 1.0 – 27 Apr 2010

[10] M. Barnes et al, “Centralized Conferencing Manipulation
Protocol”, IETF draft, draft-ietf-xcon-ccmp-07, April 26, 2010

[11] S. Mäkeläinen and T. Alakoski, “Fixed-mobile hybrid mashups:
experiences and lessons on applying the REST software
architecture principles to exposing mobile operator services”,
Proceedings of ICIN 2008 - the 11th International Conference on
Services, Enablers and Architectures Supporting Business Models
for a New Open World, NeuStar Secretariat Services, Bordeaux,
France, October 20 - 23, 2008

[12] D. Lozano, L.A. Galindo and L. García, “WIMS 2.0: Converging
IMS and Web 2.0. Designing REST APIs for the exposure of
session-based IMS capabilities”, The Second International
Conference on Next Generation Mobile Applications, Services,
and Technologies (NGMAST), 2008

[13] C. Pautasso, “Composing RESTful services with JOpera”, Proc. of
the 8th International Conference on Software Composition,
volume 5634, July 2009, pp. 142–159

[14] G. Jie1 et all, “Applying Recommender System based Mashup to
Web-Telecom Hybrid Service Creation”, IEEE Global
Communications Conference (GLOBECOM) 2009, p: 1-5

BIOGRAPHIES

Fatna Belqasmi holds a Ph.D. and an M.Sc. degree in electrical and

computer engineering from Concordia University, Canada. She is a research

associate at Concordia University, Canada. In the past, she worked as a

researcher at Ericsson Canada. She was part of the IST Ambient Network

project (a research project sponsored by the European Commission within the
Sixth Framework Programme -FP6-). She worked as an R&D engineer for

Maroc Telecom in Morocco. Her research interests include next generation
networks, service engineering, distributed systems, and networking

technologies for emerging economies.

Chunyan Fu currently works at Tekelec. She worked at Ericssion from

2008 to 2010 as a researcher and a services engineer. From 1997 to 2001, she

worked at China Mobile as a system integration engineer. She received her
Bachelor degree in Computer Engineering from Nanjing University of Posts

and Telecommunications. She received her M.Sc. and Ph.D. degrees in

Electrical and Computer Engineering from Concordia University, Canada in

2004 and 2008 respectively. During her M.Sc. and Ph.D. studies, she worked

This paper was published in IEEE COMMUNICATIONS MAGAZINE, NETWORK & SERVICE MANAGEMENT

SERIES, December 2011. This is an author copy for personal record only.

as an intern at Ericsson Canada. Her research interests include signaling, ad

hoc networks, IMS and services in next-generation networks.

Roch Glitho [SM] holds a Ph.D. (Tekn. Dr.) in tele-informatics (Royal
Institute of Technology, Stockholm, Sweden), and M.Sc. degrees in business

economics (University of Grenoble, France), pure mathematics (University
Geneva, Switzerland), and computer science (University of Geneva). He is an

associate professor of networking and telecommunications at the Concordia
Institute of Information Systems Engineering (CIISE), Concordia University,

Montreal, Canada where he holds a Canada Research Chair in End-User

Service Engineering for Communication Networks. In the past he has worked
in industry for almost a quarter of a century and has held several senior

technical positions at LM Ericsson in Sweden and Canada (e.g. expert,

principal engineer, senior specialist). His industrial experience includes

research, international standards setting (e.g. contributions to ITU-T, ETSI,

TMF, ANSI, TIA, and 3GPP), product management, project management,

systems engineering and software/firmware design. He is a member of several
editorial boards including IEEE Network and IEEE Communications Surveys

and Tutorials. In the past he has served as IEEE Communications Society

distinguished lecturer, Editor-In-Chief of IEEE Communications Magazine

and Editor-In-Chief of IEEE Communications Surveys & Tutorials. His

research areas include architectures for end-users services, distributed
systems, non conventional networking, and networking technologies for

emerging economies. In these areas, he has authored more than 100 peer-

reviewed papers, more than 30 of which have been published in refereed

journals. He also holds 24 patents in the aforementioned areas and has several

pending applications.

