On a conjecture of George Beck. II

Shane Chern

Abstract. In this paper, we give a combinatorial proof of a generating function identity concerning the sum of the smallest parts in the distinct partitions of n.

Keywords. Distinct partitions, sum of the smallest parts, combinatorial proof.

2010MSC. Primary 05A17; Secondary 11P84.

1. Introduction

As usual, a partition of a positive integer n is a weakly decreasing sequence of positive integers whose sum equals n.

In my previous paper [5], I proved the following conjecture due to George Beck:

Theorem 1.1. The number of gap-free partitions (i.e. partitions with the difference between each consecutive parts being at most 1) of n is also the sum of the smallest parts in the distinct partitions (i.e. partitions with distinct parts) of n with an odd number of parts.

Let \mathscr{D} denote the set of distinct partitions with an odd number of parts. The main idea in [5] is to use the differentiation technique to study to generating function of $\operatorname{sspt}_{\mathscr{D}}(n)$, the sum of the smallest parts in the partitions of n in \mathscr{D} . More precisely, I showed that

$$\sum_{n>1} \operatorname{sspt}_{\mathscr{D}}(n) q^n = \sum_{t>1} \frac{q^t}{1 - q^t} (-q)_{t-1}, \tag{1.1}$$

where and in what follows, we use the standard q-series notation

$$(a)_n = (a;q)_n := \prod_{k=0}^{n-1} (1 - aq^k),$$

and

$$(a)_{\infty} = (a;q)_{\infty} := \prod_{k \ge 0} (1 - aq^k).$$

In a subsequent paper [8], Yang also provided a combinatorial proof of Beck's conjecture.

Let \mathcal{D} be the set of distinct partitions. Here we will not include the empty partition unless otherwise specified.

For any partition π , we denote by $|\pi|$ the sum of the parts of π , by $\Lambda(\pi)$ the largest part of π , by $\sigma(\pi)$ the smallest part of π , and by $\sharp(\pi)$ the number of parts of π .

The following general result is almost shown in [5] (in which the cases $z=\pm 1$ are proved).

2 S. Chern

Theorem 1.2. It holds that

$$\sum_{\pi \in \mathscr{D}} \sigma(\pi) z^{\sharp(\pi)} q^{|\pi|} = \sum_{t > 1} \frac{q^t}{1 - q^t} \Big((-z)_t - 1 \Big). \tag{1.2}$$

The proof of this generating function identity can still be deduced by the differentiation technique. In fact, it is essentially the same as the proof of (2.3) in [5]. In this paper, we will focus on the combinatorial viewpoint.

2. A combinatorial approach

Our starting point is the following double counting argument, which appears to be able to be adapted to many types of partition sets.

For a nonnegative integer t, we define

$$\mathcal{D}_t := \{ \pi \in \mathcal{D} : \Lambda(\pi) \ge t + 1 \text{ and } \Lambda(\pi) - \sigma(\pi) \le t \}.$$

Now given any $\pi \in \mathcal{D}$, if $\pi \in \mathcal{D}_t$, then $\Lambda(\pi) - \sigma(\pi) \leq t \leq \Lambda(\pi) - 1$ by the definition. Hence, π is exactly contained in the following $\sigma(\pi)$ partition sets: $\mathcal{D}_{\Lambda(\pi)-1}$, $\mathcal{D}_{\Lambda(\pi)-2}$, ..., $\mathcal{D}_{\Lambda(\pi)-\sigma(\pi)}$.

We therefore have

Theorem 2.1. It holds that

$$\sum_{\pi \in \mathscr{D}} \sigma(\pi) z^{\sharp(\pi)} q^{|\pi|} = \sum_{t \ge 0} \sum_{\pi \in \mathscr{D}_t} z^{\sharp(\pi)} q^{|\pi|}. \tag{2.1}$$

One immediately sees that the remaining task is to study the generating function for \mathcal{D}_t with t > 0.

We remark that, for certain partition sets, if we only require the difference between the largest and smallest parts to be bounded by t, then the generating functions are studied in a series of papers [1–4,6]. In particular, in my joint work with Yee [6], we provided a combinatorial approach that can be easily adapted to obtain the generating function for \mathcal{D}_t .

For convenience, we now consider the generating function for \mathcal{D}_{t-1} with $t \geq 1$.

Let \mathcal{B}_t be the set of partition pairs (μ, ν) where μ is nonempty and its parts all have size t, and ν is a nonempty distinct partition with 0 being allowed as a part and the largest part being at most t-1. For example,

$$((5,5,5,5,5), (4,2,1,0)) \in \mathscr{B}_5.$$

Furthermore, we use $|(\mu, \nu)|$ to denote $|\mu| + |\nu|$.

For $\pi = (\pi_1, \pi_2, \dots, \pi_\ell)$ in \mathcal{D}_{t-1} , we put $s = \lfloor \pi_\ell / t \rfloor$ with $\lfloor x \rfloor$ being the conventional floor function. We also let k be the positive integer such that $\pi_k \geq (s+1)t$ and $\pi_{k+1} < (s+1)t$. If there is no such k, then we let k = 0.

Now we construct a map $\phi_t: \mathcal{D}_{t-1} \to \mathcal{B}_t$ by

$$\phi_t \colon (\pi_1, \pi_2, \dots, \pi_\ell) \\ \mapsto \left((\underbrace{t, t, t, \dots, t}_{s(\ell-k) + (s+1)k}), \ (\pi_{k+1} - st, \dots, \pi_\ell - st, \pi_1 - (s+1)t, \dots, \pi_k - (s+1)t) \right).$$

Note that the second subpartition can be treated as $(\pi_1, \pi_2, \dots, \pi_\ell)$ reduced modulo t, cyclically permuted such that they are weakly decreasing.

Similar to Theorem 2.1 of [6], we have

Lemma 2.2. ϕ_t is a weight preserving map from \mathcal{D}_{t-1} to \mathcal{B}_t . Furthermore, the number of parts is preserved by the second subpartition of the image.

Proof. Let $(\mu, \nu) = \phi_t(\pi)$. We first show that μ is nonempty. Since $\pi \in \mathcal{D}_{t-1}$, we have $\pi_1 \geq (t-1) + 1 = t$. Hence we take out at least one t from π_1 to form μ , which implies that μ is not empty.

On the other hand, we know that π is a distinct partition. Since $\pi_1 - \pi_\ell \le t - 1 < t$, $s = |\pi_\ell/t|$, and $\pi_k \ge (s+1)t > \pi_{k+1}$, we have

$$t > \pi_{k+1} - st > \dots > \pi_{\ell} - st > \pi_1 - (s+1)t > \dots > \pi_k - (s+1)t.$$

Note that $\pi_k - (s+1)t$ could be 0 since π_k could be (s+1)t. Hence ν satisfies the conditions. It follows that $(\mu, \nu) \in \mathcal{B}_t$.

At last, it is obvious from the definition of ϕ_t that $|\phi_t(\pi)| = |\pi|$ and $\sharp(\nu) = \sharp(\pi)$.

The rest of the argument is different to that in [6]. We shall show

Lemma 2.3. ϕ_t is invertible.

Proof. Let $(\mu, \nu) \in \mathcal{B}_t$. Let the number of t in μ be $r \geq 1$ and let $\nu = (\nu_1, \nu_2, \dots, \nu_\ell)$. Now we write $r = m\ell + r^*$ with $m \geq 0$ and $0 \leq r^* \leq \ell - 1$ being integers. We construct the inverse $\phi_t^{-1} : \mathcal{B}_t \to \mathcal{D}_{t-1}$ as follows.

$$\phi_t^{-1} \colon (\mu, \nu) \mapsto (\nu_{\ell - r^* + 1} + (m+1)t, \dots, \nu_{\ell} + (m+1)t, \nu_1 + mt, \dots, \nu_{\ell - r^*} + mt).$$

We now show that the image is in \mathcal{D}_{t-1} . Recall that $0 \le \nu_{\ell} < \dots < \nu_1 \le t-1$. If $r^* \ne 0$, since $\nu_{\ell} + t > \nu_1$, we have

$$\nu_{\ell-r^*+1} + (m+1)t > \dots > \nu_{\ell} + (m+1)t > \nu_1 + mt > \dots > \nu_{\ell-r^*} + mt.$$

Notice that $\nu_{\ell-r^*+1} + (m+1)t \ge t$. We further notice that $\nu_{\ell-r^*}$ is not the smallest part of ν , and hence $\nu_{\ell-r^*} > 0$. At last, we have $(\nu_{\ell-r^*+1} + (m+1)t) - (\nu_{\ell-r^*} + mt) = t - (\nu_{\ell-r^*} - \nu_{\ell-r^*+1}) \le t - 1$. Hence in this case the image is in \mathscr{D}_{t-1} .

If $r^*=0$, then $m\geq 1$ since $r\geq 1$. We have $\nu_1+mt>\cdots>\nu_\ell+mt>0$ and $\nu_1+mt\geq t$. We also have $(\nu_1+mt)-(\nu_\ell+mt)=\nu_1-\nu_\ell\leq t-1$. Hence the image is also in \mathscr{D}_{t-1} .

From the definition of ϕ_t and ϕ_t^{-1} , it is apparent that $\phi_t^{-1}(\phi_t(\pi)) = \pi$. Hence ϕ_t is invertible.

Example 2.1. For the partition sets \mathcal{D}_4 and \mathcal{B}_5 , we have

$$(9,7,6,5) \xrightarrow{\phi_5} ((5,5,5,5), (4,2,1,0))$$

and

$$(10,9,7,6) \stackrel{\phi_5}{\stackrel{}{\rightleftharpoons}_{5}^{-1}} ((5,5,5,5,5), (4,2,1,0)).$$

It follows from Lemmas 2.2 and 2.3 that ϕ_t is a bijection from \mathcal{D}_{t-1} to \mathcal{B}_t . Hence, for $t \geq 1$,

$$\sum_{\pi \in \mathscr{D}_{t-1}} z^{\sharp(\pi)} q^{|\pi|} = \sum_{(\mu,\nu) \in \mathscr{B}_t} z^{\sharp(\nu)} q^{|\mu|+|\nu|}. \tag{2.2}$$

The generating function for \mathcal{B}_t is easy to get:

$$\sum_{(\mu,\nu)\in\mathscr{B}_t} z^{\sharp(\nu)} q^{|\mu|+|\nu|} = \frac{q^t}{1-q^t} \Big((-z)_t - 1 \Big), \tag{2.3}$$

4 S. Chern

where $q^t/(1-q^t)$ comes from the first subpartition whereas $(-z)_t - 1$ comes from the second subpartition.

Consequently, we have

Theorem 2.4. For $t \geq 1$, it holds that

$$\sum_{\pi \in \mathcal{D}_{t-1}} z^{\sharp(\pi)} q^{|\pi|} = \frac{q^t}{1 - q^t} \Big((-z)_t - 1 \Big). \tag{2.4}$$

Together with (2.1), we have

$$\sum_{\pi \in \mathcal{D}} \sigma(\pi) z^{\sharp(\pi)} q^{|\pi|} = \sum_{t \ge 1} \frac{q^t}{1 - q^t} \Big((-z)_t - 1 \Big),$$

which completes the proof of Theorem 1.2.

3. Closing remarks

As I showed in [5], (1.1) follows since

$$\sum_{n\geq 1} \operatorname{sspt}_{\mathscr{D}}(n) q^n = \frac{1}{2} \sum_{\pi \in \mathscr{D}} \sigma(\pi) \Big(1^{\sharp(\pi)} - (-1)^{\sharp(\pi)} \Big) q^{|\pi|}.$$

Note that the z = 1 and z = -1 cases of (1.2) respectively correspond to (2.3) and (2.2) in [5].

I was also pointed out by Dazhao Tang that another conjecture of Beck, which is proposed in [7, A237665], can be proved in the same way.

Conjecture 3.1 (Beck). The number of gap-free partitions of n with at least two different parts is also the sum of the smallest parts in the distinct partitions of n with an even number of parts.

Theorem 3.2. Conjecture 3.1 is true.

Proof. Let $\operatorname{sspt}_{\mathscr{DE}}(n)$ denote the sum of the smallest parts in the distinct partitions of n with an even number of parts. We have

$$\sum_{n\geq 1} \operatorname{sspt}_{\mathscr{B}}(n) q^n = \frac{1}{2} \sum_{\pi \in \mathscr{D}} \sigma(\pi) \Big(1^{\sharp(\pi)} + (-1)^{\sharp(\pi)} \Big) q^{|\pi|}$$
$$= \sum_{t>1} \frac{q^t}{1 - q^t} \Big((-q)_{t-1} - 1 \Big).$$

We next observe that the conjugates of gap-free partitions with at least two different parts are partitions with at least two different parts where only the largest part may repeat.

Let $\mathrm{gf}_2(n)$ count the number of gap-free partitions of n with at least two different parts. We have

$$\sum_{n\geq 1} \operatorname{gf}_{2}(n)q^{n} = \sum_{t\geq 1} \frac{q^{t}}{1-q^{t}} (-q)_{t-1} - \sum_{t\geq 1} \frac{q^{t}}{1-q^{t}}$$
$$= \sum_{t\geq 1} \frac{q^{t}}{1-q^{t}} \Big((-q)_{t-1} - 1 \Big).$$

Here $\sum_{t\geq 1}q^t(-q)_{t-1}/(1-q^t)$ is the generating function of partitions where only the largest part may repeat, and $\sum_{t\geq 1}q^t/(1-q^t)$ is the generating function of partitions with only one different part.

We conclude that $\operatorname{gf}_2(n) = \operatorname{sspt}_{\mathscr{A}_{\mathcal{E}}}(n)$.

References

- G. E. Andrews, M. Beck, and N. Robbins, Partitions with fixed differences between largest and smallest parts, Proc. Amer. Math. Soc. 143 (2015), no. 10, 4283–4289.
- F. Breuer and B. Kronholm, A polyhedral model of partitions with bounded differences and a bijective proof of a theorem of Andrews, Beck, and Robbins, Res. Number Theory 2 (2016), Art. 2, 15 pp.
- 3. S. Chern, An overpartition analogue of partitions with bounded differences between largest and smallest parts, *Discrete Math.* **340** (2017), no. 12, 2834–2839.
- S. Chern, A curious identity and its applications to partitions with bounded part differences, New Zealand J. Math. 47 (2017), 23–26.
- 5. S. Chern, On a conjecture of George Beck, Int. J. Number Theory 14 (2018), no. 3, 647-651.
- S. Chern and A. J. Yee, Overpartitions with bounded part differences, European J. Combin. 70 (2018), 317–324.
- 7. N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org.
- 8. J. Y. X. Yang, Combinatorial proofs and generalizations on conjectures related with Euler's partition theorem, *Preprint* (2018). Available at arXiv:1801.06815.

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

E-mail address: shanechern@psu.edu