
1/51

Counting Maximal Seat Assignments that Obey

Social Distancing

Presented by: George Spahn

Joint work with: Doron Zeilberger



2/51

Proctoring

▶ No two students may sit adjacent

horizontally or vertically

▶ Perhaps the students sit randomly

without violating the rules

▶ Will we run out of space?

▶ What density can we expect?

x x

x

x x

x x x



3/51

Definitions

▶ Input: The dimensions of the grid of seats r × c

▶ Input: A set of forbidden patterns, S

▶ A seating assignment can be represented as an r × c matrix of

0s and 1s (1s represent occupied seats)

▶ An assignment is said to be maximal if it satisfies 2 properties:

▶ None of the forbidden patterns are present.

▶ Changing any 0 to a 1 causes a forbidden pattern to be

present.



4/51

Example

Not Maximal

1 0 0 0 0

0 0 1 0 1

0 1 0 1 0

1 0 1 0 1

8 1s

Maximal

1 0 0 1 0

0 0 1 0 0

0 1 0 0 1

1 0 0 1 0

7 1s



5/51

Questions

▶ Given r ,c , and S :

▶ What is the maximum and minimum density of a maximal

configuration?

▶ How many maximal configurations are there?

▶ If I were to select a maximal configuration uniformly at

random, what is the expected density?



6/51

Max Density

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

▶ Density = 0.5

▶ What we might hope for when proctoring :D

▶ Will the min density be similar?



7/51

Min Density

1 1

1 1

1 1

1 1

▶ How would you feel if the students ended up like this?

▶ Density = 0.25

▶ Can we go smaller?



8/51

Min Density

0

0 1 0

0

0

0 0 1 0

0 1 0 0 0

0 0 0 1 0

0 1 0 0

0



9/51

Min Density

▶ Limiting min density = 0.2

▶ If we limit ourselves to 4 rows the density can never drop

below 0.25

▶ With 5 rows we require at least 21 columns to get density

below 0.25

▶ With 6 rows we require 15 columns.



10/51

Min Density 6x15

Credit to Julius Sun



11/51

Automatic Counting of Maximal Assignments

▶ The general case of a r by c grid is a bit too hard

▶ We can fix r and consider the sequence counting the number

of maximal assignments as a function of the number of

columns

▶ An assignment is just a sequence of columns that satisfies

some local conditions...



12/51

Finite State Machine!

▶ A finite state machine (FSM) is a directed graph.

▶ The edges (transitions) are labeled with symbols from an

alphabet

▶ The vertices (states) are used to store information as we read

a sequence of symbols

▶ Some of the states are labelled as ACCEPT states

▶ If a sequence of symbols leads to an ACCEPT state, than the

word formed by that sequence of symbols is accepted



13/51

Example

Checks whether a binary number is ...

divisible by 3



13/51

Example

Checks whether a binary number is ... divisible by 3



14/51

Finite State Machine!

▶ For us, the symbols are possible columns

▶ 2r symbols in our alphabet

▶ A r by c maximal assignment will be an accepted word of

length c



15/51

When to REJECT

There are two ways that a seating assignment can fail to be

maximal:

▶ There are two adjacent 1s

▶ There is a 0 with no adjacent 1

A 0 with an adjacent 1 is said to be a satisfied 0. If we encounter

an unsatisfied 0 we should REJECT!



16/51

Detecting 2 adjacent 1s

▶ As the state machine reads in each column, it needs to be on

the lookout for two adjacent 1s

▶ Reject if two adjacent 1s in same column

▶ Also store the contents of the previous column in the state.

▶ If a 1 would be adjacent to a 1 that we haven’t read yet, we

can reject later.



17/51

Detecting unsatisfied 0s

▶ We don’t have enough information to determine whether a 0

in the current column is satisfied.

▶ Instead check that each 0 in the previous column is satisfied

▶ Need to store the previous TWO columns in the state.

▶ Total of 22r states, one for each possible contents of the

previous two columns



18/51

Example

0 1

0 0

0 0

1 0



19/51

Example

01

00

00

10

10

00

01

00



20/51

Which states are ACCEPT states?

▶ If we reach the end of input, should we ACCEPT or REJECT?

▶ Still need to check 0s in most recent column!

▶ If all those 0s are satisfied, then ACCEPT



21/51

r = 2

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Initialization is omitted



22/51

Counting Paths

▶ Now let’s just say there is 1 big ACCEPT state that all the

ACCEPT states transition to.

▶ Each maximal assignment corresponds to a path from the

START state to the ACCEPT state.

▶ The number of maximal assignments with c columns is thus

the number of paths from START to ACCEPT with length c!



23/51

Transition Matrix

▶ We can count paths using matrices!

▶ Let M be the adjacency matrix of the state machine

▶ Each state becomes a row and column of the matrix

▶ A valid transition from state i to j is represented by a 1 in the

[i , j ] entry of M

▶ All other entries are 0

▶ M2[i , j ] now counts the number of paths from i to j of length

2

▶ Mc [i , j ] now counts the number of paths from i to j of length

c



24/51

r = 2 sequence

▶ We now can compute the sequence giving the number of

maximal assignments

▶ For r = 2: 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466,

754, . . .

▶ Notice anything about this sequence?

▶ Twice the Fibonacci sequence!



24/51

r = 2 sequence

▶ We now can compute the sequence giving the number of

maximal assignments

▶ For r = 2: 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466,

754, . . .

▶ Notice anything about this sequence?

▶ Twice the Fibonacci sequence!



25/51

Why?

No valid assignment ends with the 11 or 00 columns...

. . . 1

. . . 0

. . . 1 0

. . . 0 1

. . . 1 0 0

. . . 0 0 1



25/51

Why?

No valid assignment ends with the 11 or 00 columns...

. . . 1

. . . 0

. . . 1 0

. . . 0 1

. . . 1 0 0

. . . 0 0 1



26/51

r = 3, 4

▶ Maximal assignments with 3 rows:

▶ 2, 4, 10, 18, 38, 78, 156, 320, 654, . . .

▶ Maximal assignments with 4 rows:

▶ 3, 6, 18, 42, 108, 274, 692, 1754, 4442, . . .

▶ A157049, A157050 is the OEIS



27/51

A157049

Number of n X 3 0..4 arrays with each element equal to the

number its horizontal and vertical zero neighbors.

▶ Again looking at grids with 3 rows.

▶ Here the entries are integers from 0 to 4

▶ Each 0 is adjacent to 0 0s. (Seem Familiar?)

▶ Each other grid location is uniquely determined by how many

0s it is next to.

▶ Why ”maximal”?



28/51

Maximal Independent Sets in the Grid Graph

▶ Recall from graph theory that an Independent Set of vertices

in a graph is a subset of the vertices with no adjacencies.

▶ Max Independent Set denoted α(G )

▶ In general computing α(G ) is hard, for an n-vertex graph the

best known algorithm takes time O(1.2n)



29/51

Generating Function

▶ Using this method we can get generating functions for these

sequences without too much extra work. The sequence:

f (n) = Mn[1, 2]

has the generating function:

F (x) =
∑

f (n)xn



30/51

A system of Equations

1. For each node, the number of ways to get there in n steps is

equal to the sum of the ways to get to the preceding nodes in

n − 1 steps.

2. Let Fi (x) be the generating function for the number of ways

to reach state i from START in n steps.

3. Then

Fi (x) =
∑
j

Fj(x) · x

where the sum is taken over preceding nodes

4. Big system of equations is great for Maple!



31/51

Shortcut

▶ Ignoring matrices for a second...

F (x) =
∑

Mnxn (1)

=
∑

(Mx)n (2)

=
1

1−Mx
(3)

≈ (I −Mx)−1 (4)

▶ This matrix, N, contains all of our desired generating

functions!

▶ N[1, 2] gives the generating function for the number of paths

from START to ACCEPT.



32/51

Results

▶ Here is the generating function for r = 3:

▶

▶ In the OEIS this appears as an ”empirical generating

function”.

▶ Now we have a rigorous proof!



33/51

Back to Density

▶ What if want to compute the average density over all these

maximal assignments?

▶ Modify the transition matrix M.

▶ Previously it had entries either 1 or 0 indicating edges in the

graph.

▶ Now replace the ones with powers of z .

▶ z t will indicate that the corresponding transition added t 1s

to the assignment.



34/51

Density Polynomials

▶ Previously Mn[1, 2] counted the number of maximal

assignments with n columns.

▶ Now it is a polynomial in z .

▶ The coefficient of zk gives the number of maximal

assignments with n columns and k total 1s.



35/51

Example

For 3x3 assignments we get the polynomial:

g(z) = z5 + z4 + 8z3

1

1 1

1

1 1

1

1 1

1

1

1

1

1

1

The average density is 0.37. One way to compute this is:

g ′(1)

9g(1)



35/51

Example

For 3x3 assignments we get the polynomial:

g(z) = z5 + z4 + 8z3

1

1 1

1

1 1

1

1 1

1

1

1

1

1

1

The average density is 0.37. One way to compute this is:

g ′(1)

9g(1)



36/51

Bivariate Generating Functions

▶ We can also include z in the generating function!

▶ The coefficient of x jzk now gives the number of maximal

assignments with j columns and k total 1s.

▶ For 3 rows:

▶ Maple can extract coefficient polynomials using Taylor series!



37/51

Limiting Density

▶ We can look at the roots of the denominator of the

generating function to get asymptotics.

▶ We can compute the limiting average density over all maximal

assignments as the number of columns goes to infinity.

▶ For r = 3 we compute d = 0.352...

▶ For r = 4 we compute d = 0.347...

▶ For r = 5 we compute d = 0.342...

▶ Only slightly smaller than the 3 by 3 case, 0.37.



38/51

Other Distributions

▶ So far we have computed the average density assuming a

uniform distribution on maximal assignments.

▶ A priori there is no reason that students filtering into a

classroom would obey that distribution.

▶ We can use simulation to look at other models where seats

are assigned sequentially.



39/51

Random Sequential Adsorption

▶ In this model each student sequentially picks a seat uniformly

at random from the set of available seats.

1 1

1

1

1

1

1

1 1

1

▶ For 3x3 grids, the average density is now 0.44

▶ This is much higher than the 0.37 from the uniform

distribution. Why?



40/51

3x3 density

1

1 1

1

1 1

1

1 1

1

1

1

1

1

1

▶ Under the uniform distribution, the middle seat is taken only

1/10 of the time.

▶ Under sequential adsorption, it is taken 1/9 of the time by the

first person to sit down, immediately forcing the maximum

possible density!



41/51

Random Sequential Adsorption

▶ We ran a simulation with 100 by 3 matrices.

▶ The average density was 0.394

▶ This is notably higher than the limiting density under the

uniform distribution, 0.352.



42/51

Generalizing S

▶ Recall that S is the set of violations.

▶ So far we have looked at the specific case where S has two

elements: horizontal and vertical adjacencies

▶ We represent these violations as polyominoes

1 1
1

1



43/51

Non-Attacking Kings

If the seats are not allowed to be adjacent diagonally, we get the

famous non-attacking kings problem.

1 1
1

1

1

1

1

1



44/51

Housing Developments

The paper that inspired this research was interested in avoiding the

T-piece. “Packing density of combinatorial settlement planning

models”

1 1 1

1

The idea is that you don’t want any houses to be totally blocked

from the sun (and there is no sun from the North)



45/51

Checking Arbitrary Patterns

▶ It is now not sufficient to only keep track of the previous two

columns.

▶ Let W be the largest width of any polyomino.

▶ To avoid adding the polyomino we need to know the previous

W − 1 columns.

▶ What about maximality?



46/51

Ensuring Maximality

For the T , we have W = 3.

0

▶ If we store the previous 4 columns, then we can ensure that

the 0s in the 3rd column are satisfied when adding the next

column.

▶ In general we will have to store the previous 2W − 2 columns.

▶ This gives a total of 2r(2W−2) states.



47/51

Down Facing T

1 1 1

1

▶ Maximally avoiding the T with r = 3 gives the following

sequence:

▶ 1, 1, 10, 19, 41, 105, 269, 651, 1560, . . .

▶ Not yet in the OEIS

▶ Sadly need to make the code faster to compute the generating

function, inverting the 189 x 189 matrix was taking too long.

▶ What if we rotate the T to make W smaller?



48/51

Right Facing T

1

1 1

1

▶ Maximally avoiding this T with r = 4 gives the following

sequence:

▶ 1, 6, 19, 63, 208, 687, 2269, 7494, . . .

▶ A189735 in the OEIS

▶ It satisfies

a(n) = 3a(n − 1) + a(n − 2)

▶ Open Problem: Give a combinatorial explanation



49/51

Further Generalizations

▶ Counting 0-1 matrices that satisfy a given set of properties is

something that comes up often.

▶ The finite state machine approach is well suited to tackling

many of these problems.

▶ I hope to abstract the code so that a user just need to

implement a few of the functions to solve their own version of

the problem.

▶ Just need a set of states, and a way to compute the

transitions between those states



50/51

Further Generalizations

▶ The states contain some finite amount of information about

the columns seen so far (such as the contents of the previous

10 columns).

▶ This finite information, plus the contents of the current

column, must be enough to detect any error.

▶ The data needs to be hashable, so we can easily tell when two

states are the same.

▶ The transition function can be built on top of whatever state

system the user wants.

▶ My code + Maple will do the rest!



51/51

The End

Thank you for listening!


