Address
:
[go:
up one dir
,
main page
]
Include Form
Remove Scripts
Session Cookies
Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習 - pandas入門
Search
Y. Yamamoto
PRO
April 14, 2025
Science
0
320
機械学習 - pandas入門
Y. Yamamoto
PRO
April 14, 2025
Tweet
Share
More Decks by Y. Yamamoto
See All by Y. Yamamoto
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
360
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
470
データマイニング - グラフ埋め込み入門
trycycle
PRO
0
84
データマイニング - ウェブとグラフ
trycycle
PRO
0
180
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
980
データマイニング - コミュニティ発見
trycycle
PRO
0
160
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
950
データマイニング - ノードの中心性
trycycle
PRO
0
270
データベース10: 拡張実体関連モデル
trycycle
PRO
0
990
Other Decks in Science
See All in Science
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
1
850
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.6k
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
150
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
150
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
650
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
240
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
640
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
140
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
350
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
110
Celebrate UTIG: Staff and Student Awards 2025
utig
0
240
DMMにおけるABテスト検証設計の工夫
xc6da
1
900
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
75
5k
The Language of Interfaces
destraynor
162
25k
Thoughts on Productivity
jonyablonski
70
4.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Visualization
eitanlees
148
16k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
For a Future-Friendly Web
brad_frost
180
9.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
A Modern Web Designer's Workflow
chriscoyier
697
190k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Transcript
pandas入門 ⼭本 祐輔 名古屋市⽴⼤学 データサイエンス研究科
[email protected]
第2回 機械学習発展(導入編) ⼭本祐輔 クリエイティブコモンズライセンス
(CC BY-NC-SA 4.0)
1pandasとは?
⾏列として扱われる⼤規模データ ID Name Price 表 ID Name Price 機械学習 数理モデリング
⾏列として扱われる⼤規模データ ID Name Price 表 ID Name Price 機械学習 数理モデリング
⾏列 (テンソル) 3 1 −4 −1 5 9 2 −6 5 変換
⾏列として扱われる⼤規模データ ID Name Price 表 ID Name Price 機械学習 数理モデリング
グラフ テキスト 画像 ⾏列 (テンソル) 3 1 −4 −1 5 9 2 −6 5 変換
⾏列として扱われる⼤規模データ ID Name Price 表 ID Name Price 機械学習 数理モデリング
グラフ テキスト 画像 ⾏列 (テンソル) 3 1 −4 −1 5 9 2 −6 5 変換 表データは典型的なデータ分析対象
Pythonicなデータ処理の流れ ⾏列変換 ⾼効率な ⾏列処理 データ処理の⼊り⼝となるpandasを押さえることは重要 ⾏列計算の効率化 機械学習・数値解析 表データの取り扱い
pandasとデータフレーム - 表データを効率良く扱うためのPythonライブラリ - データフレームと呼ばれるデータ構造を⽤いて 表データを効率的に処理 データフレーム pandas - 列ごとに型が定義された表データを扱うためのデータ構造
- NumPyの多次元配列(numpy.ndarray)と変換が容易
データフレームの構造 レコード(行) カラム(列)
データフレームの構造 インデックス名 インデックス レコードを⼀意に識別するためのラベル
データフレームの構造 カラム名
pandasと関係データベース管理システム (RDBMS) pandas RDBMS 扱える データサイズ 小〜中 (メモリサイズに依存) 大 (サーバ次第)
処理速度 遅い 速い (索引 & クエリ最適化 の恩恵) 柔軟性 高い (Pythonが使える) 低い (SQLでできることに 限られる) 用途 - Pythonとの連携 - データの前処理 - 大規模データ管理 - 前処理対象となる データの抽出・集約
表データの受け渡し CSV TSV RDB 表データ交換⽤の テキストファイル 関係データベース に直接接続 Excelファイル
CSVファイル - 表形式のデータ交換⽤に⽤いられるテキストファイル - CSVファイルの⾏が表の⾏に相当 - 表の各項⽬の値をカンマ(,)で区切る - 1⾏⽬には表の構造を⽰す項⽬名を並べることがある -
CSVファイルの拡張⼦はcsv ID,都道府県,県庁所在地 1,北海道, 札幌市 2,青森県, 青森市 3,岩手県, 盛岡市 ... CSVファイルの中⾝ ID 都道府県 県庁所在地 1 北海道 札幌市 2 青森県 青森市 3 岩手県 盛岡市 … 表データ 解釈
TSVファイル - 表形式のデータ交換⽤に⽤いられるテキストファイル - TSVファイルの⾏が表の⾏に相当 - 表の各項⽬の値をタブ記号(\t: 不可視⽂字)で区切る - 1⾏⽬には表の構造を⽰す項⽬名を並べることがある
- TSVファイルの拡張⼦はtsv ID 都道府県 県庁所在地 1 北海道 札幌市 2 青森県 青森市 3 岩手県 盛岡市 ... TSVファイルの中⾝ ID 都道府県 県庁所在地 1 北海道 札幌市 2 青森県 青森市 3 岩手県 盛岡市 … 表データ 解釈
Hands-on タイム 以下のURLにアクセスして, pandasを使いながら講義を受けよう https://mlnote.hontolab.org/ 17
2 最低限のpandas 18
Pythonでpandasを使う準備 import pandas as pd pandasライブラリをインポート コード中で頻繁にpandasライブラリを参照 するので,短い名前でアクセスできるように 略称を付けておく
CSV/TSVファイルの読み取り df = pd.read_table( “読み込むCSV/TSVファイルの場所 or URL”, sep=‘区切り⽂字’, header=⾒出し⾏の場所, index_col=‘インデックス名’
) pandas.read_table ファイルからデータフレームを読み込むメソッド
CSV/TSVファイルの読み取り 例 df = pd.read_table( “data/SSDSE-E-2024.csv”, sep=‘,’, header=2, index_col=‘地域コード’ )
← 読み込むファイル ← 区切り⽂字はカンマ ← ⾒出しは2⾏⽬(数え始めはゼロ) ← 「地域コード」列をインデックスに pandas.read_table ファイルからデータフレームを読み込むメソッド
データフレームの基本情報(1/3) # データフーレムが変数df に格納されていると仮定 pandas.DataFrame.shape df.shape (48, 91) データフレームの⾏数と列数を返す ←
dfの⾏数が48,列数が91であることを⽰す
データフレームの基本情報(2/3) # データフーレムが変数df に格納されていると仮定 pandas.DataFrame.columns df.columns Index(['都道府県', '総人口', '日本人人口', '15歳未満人口',
'15〜64歳人口’,…]) データフレームの列名のリストを返す
データフレームの基本情報(3/3) # データフーレムが変数df に格納されていると仮定 pandas.DataFrame.describe df.describe() データフレームの基本統計量を返すメソッド
射影(1/2) # データフーレムが変数df に格納されていると仮定 df.総⼈⼝ 表⽰したい列をドットもしくは中括弧で指定 df[“総⼈⼝”]
射影(2/2) # データフーレムが変数df に格納されていると仮定 中括弧で列名リストを指定すると複数列を射影 df[“都道府県”, “総⼈⼝”]
データフレーム × 四則演算(1/2) # 各⾏の総⼈⼝の値に100を加算 射影した列にスカラーの四則演算を適⽤すると, 射影した列データ全体に演算が適⽤される df[“総⼈⼝”] + 100
+100
データフレーム × 四則演算(2/2) # 各⾏の⽇本⼈⼈⼝の値をその⾏の総⼈⼝で割った値を返す 射影した列間の四則演算を適⽤すると, 各⾏の射影した列の値に対して演算が適⽤される df[“⽇本⼈⼈⼝”] / df[“総⼈⼝”]
新しい列の追加 # 各⾏の⽇本⼈⼈⼝の値をその⾏の総⼈⼝で割った値を返す 中括弧を⽤いて新しい列に代⼊演算をすることで 新しい列を追加することが可能 df[“⽇本⼈割合”] = df[“⽇本⼈⼈⼝”] / df[“総⼈⼝”]
# ドットアクセスでの代⼊はできない # df.⽇本⼈割合 = df[“⽇本⼈⼈⼝”] / df[“総⼈⼝”]
データフレーム情報へのアクセス(1/2) # データフーレムが変数df に格納されていると仮定 pandas.DataFrame.head df.head() データフレームの先頭数⾏を返すメソッド # データフーレムが変数df に格納されていると仮定
df.tail() データフレームの末尾数⾏を返すメソッド pandas.DataFrame.tail ← メソッドの引数に整数を与えるとその数だけ⾏を返す ← メソッドの引数に整数を与えるとその数だけ⾏を返す
データフレーム情報へのアクセス(2/2) # データフレームdfの(ゼロから始めて)2⾏⽬を抽出 df[2] ⾏番号を⽤いることで,データフレームの各⾏に アクセスすることが可能 # df の先頭⾏から10⾏⽬未満(9⾏⽬)までを取得 df[:10]
# df の2⾏から10⾏⽬未満(9⾏⽬)までを取得 df[2:10]
絞り込み(1/3) # 総⼈⼝の値が700万を超える⾏のみを抽出 中括弧の中で条件を指定すると,条件にマッチする ⾏を抽出したデータフレームが得られる df[df['総⼈⼝'] >= 7000000] # ドット表現を⽤いて条件を指定することも可能
# df[df.総⼈⼝ >= 7000000]
絞り込み(2/3) 複数条件を指定する場合, AND条件は & ,OR条件は |(パイプ)でつなぐ (各条件を丸括弧で包むこと) # 総人口が700万人以上かつ都道府県名が「全国」でないレコードを抽出 df[(df.総人口
>= 7000000) & (df.都道府県 != '全国')] # 合計特殊出生率が1.8以上もしくは1.1未満のレコードを抽出 df[(df.合計特殊出生率 >= 1.8) | (df.合計特殊出生率 < 1.1)]
絞り込み(3/3) # 総人口が700万人以上かつ都道府県名が「全国」でないレコードを抽出 # df[(df.総人口 >= 7000000) & (df.都道府県 !=
'全国')] # 上のコードは以下のように書くことが可能 df.query(“総人口 >= 7000000 & 都道府県 != ‘全国’”) pandas.DataFrame.query queryメソッドを使うと絞り込みをすっきり書ける
データフレームの保存(1/2) df.to_csv( “保存先のファイル名”, sep=‘区切り文字’, header=True/False (デフォルトはTrue), index=True/False (デフォルトはTrue) ) pandas.DataFrame.to_csv
データフレームをCSV/TSVファイルに書き出す ↓⾒出し情報を書き出すか否か ↑インデックス情報を書き出すか
データフレームの保存(2/2) df.query(‘総人口 >= 7000000’).to_csv( “data/big-prefecture.tsv”, sep=‘\t’, header=True, index=False ) pandas.DataFrame.to_csv
データフレームをCSV/TSVファイルに書き出す ←TSVファイルで書き出す ←インデックス情報(地域コード) はナシで書き出す
Hands-on タイム 以下のURLにアクセスして, ページ末尾のクイズを解いてみよう https://mlnote.hontolab.org/ 37
今後の予定 38 回 実施⽇ トピック 1 04/14 ガイダンス 2 04/21
pandas⼊⾨ 3 04/28 決定⽊からはじめる機械学習 4 05/12 クラスタリング1:k-means & 階層的クラスタリング 5 05/19 クラスタリング2:密度ベースクラスタリング 6 05/26 分類1:K近傍法 & 教師あり機械学習のお作法 7 06/02 分類2:サポートベクターマシン 8 06/09 分類3:ニューラルネットワーク⼊⾨