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1. Introduction

As usual, a partition of a positive integer n is a weakly decreasing sequence of
positive integers whose sum equals n.
In my previous paper [5], I proved the following conjecture due to George Beck:

Theorem 1.1. The number of gap-free partitions (i.e. partitions with the difference
between each consecutive parts being at most 1) of n is also the sum of the smallest
parts in the distinct partitions (i.e. partitions with distinct parts) of n with an odd
number of parts.

Let 20 denote the set of distinct partitions with an odd number of parts. The
main idea in [5] is to use the differentiation technique to study to generating function
of ssptge(n), the sum of the smallest parts in the partitions of n in 2¢. More
precisely, I showed that

gt
> ssptog(n)g" = Tt ("1, (1.1)

n>1 t>1 q

where and in what follows, we use the standard g-series notation
n—1
(@)n = (@3 0)n = [[ (1 - ag®),
k=0
and
(@)oo = (a59)00 := [J (1 — ag").
£>0
In a subsequent paper [8], Yang also provided a combinatorial proof of Beck’s
conjecture.

Let 2 be the set of distinct partitions. Here we will not include the empty
partition unless otherwise specified.

For any partition 7, we denote by || the sum of the parts of m, by A(w) the
largest part of m, by o(w) the smallest part of 7, and by #(7) the number of parts
of m.

The following general result is almost shown in [5] (in which the cases z = %1
are proved).
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Theorem 1.2. It holds that

Z o(m)2 g™l = Z 1 g 7 ((—z)t - 1). (1.2)

TED t>1

The proof of this generating function identity can still be deduced by the differ-
entiation technique. In fact, it is essentially the same as the proof of (2.3) in [5].
In this paper, we will focus on the combinatorial viewpoint.

2. A combinatorial approach

Our starting point is the following double counting argument, which appears to be
able to be adapted to many types of partition sets.
For a nonnegative integer ¢, we define

Py ={re? : Am)>t+1and A7) — o(r) < t}.

Now given any 7 € 2, if 7 € 9y, then A(n) —o(w) <t < A(w) — 1 by the defi-
nition. Hence, 7 is exactly contained in the following o () partition sets: Z(x)—1,
DA(r)—25 s DA(m)—o ()

We therefore have

Theorem 2.1. It holds that

S o(m)2H gl = 37 3 sl (2.1)

TED t>0 TE€ED,

One immediately sees that the remaining task is to study the generating function
for 9, with t > 0.

We remark that, for certain partition sets, if we only require the difference be-
tween the largest and smallest parts to be bounded by ¢, then the generating func-
tions are studied in a series of papers [1-4,6]. In particular, in my joint work with
Yee [6], we provided a combinatorial approach that can be easily adapted to obtain
the generating function for %.

For convenience, we now consider the generating function for %;_; with ¢ > 1.

Let %, be the set of partition pairs (u, ) where p is nonempty and its parts all
have size t, and v is a nonempty distinct partition with 0 being allowed as a part
and the largest part being at most ¢ — 1. For example,

((5,5,5,5,5), (4,2,1,0)) € Bs.

Furthermore, we use |(u, )| to denote |u| + |v|.

For m = (w1, 7ma,...,m) in P4_1, we put s = |mp/t| with |z]| being the conven-
tional floor function. We also let k be the positive integer such that m > (s + 1)t
and 741 < (s + 1)¢. If there is no such k, then we let & = 0.

Now we construct a map ¢; : Zy_1 — %B; by

OYENC ST O 7))
= (6t t), (Tepr — st me— stym — (s+ 1), m — (s + 1)),
N———

s(e—k)+(s+1)k

times

Note that the second subpartition can be treated as (71, ma, . . ., m¢) reduced modulo
t, cyclically permuted such that they are weakly decreasing.
Similar to Theorem 2.1 of [6], we have
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Lemma 2.2. ¢; is a weight preserving map from Py_1 to By. Furthermore, the
number of parts is preserved by the second subpartition of the image.

Proof. Let (u,v) = ¢¢(m). We first show that p is nonempty. Since m € Z;_1, we
have m; > (t — 1) + 1 = ¢. Hence we take out at least one ¢ from m; to form pu,
which implies that p is not empty.

On the other hand, we know that = is a distinct partition. Since m — mp <
t—1<t,s=|m/t], and mp > (s + 1)t > 711, we have

t>mpp1—st>-->mp—st>m — (s+ 1)t > >m— (s+ 1.

Note that 7, — (s + 1)t could be 0 since 7, could be (s + 1)¢t. Hence v satisfies the
conditions. It follows that (u,v) € %;.

At last, it is obvious from the definition of ¢; that |¢:(7)| = |r| and f(v) =
i(m). 0

The rest of the argument is different to that in [6]. We shall show
Lemma 2.3. ¢, is invertible.

Proof. Let (p,v) € %;. Let the number of t in ppber > 1 and let v = (v1,va, ..., ).
Now we write 7 = mf + r* with m > 0 and 0 < r* < ¢ — 1 being integers. We
construct the inverse ¢, L B, — Py as follows.

¢t_l: (,ual/)'_>(Vl—r*—i-l+(m+1)t7"'al/€+(m+1)tayl +mt7"'7’/2—r*+mt)'

We now show that the image is in Z;_1. Recall that 0 < vy < -+ < vy <t —1.
If r* # 0, since vy +t > v1, we have
Vg1 +(m+ D> >v+(m+1Dt>v+mt >+ > vp_pe + mi.
Notice that vy_,«11 4+ (m+ 1)t > t. We further notice that vy_,» is not the smallest
part of v, and hence vy_,» > 0. At last, we have (vy—,« 11+ (m+1)t)— (vo—r +mt) =
t — (Vo—pr — Vg—p=41) < t — 1. Hence in this case the image is in Z;_1.

If r* =0, then m > 1 since r > 1. We have v1 + mt > --- > vy +mt > 0 and
v1+mt > t. We also have (11 + mt) — (vp+mt) = v1 —vp < t—1. Hence the image
is also in Z;_1.

From the definition of ¢; and ¢; !, it is apparent that ¢; *(¢:(7)) = 7. Hence ¢y
is invertible. U

Example 2.1. For the partition sets 2, and %5, we have
(9,7,6,5) === ((5,5,5,5), (4,2,1,0))
5
and
(10,9,7,6) <= ((5,5,5,5,5), (4,2,1,0)).
b5!

It follows from Lemmas 2.2 and 2.3 that ¢; is a bijection from Z;_1 to %;.

Hence, for t > 1,
ST gl = N gl (2.2)
TED_1 (,v)EB:

The generating function for %; is easy to get:

ST gkl — qit((fz)t - 1), (2.3)

1— 4t
(p,v)EB: 4



4 S. Chern

where ¢'/(1 — ¢*) comes from the first subpartition whereas (—z); — 1 comes from
the second subpartition.
Consequently, we have

Theorem 2.4. Fort > 1, it holds that
g

3 gl = ﬁ((—z)t - 1). (2.4)
—q

TEDr—1

Together with (2.1), we have

3" o(m)F Mgl = 3 1 qtqt ((_Z)t - 1),

TED t>1

which completes the proof of Theorem 1.2.

3. Closing remarks

As I showed in [5], (1.1) follows since

S ssptge(n)a” = 5 3 om) (10 — (=10 gi"l.

n>1 €D

Note that the z =1 and z = —1 cases of (1.2) respectively correspond to (2.3) and
(2.2) in [5].

I was also pointed out by Dazhao Tang that another conjecture of Beck, which
is proposed in [7, A237665], can be proved in the same way.

Conjecture 3.1 (Beck). The number of gap-free partitions of n with at least two
different parts is also the sum of the smallest parts in the distinct partitions of n
with an even number of parts.

Theorem 3.2. Conjecture 3.1 is true.

Proof. Let ssptge(n) denote the sum of the smallest parts in the distinct partitions
of n with an even number of parts. We have

S ssptis (m)a” = 5 3 o) (157 4 (~1)) )i

n>1 T€ED
t
_ q
= Z T—¢ ((—Q)tq - 1)-
t>1

We next observe that the conjugates of gap-free partitions with at least two
different parts are partitions with at least two different parts where only the largest
part may repeat.

Let gf,(n) count the number of gap-free partitions of n with at least two different
parts. We have

(—Q)t—l - Qt

Z gfa(n)g" = Z 1 Et

t
n>1 t>1 q

_ ¢ ((_q)t_1 - 1).

t>1
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Here >°,o; ¢"(—=q)i—1/(1 — ¢") is the generating function of partitions where only
the largest part may repeat, and >_,o,¢"/(1 — ¢') is the generating function of
partitions with only one different part.

We conclude that gf,(n) = ssptge(n). O
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