Solana: A new architecture for a high
performance blockchain v0.8.13

Anatoly Yakovenko
anatoly@solana.io

Legal Disclaimer Nothing in this White Paper is an offer to sell, or the solicitation of an offer
to buy, any tokens. Solana is publishing this White Paper solely to receive feedback and comments from
the public. If and when Solana offers for sale any tokens (or a Simple Agreement for Future Tokens), it
will do so through definitive offering documents, including a disclosure document and risk factors. Those
definitive documents also are expected to include an updated version of this White Paper, which may
differ significantly from the current version. If and when Solana makes such an offering in the United
States, the offering likely will be available solely to accredited investors.

Nothing in this White Paper should be treated or read as a guarantee or promise of how Solanas
business or the tokens will develop or of the utility or value of the tokens. This White Paper outlines
current plans, which could change at its discretion, and the success of which will depend on many factors
outside Solanas control, including market-based factors and factors within the data and cryptocurrency
industries, among others. Any statements about future events are based solely on Solanas analysis of the
issues described in this White Paper. That analysis may prove to be incorrect.

Abstract

This paper proposes a new blockchain architecture based on Proof
of History (PoH) - a proof for verifying order and passage of time
between events. PoH is used to encode trustless passage of time into
a ledger - an append only data structure. When used alongside a
consensus algorithm such as Proof of Work (PoW) or Proof of Stake
(PoS), PoH can reduce messaging overhead in a Byzantine Fault Tol-
erant replicated state machine, resulting inn sub-second finality times.
This paper also proposes two algorithms that leverage the time keep-
ing properties of the PoH ledger - a PoS algorithm that can recover
from partitions of any size and an efficient streaming Proof of Replica-
tion (PoRep). The combination of PoRep and PoH provides a defense
against forgery of the ledger with respect to time (ordering) and stor-
age. The protocol is analyzed on a 1 gbps network, and this paper
shows that throughput up to 710k transactions per second is possible
with todays hardware.

1 Introduction

Blockchain is an implementation of a fault tolerant replicated state machine.
Current publicly available blockchains do not rely on time, or make a weak
assumption about the participants abilities to keep time [/, 5]. Each node in
the network usually relies on their own local clock without knowledge of any
other participants clocks in the network. The lack of a trusted source of time
means that when a message timestamp is used to accept or reject a message,
there is no guarantee that every other participant in the network will make
the exact same choice. The PoH presented here is designed to create a ledger
with verifiable passage of time, i.e. duration between events and message
ordering. It is anticipated that every node in the network will be able to rely
on the recorded passage of time in the ledger without trust.

2 Outline

The remainder of this article is organized as follows. Overall system design is
described in Section 3. In depth description of Proof of History is described
in Section 4. In depth description of the proposed Proof of Stake consensus
algorithm is described in Section 5. In depth description of the proposed
fast Proof of Replication is described in Section 6. System Architecture and
performance limits are analyzed in Section 7. A high performance GPU
friendly smart contracts engine is described in Section 7.5

3 Network Design

As shown in Figure 1, at any given time a system node is designated as
Leader to generate a Proof of History sequence, providing the network global
read consistency and a verifiable passage of time. The Leader sequences user
messages and orders them such that they can be efficiently processed by other
nodes in the system, maximizing throughput. It executes the transactions
on the current state that is stored in RAM and publishes the transactions
and a signature of the final state to the replications nodes called Verifiers.
Verifiers execute the same transactions on their copies of the state, and pub-
lish their computed signatures of the state as confirmations. The published
confirmations serve as votes for the consensus algorithm.

Transaction
1

Transaction
2

State Transaction Transaction Transaction
0x23432 1 2 2

Leader
(PoH Generator)

Transaction ’:’”‘:." N

Verifier 1

>

Verifier 2

1.Messages sent by users

State

3.Votes to confirm the state 0x23432

Figure 1: Transaction flow throughout the network.

In a non-partitioned state, at any given time, there is one Leader in the
network. Each Verifier node has the same hardware capabilities as a Leader
and can be elected as a Leader, this is done through PoS based elections.
Elections for the proposed PoS algorithm are covered in depth in Section 5.6.

In terms of CAP theorem, Consistency is almost always picked over Avail-
ability in an event of a Partition. In case of a large partition, this paper
proposes a mechanism to recover control of the network from a partition of
any size. This is covered in depth in Section 5.12.

4 Proof of History

Proof of History is a sequence of computation that can provide a way to
cryptographically verify passage of time between two events. It uses a cryp-
tographically secure function written so that output cannot be predicted
from the input, and must be completely executed to generate the output.
The function is run in a sequence on a single core, its previous output as the

current input, periodically recording the current output, and how many times
its been called. The output can then be re-computed and verified by external
computers in parallel by checking each sequence segment on a separate core.

Data can be timestamped into this sequence by appending the data (or a
hash of some data) into the state of the function. The recording of the state,
index and data as it was appended into the sequences provides a timestamp
that can guarantee that the data was created sometime before the next hash
was generated in the sequence. This design also supports horizontal scaling
as multiple generators can synchronize amongst each other by mixing their
state into each others sequences. Horizontal scaling is discussed in depth in
Section 4.4

4.1 Description

The system is designed to work as follows. With a cryptographic hash func-
tion, whose output cannot be predicted without running the function (e.g.
sha256, ripemd, etc.), run the function from some random starting value
and take its output and pass it as the input into the same function again.
Record the number of times the function has been called and the output at
each call. The starting random value chosen could be any string, like the
headline of the New York times for the day.

For example:

PoH Sequence

Index Operation Output Hash
1 sha256(”any random starting value”) hash1
2 sha256(hash1) hash2
3 sha256(hash2) hash3

Where hashN represents the actual hash output.

It is only necessary to publish a subset of the hashes and indices at an
interval.

For example:

PoH Sequence

Index Operation Output Hash
1 sha256(”any random starting value”) hash1
200 sha256(hash199) hash200
300 sha256(hash299) hash300

As long as the hash function chosen is collision resistant, this set of hashes
can only be computed in sequence by a single computer thread. This follows
from the fact that there is no way to predict what the hash value at index
300 is going to be without actually running the algorithm from the starting
value 300 times. Thus we can thus infer from the data structure that real
time has passed between index 0 and index 300.

In the example in Figure 2, hash 62f51643c1 was produced on count
510144806912 and hash c43d862d88 was produced on count 510146904064.
Following the previously discussed properties of the PoH algorithm, we can
trust that real time passed between count 510144806912 and count 510146904064.

hash 62£51643cl...
count 510144806912

L

s

hash c43d862d88
count 51014

L

Figure 2: Proof of History sequence

4.2 Timestamp for Events

This sequence of hashes can also be used to record that some piece of data
was created before a particular hash index was generated. Using a ‘combine’
function to combine the piece of data with the current hash at the current
index. The data can simply be a cryptographically unique hash of arbitrary
event data. The combine function can be a simple append of data, or any
operation that is collision resistant. The next generated hash represents a
timestamp of the data, because it could have only been generated after that
specific piece of data was inserted.

For example:

PoH Sequence

Index Operation Output Hash
1 sha256(”any random starting value”) hash1
200 sha256(hash199) hash200
300 sha256(hash299) hash300

Some external event occurs, like a photograph was taken, or any arbitrary
digital data was created:

PoH Sequence With Data

Index Operation Output Hash
1 sha256(” any random starting value”) hashl
200 sha256(hash199) hash200
300 sha256(hash299) hash300
336 sha256(append(hash335, photograph_sha256)) hash336

Hash336 is computed from the appended binary data of hash335 and the
sha256 of the photograph. The index and the sha256 of the photograph are
recorded as part of the sequence output. So anyone verifying this sequence
can then recreate this change to the sequence. The verifying can still be done
in parallel and its discussed in Section 4.3

Because the initial process is still sequential, we can then tell that things
entered into the sequence must have occurred sometime before the future
hashed value was computed.

POH Sequence

Index Operation Output Hash
1 sha256(”any random starting value”) hashi
200 sha256(hash199) hash200
300 sha256(hash299) hash300
336 sha256(append (hash335, photographl_sha256)) hash336
400 sha256(hash399) hash400
500 sha256(hash499) hash500
600 sha256(append (hash599, photograph2_sha256)) hash600
700 sha256(hash699) hash700

Table 1: PoH Sequence With 2 Events

In the sequence represented by Table 1, photograph2 was created before
hash600, and photographl was created before hash336. Inserting the data
into the sequence of hashes results in a change to all subsequent values in the
sequence. As long as the hash function used is collision resistant, and the
data was appended, it should be computationally impossible to pre-compute
any future sequences based on prior knowledge of what data will be inte-
grated into the sequence.

The data that is mixed into the sequence can be the raw data itself, or
just a hash of the data with accompanying metadata.

In the example in Figure 3, input c£fd40df8... was inserted into the
Proof of History sequence. The count at which it was inserted is 510145855488
and the state at which it was inserted it is 3d039eef3. All the future gen-
erated hashes are modified by this change to the sequence, this change is
indicated by the color change in the figure.

Every node observing this sequence can determine the order at which all
events have been inserted and estimate the real time between the insertions.

hash 62f5163cl...

ELACSS count 510144806912

~
hash 3d03%eef3...

input cfd40dfs... SHAZ56 count 510145855488
input cfd4f0dfs...

/

hash 7%a5dflde...

Sl2sc count 510146904064

!

Figure 3: Inserting data into Proof of History

4.3 Verification

The sequence can be verified correct by a multicore computer in significantly
less time than it took to generate it.

For example:

Core 1
Index Data Output Hash
200 sha256(hash199) hash200
300 sha256(hash299) hash300
Core 2
Index Data Output Hash
300 sha256(hash299) hash300
400 sha256(hash399) hash400

Given some number of cores, like a modern GPU with 4000 cores, the
verifier can split up the sequence of hashes and their indexes into 4000 slices,
and in parallel make sure that each slice is correct from the starting hash to
the last hash in the slice. If the expected time to produce the sequence is
going to be:

hash 62f5164cl...
count 510144806912

hash 3d039%9eef6...
count 510145855488
input cfd40dzf8...

hash 79%ab5aaldc...
count 510146904064

Verifier
core 1

Verifier
core 2

Figure 4: Verification using multiple cores

Total number of hashes

Hashes per second for 1 core

The expected time to verify that the sequence is correct is going to be:

Total number of hashes

(Hashes per second per core * Number of cores available to verify)

In the example in Figure 4, each core is able to verify each slice of the
sequence in parallel. Since all input strings are recorded into the output, with
the counter and state that they are appended to, the verifiers can replicate
each slice in parallel. The red colored hashes indicate that the sequence was

modified by a data insertion.

4.4 Horizontal Scaling

Its possible to synchronize multiple Proof of History generators by mixing the
sequence state from each generator to each other generator, and thus achieve
horizontal scaling of the Proof of History generator. This scaling is done
without sharding. The output of both generators is necessary to reconstruct

the full order of events in the system.

PoH Generator A PoH Generator B
Index Hash Data || Index Hash Data

1 hashla 1 hashlb
2 hash2a hashilb || 2 hash2b hashla
3 hash3a 3 hash3b
4 hash4a 4 hash4b

Given generators A and B, A receives a data packet from B (hashlb),
which contains the last state from Generator B, and the last state generator
B observed from Generator A. The next state hash in Generator A then de-
pends on the state from Generator B, so we can derive that hash1b happened
sometime before hash3a. This property can be transitive, so if three gener-
ators are synchronized through a single common generator A <+ B < C|,
we can trace the dependency between A and C even though they were not
synchronized directly.

By periodically synchronizing the generators, each generator can then
handle a portion of external traffic, thus the overall system can handle a
larger amount of events to track at the cost of true time accuracy due to
network latencies between the generators. A global order can still be achieved
by picking some deterministic function to order any events that are within
the synchronization window, such as by the value of the hash itself.

In Figure 5, the two generators insert each others output state and record
the operation. The color change indicates that data from the peer had mod-
ified the sequence. The generated hashes that are mixed into each stream
are highlighted in bold.

The synchronization is transitive. A <» B <» C' There is a provable order
of events between A and C through B.

Scaling in this way comes at the cost of availability. 10 x 1 gbps connec-
tions with availability of 0.999 would have 0.9991° = 0.99 availability.

4.5 Consistency

Users are expected to be able to enforce consistency of the generated se-
quence and make it resistant to attacks by inserting the last observed output
of the sequence they consider valid into their input.

10

hash %%9ada5lde... SHA SHA hash 62£5164¢el...

count 310146904064 256 256 count 510144806912
hash 3dD3geef...
:ig?r iiiﬁ{_‘i{-ﬂ-ﬁ-a SHA SHA count 510145855488
ount 310143855488 256 256 input 2z£d23423...
hash b3a82512... SHA SHA hash 79a51dzc...
count 310146904064 ; :
topnt TtaSidec. . . 256 256 count 510146304064

Figure 5: Two generators synchronizing

PoH Sequence A PoH Hidden Sequence B
Index Data Output Hash || Index Data Output Hash
10 hash10a || 10 hash10b
20 Eventl hash20a || 20 Event3 hash20Db
30 Event2 hash30a || 30 Event2 hash30Db
40 Event3 hash40a || 40 Event1 hash40b

A malicious PoH generator could produce a second hidden sequence with
the events in reverse order, if it has access to all the events at once, or is able
to generate a faster hidden sequence.

To prevent this attack, each client-generated Event should contain within
itself the latest hash that the client observed from what it considers to be
a valid sequence. So when a client creates the "Event1” data, they should
append the last hash they have observed.

11

PoH Sequence A

Index Data Output Hash
10 hash10a
20 Eventl = append(eventl data, hash10a) hash20a
30 Event2 = append(event2 data, hash20a) hash30a
40 Event3 = append(event3 data, hash30a) hash40a

When the sequence is published, Event3 would be referencing hash30a,
and if its not in the sequence prior to this Event, the consumers of the
sequence know that its an invalid sequence. The partial reordering attack
would then be limited to the number of hashes produced while the client has
observed an event and when the event was entered. Clients should then be
able to write software that does not assume the order is correct for the short
period of hashes between the last observed and inserted hash.

To prevent a malicious PoH generator from rewriting the client Event
hashes, the clients can submit a signature of the event data and the last
observed hash instead of just the data.

PoH Sequence A

Index Data Output Hash

10 hash10a
Eventl = sign(append(eventl data, hash10a),

20 Client Private Key) hash20a
Event2 = sign(append(event2 data, hash20a),

30 Client Private Key) hash30a

m Event3 = sign(append(event3 data, hash30a), hashd0a

Client Private Key)

Verification of this data requires a signature verification, and a lookup of
the hash in the sequence of hashes prior to this one.
Verify:

(Signature, PublicKey, hash30a, event3 data) = Event3
Verify(Signature, PublicKey, Event3)
Lookup (hash30a, PoHSequence)

In Figure 6, the user-supplied input is dependent on hash Oxdeadbeef. . .
existing in the generated sequence sometime before its inserted. The blue

12

AZ56 hash Oxdeadbeef...
\ i count 510144806912

~
input: event data vl
t: eve a count 510145855488
last hash: Oxdeadbeef.. input OxcOdebab
event hash: OxcOdebab. .. o
J
User event hash Dxcldebab is generated

with the hash Oxdeadbeef. I links
Dxdeadbeef to the next generated block
OxbadcOde. Which prevents a malicious
Loom from reordering the events in a

hidden side sequence.
hash 79a5ldzc...
count 510146904064

Figure 6: Input with a back reference.

top left arrow indicates that the client is referencing a previously produced
hash. The clients message is only valid in a sequence that contains the hash
Oxdeadbeef.... The red color in the sequence indicates that the sequence
has been modified by the clients data.

4.6 Overhead

4000 hashes per second would generate an additional 160 kilobytes of data,
and would require access to a GPU with 4000 cores and roughly 0.25-0.75
milliseconds of time to verify.

4.7 Attacks
4.7.1 Reversal

Generating a reverse order would require an attacker to start the malicious
sequence after the second event. This delay should allow any non malicious
peer to peer nodes to communicate about the original order.

13

4.7.2 Speed

Having multiple generators may make deployment more resistant to attacks.
One generator could be high bandwidth, and receive many events to mix
into its sequence, another generator could be high speed low bandwidth that
periodically mixes with the high bandwidth generator.

The high speed sequence would create a secondary sequence of data that
an attacker would have to reverse.

4.7.3 Long Range Attacks

Long range attacks involve acquiring old discarded client Private Keys, and
generating a falsified ledger [10]. Proof of History provides some protection
against long range attacks. A malicious user that gains access to old private
keys would have to recreate a historical record that takes as much time as the
original one they are trying to forge. This would require access to a faster
processor than the network is currently using, otherwise the attacker would
never catch up in history length.

Additionally, a single source of time allows for construction of a simpler
Proof of Replication (more on that in Section 6). Since the network is de-
signed so that all participants in the network will rely on a single historical
record of events.

PoRep and PoH together should provide a defense of both space and time
against a forged ledger.

5 Proof of Stake Consensus

5.1 Description

This specific instance of Proof of Stake is designed for quick confirmation of
the current sequence produced by the Proof of History generator, for voting
and selecting the next Proof of History generator, and for punishing any mis-
behaving validators. This algorithm depends on messages eventually arriving
to all participating nodes within a certain timeout.

14

5.2 Terminology

bonds Bonds are equivalent to a capital expense in Proof of Work. A miner
buys hardware and electricity, and commits it to a single branch in a
Proof of Work blockchain. A bond is coin that the validator commits
as collateral while they are validating transactions.

slashing The proposed solution to the nothing at stake problem in Proof
of Stake systems [7]. When a proof of voting for a different branch
is published, that branch can destroy the validators bond. This is an
economic incentive designed to discourage validators from confirming
multiple branches.

super majority A super majority is %rds of the validators weighted by their
bonds. A super majority vote indicates that the network has reached
consensus, and at least %rd of the network would have had to vote
maliciously for this branch to be invalid. This would put the economic
cost of an attack at %rd of the market cap of the coin.

5.3 Bonding

A bonding transaction takes a amount of coin and moves it to a bonding
account under the users identity. Coins in the bonding account cannot be
spent and have to remain in the account until the user removes them. The
user can only remove stale coins that have timed out. Bonds are valid after
super majority of the current stakeholders have confirmed the sequence.

5.4 Voting

It is anticipated that the Proof of History generator will be able to publish
a signature of the state at a predefined period. Each bonded identity must
confirm that signature by publishing their own signed signature of the state.
The vote is a simple yes vote, without a no.

If super majority of the bonded identities have voted within a timeout,
then this branch would be accepted as valid.

15

5.5 Unbonding

Missing N number of votes marks the coins as stale and no longer eligible for
voting. The user can issue an unbonding transaction to remove them.

N is a dynamic value based on the ratio of stale to active votes. N
increases as the number of stale votes increases. In an event of a large
network partition, this allows the larger branch to recover faster then the
smaller branch.

5.6 Elections

Election for a new PoH generator occur when the PoH generator failure is
detected. The validator with the largest voting power, or highest public key
address if there is a tie is picked as the new PoH generator.

A super majority of confirmations are required on the new sequence. If
the new leader fails before a super majority confirmations are available, the
next highest validator is selected, and a new set of confirmations is required.

To switch votes, a validator needs to vote at a higher PoH sequence
counter, and the new vote needs to contain the votes it wants to switch.
Otherwise the second vote will be slashable. Vote switching is expected to
be designed so that it can only occur at a height that does not have a super
majority.

Once a PoH generator is established, a Secondary can be elected to take
over the transactional processing duties. If a Secondary exists, it will be
considered as the next leader during a Primary failure.

The platform is designed so that the Secondary becomes Primary and
lower rank generators are promoted if an exception is detected or on a pre-
defined schedule.

5.7 Election Triggers
5.7.1 Forked Proof of History generator

PoH generators are designed with an identity that signs the generated se-
quence. A fork can only occur in case the PoH generators identity has been
compromised. A fork is detected because two different historical records have
been published on the same PoH identity.

16

5.7.2 Runtime Exceptions

A hardware failure or a bug, or a intentional error in the PoH generator could
cause it to generate an invalid state and publish a signature of the state that
does not match the local validators result. Validators will publish the correct
signature via gossip and this event would trigger a new round of elections.
Any validators who accept an invalid state will have their bonds slashed.

5.7.3 Network Timeouts

A network timeout would trigger an election.

5.8 Slashing

Slashing occurs when a validator votes two separate sequences. A proof of
malicious vote will remove the bonded coins from circulation and add them
to the mining pool.

A vote that includes a previous vote on a contending sequence is not
eligible as proof of malicious voting. Instead of slashing the bonds, this vote
removes remove the currently cast vote on the contending sequence.

Slashing also occurs if a vote is cast for an invalid hash generated by the
PoH generator. The generator is expected to randomly generate an invalid
state, which would trigger a fallback to Secondary.

5.9 Secondary Elections

Secondary and lower ranked Proof of History generators can be proposed
and approved. A proposal is cast on the primary generators sequence. The
proposal contains a timeout, if the motion is approved by a super majority
of the vote before the timeout, the Secondary is considered elected, and will
take over duties as scheduled. Primary can do a soft handover to Secondary
by inserting a message into the generated sequence indicating that a handover
will occur, or inserting an invalid state and forcing the network to fallback
to Secondary.

If a Secondary is elected, and the primary fails, the Secondary will be
considered as the first fallback during an election.

17

5.10 Availability

CAP systems that deal with partitions have to pick Consistency or Avail-
ability. Our approach eventually picks Availability, but because we have
an objective measure of time, Consistency is picked with reasonable human
timeouts.

Proof of Stake verifiers lock up some amount of coin in a stake, which
allows them to vote for a particular set of transactions. Locking up coin is a
transaction that is entered into a PoH stream, just like any other transaction.
To vote, a PoS verifier has to sign the hash of the state, as it was computed
after processing all the transactions to a specific position in the PoH ledger.
This vote is also entered as a transaction into the PoH stream. Looking at
the PoH ledger, we can then infer how much time passed between each vote,
and if a partition occurs, for how long each verifier has been unavailable.

To deal with partitions with reasonable human timeframes, we propose
a dynamic approach to unstake unavailable verifiers. When the number of
verifiers is high and above %, the unstaking process can be fast. The number
of hashes that must be generated into the ledger is low before the unavailable
verifiers stake is fully unstaked and they are no longer counted for consensus.
When the number of verifiers is below %rds but above %, the unstaking timer is
slower, requiring a larger number of hashes to be generated before the missing
verifiers are unstaked. In a large partition, like a partition that is missing %
or more of the verifiers, the unstaking process is very very slow. Transactions
can still be entered into the stream, and verifiers can still vote, but full %rds
consensus will not be achieved until a very large amount of hashes have been
generated and the unavailable verifiers have been unstaked. The difference
in time for a network to regain liveness allows us as customers of the network
human timeframes to pick a partition that we want to continue using.

5.11 Recovery

In the system we propose, the ledger can be fully recovered from any failure.
That means, anyone in the world can pick any random spot in the ledger and
create a valid fork by appending newly generated hashes and transactions.
If all the verifiers are missing from this fork, it would take a very very long
time for any additional bonds to become valid and for this branch to achieve
%rds super majority consensus. So full recovery with zero available validators
would require a very large amount of hashes to be appended to the ledger,

18

and only after all the unavailable validators have been unstaked will any new
bonds be able to validate the ledger.

5.12 Finality

PoH allows verifiers of the network to observe what happened in the past with
some degree of certainty of the time of those events. As the PoH generator is
producing a stream of messages, all the verifiers are required to submit their
signatures of the state within 500ms. This number can be reduced further
depending on network conditions. Since each verification is entered into the
stream, everyone in the network can validate that every verifier submitted
their votes within the required timeout without actually observing the voting
directly.

5.13 Attacks
5.13.1 Tragedy of Commons

The PoS verifiers simply confirm the state hash generated by the PoH gen-
erator. There is an economic incentive for them to do no work and simply
approve every generated state hash. To avoid this condition, the PoH gener-
ator should inject an invalid hash at a random interval. Any voters for this
hash should be slashed. When the hash is generated, the network should
immediately promote the Secondary elected PoH generator.

Each verifier is required to respond within a small timeout - 500ms for
example. The timeout should be set low enough that a malicious verifier has
a low probability of observing another verifiers vote and getting their votes
into the stream fast enough.

5.13.2 Collusion with the PoH generator

A verifier that is colluding with the PoH generator would know in advance
when the invalid hash is going to be produced and not vote for it. This
scenario is really no different than the PoH identity having a larger verifier
stake. The PoH generator still has to do all the work to produce the state
hash.

19

5.13.3 Censorship

Censorship or denial of service could occur when a %rd of the bond holders
refuse to validate any sequences with new bonds. The protocol can defend
against this form of attack by dynamically adjusting how fast bonds become
stale. In the event of a denial of service, the larger partition will be designed
to fork and censor the Byzantine bond holders. The larger network will re-
cover as the Byzantine bonds become stale with time. The smaller Byzantine
partition would not be able to move forward for a longer period of time.

The algorithm would work as follows. A majority of the network would
elect a new Leader. The Leader would then censor the Byzantine bond
holders from participating. Proof of History generator would have to continue
generating a sequence, to prove the passage of time, until enough Byzantine
bonds have become stale so the bigger network has a super majority. The rate
at which bonds become stale would be dynamically based on what percentage
of bonds are active. So the Byzantine minority fork of the network would have
to wait much longer than the majority fork to recover a super majority. Once
a super majority has been established, slashing could be used to permanently
punish the Byzantine bond holders.

5.13.4 Long Range Attacks

PoH provides a natural defense against long range attacks. Recovering the
ledger from any point in the past would require the attacker to overtake the
valid ledger in time by outpacing the speed of the PoH generator.

The consensus protocol provides a second layer of defense, as any attack
would have to take longer then the time it takes to unstake all the valid
validators. It also creates an availability gap in the history of the ledger.
When comparing two ledgers of the same height, the one with the smallest
maximum partition can be objectively considered as valid.

5.13.5 ASIC Attacks

Two opportunities for an ASIC attacks exist in this protocol - during parti-
tion, and cheating timeouts in Finality.

For ASIC attacks during Partitions, the Rate at which bonds are unstaked
is non-linear, and for networks with large partitions the rate is orders of
magnitude slower then expected gains from an ASIC attack.

20

For ASIC attacks during Finality, the vulnerability allows for byzantine
validators who have a bonded stake wait for confirmations from other nodes
and inject their votes with a collaborating PoH generator. The PoH gener-
ator can then use its faster ASIC to generate 500ms worth of hashes in less
time, and allow for network communication between PoH generator and the
collaborating nodes. But, if the PoH generator is also byzantine, there is no
reason why the byzantine generator wouldnt have communicated the exact
counter when they expect to insert the failure. This scenario is no different
than a PoH generator and all the collaborators sharing the same identity and
having a single combined stake and only using 1 set of hardware.

6 Streaming Proof of Replication

6.1 Description

Filecoin proposed a version of Proof of Replication [6]. The goal of this
version is to have fast and streaming verifications of Proof of Replication,
which are enabled by keeping track of time in Proof of History generated
sequence. Replication is not used as a consensus algorithm, but is a useful
tool to account for the cost of storing the blockchain history or state at a
high availability.

6.2 Algorithm

As shown in Figure 7 CBC encryption encrypts each block of data in se-
quence, using the previously encrypted block to XOR the input data.

Each replication identity generates a key by signing a hash that has been
generated Proof of History sequence. This ties the key to a replicators iden-
tity, and to a specific Proof of History sequence. Only specific hashes can be
selected. (See Section 6.5 on Hash Selection)

The data set is fully encrypted block by block. Then to generate a proof,
the key is used to seed a pseudorandom number generator that selects a
random 32 bytes from each block.

A merkle hash is computed with the selected PoH hash prepended to the
each slice.

The root is published, along with the key, and the selected hash that
was generated. The replication node is required to publish another proof

21

block 1 block 2 block 3

cbe encrypt cbe encrypt cbe encrypt

e Current block to be encrypted
« Previous encrypted block data to be XORd with the current black before encryption
+ Ensures that the encryption can only be done sequentially, and it can be streamed

Figure 7: Sequential CBC encryption

e random bytes selected
from the block
e Proof of History hash

Proof of
History
encrypted encrypted
hash data data

Figure 8: Fast Proof of Replication

22

in N hashes as they are generated by Proof of History generator, where N
is approximately % the time it takes to encrypt the data. The Proof of
History generator will publish specific hashes for Proof of Replication at a
predefined periods. The replicator node must select the next published hash
for generating the proof. Again, the hash is signed, and random slices are
selected from the blocks to create the merkle root.

After a period of N proofs, the data is re-encrypted with a new CBC key.

6.3 Verification

With N cores, each core can stream encryption for each identity. Total space
required is 2blocks x Ncores, since the previous encrypted block is necessary
to generate the next one. Each core can then be used to generate all the
proofs that derived from the current encrypted block.

Total time to verify proofs is expected to be equal to the time it takes to
encrypt. The proofs themselves consume few random bytes from the block,
so the amount of data to hash is significantly lower then the encrypted block
size. The number of replication identities that can be verified at the same
time is equal to the number of available cores. Modern GPUs have 3500+
cores available to them, albeit at %—% the clock speed of a CPU.

6.4 Key Rotation

Without key rotation the same encrypted replication can generate cheap
proofs for multiple Proof of History sequences. Keys are rotated periodically
and each replication is re-encrypted with a new key that is tied to a unique
Proof of History sequence.

Rotation needs to be slow enough that its practical to verify replication
proofs on GPU hardware, which is slower per core than CPUs.

6.5 Hash Selection

Proof of History generator publishes a hash to be used by the entire network
for encrypting Proofs of Replication, and for using as the pseudorandom
number generator for byte selection in fast proofs.

Hash is published at a periodic counter that is roughly equal to % the time
it takes to encrypt the data set. Each replication identity must use the same

23

hash, and use the signed result of the hash as the seed for byte selection, or
the encryption key.

The period that each replicator must provide a proof must be smaller than
the encryption time. Otherwise the replicator can stream the encryption and
delete it for each proof.

A malicious generator could inject data into the sequence prior to this
hash to generate a specific hash. This attack is discussed more in 5.13.2.

6.6 Proof Validation

The Proof of History node is not expected to validate the submitted Proof
of Replication proofs. It is expected to keep track of number of pending and
verified proofs submitted by the replicators identity. A proof is expected to
be verified when the replicator is able to sign the proof by a super majority
of the validators in the network.

The verifications are collected by the replicator via p2p gossip network,
and submitted as one packet that contains a super majority of the validators
in the network. This packet verifies all the proofs prior to a specific hash gen-
erated by the Proof of History sequence, and can contain multiple replicator
identities at once.

6.7 Attacks
6.7.1 Spam

A malicious user could create many replicator identities and spam the net-
work with bad proofs. To facilitate faster verification, nodes are required
to provide the encrypted data and the entire merkle tree to the rest of the
network when they request verification.

The Proof of Replication that is designed in this paper allows for cheap
verification of any additional proofs, as they take no additional space. But
each identity would consume 1 core of encryption time. The replication target
should be set to a maximum size of readily available cores. Modern GPUs
ship with 3500+ cores.

6.7.2 Partial Erasure

A replicator node could attempt to partially erase some of the data to avoid
storing the entire state. The number of proofs and the randomness of the

24

seed should make this attack difficult.

For example, a user storing 1 terabyte of data erases a single byte from
each 1 megabyte block. A single proof that samples 1 byte out of every
megabyte would have a likelihood of collision with any erased byte 1 — (1 —
1/1,000,0000)1999000 = (.63. After 5 proofs the likelihood is 0.99.

6.7.3 Collusion with PoH generator

The signed hash is expected to be used to seed the sample. If a replicator
could select a specific hash in advance then the replicator could erase all
bytes that are not going to be sampled.

A replicator identity that is colluding with the Proof of History generator
could inject a specific transaction at the end of the sequence before the pre-
defined hash for random byte selection is generated. With enough cores, an
attacker could generate a hash that is preferable to the replicators identity.

This attack could only benefit a single replicator identity. Since all the
identities have to use the same exact hash that is cryptographically signed
with ECDSA (or equivalent), the resulting signature is unique for each repli-
cator identity, and collision resistant. A single replicator identity would only
have marginal gains.

6.7.4 Denial of Service

The cost of adding an additional replicator identity is expected to be equal
to the cost of storage. The cost of adding extra computational capacity to
verify all the replicator identities is expected to be equal to the cost of a CPU
or GPU core per replication identity.

This creates an opportunity for a denial of service attack on the network
by creating a large number of valid replicator identities.

To limit this attack, the consensus protocol chosen for the network can
select a replication target, and award the replication proofs that meet the de-
sired characteristics, like availability on the network, bandwidth, geolocation
ete...

6.7.5 Tragedy of Commons

The PoS verifiers could simply confirm PoRep without doing any work. The
economic incentives should be lined up with the PoS verifiers to do work,

25

Figure 9: System Architecture

like by splitting the mining payout between the PoS verifiers and the PoRep
replication nodes.

To further avoid this scenario, the PoRep verifiers can submit false proofs
a small percentage of the time. They can prove the proof is false by providing
the function that generated the false data. Any PoS verifier that confirmed
a false proof would be slashed.

7 System Architecture

7.1 Components
7.1.1 Leader, Proof of History generator

The Leader is an elected Proof of History generator. It consumes arbitrary
user transactions and outputs a Proof of History sequence of all the transac-
tions that guarantees a unique global order in the system. After each batch
of transactions the Leader outputs a signature of the state that is the result
of running the transactions in that order. This signature is signed with the
identity of the Leader.

26

7.1.2 State

A naive hash table indexed by the users address. Each cell contains the full
users address and the memory required for this computation. For example
Transaction table contains:

0 31 63 95 127 159 191 223 255

Ripemd of Users Public Key Account |unused

For a total of 32 bytes.
Proof of Stake bonds table contains:

0 31 63 95 127 159 191 223 255
Ripemd of Users Public Key Bond
Last Vote
unused

For a total of 64 bytes.

7.1.3 Verifier, State Replication

The Verifier nodes replicate the blockchain state and provide high availability
of the blockchain state. The replication target is selected by the consensus
algorithm, and the validators in the consensus algorithm select and vote the
Proof of Replication nodes they approve of based on off-chain defined criteria.

The network could be configured with a minimum Proof of Stake bond
size, and a requirement for a single replicator identity per bond.

7.1.4 Validators

These nodes are consuming bandwidth from Verifiers. They are virtual nodes,
and can run on the same machines as the Verifiers or the Leader, or on
separate machines that are specific to the consensus algorithm configured for
this network.

7.2 Network Limits

Leader is expected to be able to take incoming user packets, orders them
the most efficient way possible, and sequences them into a Proof of History
sequence that is published to downstream Verifiers. Efficiency is based on

27

e Inbound user transactions

Generator

Figure 10: Generator network limits

memory access patterns of the transactions, so the transactions are ordered
to minimize faults and to maximize prefetching.

Incoming packet format:

0 31 63 95 127 159 191 223 255

Last Valid Hash Counter u‘s ‘

Fee

igned
From Signe

Signature 1 of 2

Signature 2 of 2

Size 20 + 8 4+ 16 + 8 + 32 + 3232 = 148 bytes.

28

The minimal payload that can be supported would be 1 destination ac-
count. With payload:

0 31 63 95 127 159 191 223 255
Last Valid Hash Counter [us
To Amount
Counter Fee Signed
From

Signature 1 of 2

Signature 2 of 2

With payload the minimum size: 176 bytes

The Proof of History sequence packet contains the current hash, counter,
and the hash of all the new messages added to the PoH sequence and the
state signature after processing all the messages. This packet is sent once
every N messages are broadcast.

Proof of History packet:

0 31 63 95 127 159 191 223 255

Current Hash Counter

Messages Hash

Signed

State Hash

Signature 1 of 2

Signature 2 of 2

Minimum size of the output packet is: 132 bytes

On a 1gbps network connection the maximum number of transactions

29

possible is 1 gigabit per second / 176 bytes = 710k tps max. Some loss 1—4%
is expected due to Ethernet framing. The spare capacity over the target
amount for the network can be used to increase availability by coding the
output with Reed-Solomon codes and striping it to the available downstream
Verifiers.

7.3 Computational Limits

Each transaction requires a digest verification. This operation does not use
any memory outside of the transaction message itself and can be parallelized
independently. Thus throughput is expected to be limited by the number of
cores available on the system.

GPU based ECDSA verification servers have had experimental results of
900k operations per second [9].

7.4 Memory Limits

A naive implementation of the state as a 50% full hashtable with 32 byte en-
tries for each account, would theoretically fit 10 billion accounts into 640GB.
Steady state random access to this table is measured at 1.1 * 107 writes or
reads per second. Based on 2 reads and two writes per transaction, memory
throughput can handle 2.75m transactions per second. This was measured
on an Amazon Web Services 1TB x1.16xlarge instance.

7.5 High Performance Smart Contracts

Smart contracts are a generalized form of transactions. These are programs
that run on each node and modify the state. This design leverages extended
Berkeley Packet Filter bytecode as fast and easy to analyze and JIT bytecode
as the smart contracts language.

One of its main advantages is a zero cost Foreign Function Interface.
Intrinsics, or functions that are implemented on the platform directly, are
callable by programs. Calling the intrinsics suspends that program and
schedules the intrinsic on a high performance server. Intrinsics are batched
together to execute in parallel on the GPU.

In the above example, two different user programs call the same intrinsic.
Each program is suspended until the batch execution of the intrinsics is

30

BPF 1 A 1
cont...

ser program 1
Y

BPF 2 BPF 2 1
cont...
User program 2

e suspend
® resume

User Programs

GPU Intrinsic
Server

Intrinsic A Intrinsic A

Figure 11: Executing BPF programs.

complete. An example intrinsic is ECDSA verification. Batching these calls
to execute on the GPU can increase throughput by thousands of times.

This trampoline requires no native operating system thread context switches,
since the BPF bytecode has a well defined context for all the memory that
it is using.

eBPF backend has been included in LLVM since 2015, so any LLVM
frontend language can be used to write smart contracts. Its been in the
Linux kernel since 2015, and the first iterations of the bytecode have been
around since 1992. A single pass can check eBPF for correctness, ascertain
its runtime and memory requirements and convert it to x86 instructions.

References

[1] Liskov, Practical use of Clocks
http://www.dainf.cefetpr.br/ tacla/SDII/PracticalUse0fClocks.pdf

2] Google Spanner TrueTime consistency
https://cloud.google.com/spanner/docs/true-time-external-consistency

[3] Solving Agreement with Ordering Oracles
http://www.inf .usi.ch/faculty/pedone/Paper/2002/2002EDCCh. pdf

31

[4] Tendermint: Consensus without Mining
https://tendermint.com/static/docs/tendermint.pdf

[5] Hedera: A Governing Council & Public Hashgraph Network
https://s3.amazonaws.com/hedera-hashgraph/hh-whitepaper-v1.0-180313.pdf

[6] Filecoin, proof of replication,
https://filecoin.io/proof-of-replication.pdf

[7] Slasher, A punative Proof of Stake algorithm
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algoritl

[8] BitShares Delegated Proof of Stake
https://github.com/BitShares/bitshares/wiki/Delegated-Proof-of-Stake

9] An Efficient Elliptic Curve Cryptography Signature Server With GPU
Acceleration
http://ieeexplore.ieee.org/document/7555336/

[10] Casper the Friendly Finality Gadget
https://arxiv.org/pdf/1710.09437 . pdf

32

	1 Introduction
	2 Outline
	3 Network Design
	4 Proof of History
	4.1 Description
	4.2 Timestamp for Events
	4.3 Verification
	4.4 Horizontal Scaling
	4.5 Consistency
	4.6 Overhead
	4.7 Attacks
	4.7.1 Reversal
	4.7.2 Speed
	4.7.3 Long Range Attacks

	5 Proof of Stake Consensus
	5.1 Description
	5.2 Terminology
	5.3 Bonding
	5.4 Voting
	5.5 Unbonding
	5.6 Elections
	5.7 Election Triggers
	5.7.1 Forked Proof of History generator
	5.7.2 Runtime Exceptions
	5.7.3 Network Timeouts

	5.8 Slashing
	5.9 Secondary Elections
	5.10 Availability
	5.11 Recovery
	5.12 Finality
	5.13 Attacks
	5.13.1 Tragedy of Commons
	5.13.2 Collusion with the PoH generator
	5.13.3 Censorship
	5.13.4 Long Range Attacks
	5.13.5 ASIC Attacks

	6 Streaming Proof of Replication
	6.1 Description
	6.2 Algorithm
	6.3 Verification
	6.4 Key Rotation
	6.5 Hash Selection
	6.6 Proof Validation
	6.7 Attacks
	6.7.1 Spam
	6.7.2 Partial Erasure
	6.7.3 Collusion with PoH generator
	6.7.4 Denial of Service
	6.7.5 Tragedy of Commons

	7 System Architecture
	7.1 Components
	7.1.1 Leader, Proof of History generator
	7.1.2 State
	7.1.3 Verifier, State Replication
	7.1.4 Validators

	7.2 Network Limits
	7.3 Computational Limits
	7.4 Memory Limits
	7.5 High Performance Smart Contracts

