

WIND AND ENERGY STORAGE

Optimal Control of Power Systems in Context of Wind Energy Generation and Storage

Shuyang Li

Overview

ad in the second state in 1955 beside the second state second state second

NEWERS

Average and a second

ALL DEPENDENCE

S BREEK

- Motivation
- Model
- Algorithms
- Methodology
- Data
- Results
- Further Exploration

MOTIVATION

Increasing reliance on wind energy

- Wind Energy Variance
 - Avoid waste
- Storing Wind
 - Storage/Unit Allocation

MOTIVATION – Dynamic Programming

Solving Bellman's Equation:

$$V(S^n) = \max_a(C(S^n, a) + \gamma \mathbb{E}\{V(S^{n+1})|S^n\})$$

MOTIVATION – ADP/RL

Monte Carlo Simulation

MOTIVATION - Literature

- "A Comparison of Approximate Dynamic Programming Techniques on Benchmark Energy Storage Problems: Does Anything Work?"
 - Jiang, Pham & Powell, 2014
- "Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Multidimensional Energy Storage Problems"
 - Salas & Powell, 2014

PROBLEM

- Algorithmic Performance
 - Q-Learning
 - SARSA(λ)
 - Step Sizes

Ryzhov, Frazier & Powell (2014)

Overview

ad in the second state in 1955 beside the second state second state second

NEWERS

Average and a second

理理理

S BREEK

Motivation

Model

- Algorithms
- Methodology
- Data
- Results
- Further Exploration

MODEL – Action Constraints

Storage capacity:

 $a_t^{WR} + a_t^{GR} \le R^{max} - R_t$ $a_t^{RD} + a_t^{RG} \le R_t$

Charging / Discharging $a_t^{WR} + a_t^{GR} \le \gamma^c$ $a_t^{RD} + a_t^{RG} \le \gamma^d$

Demand satisfied: • $a_t^{WD} + \eta^d a_t^{RD} + a_t^{GD} = D_t$ Flow Conservation $a_t^{WR} + a_t^{WD} \le E_t$

Maximal Wind Usage: • $a_t^{WD} = \min(D_t, E_t)$ • $a_t^{WR} = \min(R^{max} - R_t, E_t - a_t^{WD})$

MODEL – Transition Functions

Storage:

$$R_{t+1} = R_t + \phi^T a_t$$
; $\phi = (0, -1, 0, \eta^c, \eta^c, -1)$

Simplified in the stochastic model:

$$R_{t+1} = R_t - a_t^{RD} + a_t^{WR} + a_t^{GR} - a_t^{RG}$$

MODEL – Transition Functions

Wind:

- $E_{t+1} = E_t + \hat{E}_{t+1}$
- $\hat{E}_t \sim \mathcal{N}(\mu_E, \sigma_E^2)$

Price:

- $P_{t+1} = P_t + \hat{P}_{0,t+1} + 1_{\{u_{t+1} \le 0.031\}} \hat{P}_{1,t+1}$
- $\widehat{P}_{0,t} \sim \mathcal{N}(\mu_P, \sigma_P^2)$
- $\stackrel{\bullet}{\mathbb{P}}_{1,t} \sim \mathcal{N}(0, 50^2)$
- $u_t \sim \mathcal{U}(0,1)$

Demand:

$$D_t = \left[\max\left[0, 3 - 4 \sin\left(\frac{2\pi t}{T}\right) \right] \right]$$

MODEL – Objective Function

Reward Function:

 $C(S_t, a_t) = P_t D_t - P_t (a_t^{GR} - \eta^d a_t^{RG} + a_t^{GD}) - c^h R_{t+1}$

Objective Function:

$$F^{\pi^*} = \max_{\pi \in \Pi} \mathbb{E}\left[\sum_{t \in T} C(S_t, A_t^{\pi}(S_t))\right]$$

Overview

on of a state of the second second

NEARE NEARE NEARE NEARE NEARE NEAR

DEFERENCE

FIRE

- Motivation
- Model
- Algorithms
- Methodology
- Data
- Results
- Further Exploration

ALGORITHMS – Q-Learning

Action-value function Q

 $Q_{t+1}(S_t, a_t) = Q_t(S_t, a_t) + \alpha [R_{t+1} + \gamma \max_{a} Q_t(S_{t+1}, a) - Q_t(S_t, a_t)]$

Off-policy

- Selection policy: ε-greedy
- Evaluation policy: pure greedy

ALGORITHMS – Q-Learning

ALGORITHMS - SARSA

• SARSA [$S_t a_t R_{t+1} S_{t+1} a_{t+1}$]

 $Q_{t+1}(S_t, a_t) = Q_t(S_t, a_t) + \alpha [R_{t+1} + \gamma Q_t(S_{t+1}, a_{t+1}) - Q_t(S_t, a_t)]$

On-policy

Evaluation policy is selection policy

ALGORITHMS - SARSA

ALGORITHMS – SARSA(λ)

SARSA(λ) includes a backward pass along a path (eligibility trace)

$$Q_{t+1}(S,a) = Q_t(S,a) + \alpha \delta_t Z_t(s,a)$$

$$\delta_t = R_{t+1} + \gamma Q_t(S_{t+1}, a_{t+1}) - Q_t(S_t, a_t)$$

$$Z_{t} = \begin{cases} \gamma \lambda Z_{t-1} + 1, & S = S_{t}, a = a_{t} \\ \gamma \lambda Z_{t-1}, & otherwise \end{cases}$$

ALGORITHMS – SARSA(λ)

					-
++	+	IF			
	F	PT		L	7
++	7	\square	*	- 1	

		by o	ne-	step	S	arsa	
┝	-	\square	+				+
ŀ	-	+	+				+
t	1				×		
Г	100						

Action values increased

ACI	ion	value	es II	ncre	ased
by	Sar	sa(λ)	wit	th λ=	0.9
-	-		-	-	TT

A stimu and the family

		Т			_	_		
1	_			100			+	
			-	1	1 2		-	+
	•	-	1	1		×	1	+
		T			\sim	4	+	-

Figure 7.12: Gridworld example of the speedup of policy learning due to the use of eligibility traces.

Figure 7.10: Sarsa(λ)'s backup diagram.

Reinforcement Learning: An Introduction 2nd Ed. (Richard Sutton & Andrew Barto; 2014)

ALGORITHMS – Step Sizes

Updating equation:

 $Q_{t+1}(S_t, a_t) = Q_t(S_t, a_t) + \alpha [R_{t+1} + \gamma \max_a Q_t(S_{t+1}, a) - Q_t(S_t, a_t)]$

Rearranged:

 $Q_{t+1}(S_t, a_t) = (1 - \alpha)Q_t(S_t, a_t) + \alpha[R_{t+1} + \gamma \max_a Q_t(S_{t+1}, a)]$

ALGORITHMS – Step Sizes

ALGORITHMS – Step Sizes

- Constant : $\alpha = k$
- Harmonic : $\alpha = \frac{\overline{a}}{a+n}$
- 1/n : $\alpha = \frac{1}{n}$
- Ryzhov Formula
 - Ryzhov, Frazier & Powell (2014)

Overview

ad in the second state in 1955 beside the second state second state second

NENT C NEATE D VILL D VILL

ALTERNAL

del succes

S REED

- Motivation
- Model
- Algorithms
- Methodology
- Data
- Results
- Further Exploration

METHODOLOGY - Simulation

- 1 Deterministic Problem
- 17 Stochastic Problems
- 256 Sample Paths per stochastic problem
- Training iterations: transitions by Monte Carlo simulation
 - ε-greedy action selection
- Evaluation: Averaged over all sample paths

Overview

ad in the second state in 1955 beside the second state second state second

NEWERS

Average and a second

ALL DEPENDENCE

S REED

- MotivationModelAlgorithmsMethodology
- Data
- Results
- Further Exploration

DATA – Deterministic Parameters

- $R^{max} = 100$
- $\blacksquare R^{min} = 0$
- $R_0 = 0$
- $\bullet \eta^c = \eta^d = 0.90$
- $\gamma^c = \gamma^d = 0.10$

T = 2000

DATA – Deterministic Problems

DATA – Deterministic Problems

DATA – Deterministic Problems

DATA – Stochastic Parameters

- $R^{max} = 30$
- $\blacksquare R^{min} = 0$
- $R_0 = 25$
- $\bullet \eta^c = \eta^d = 1.00$
- $\gamma^c = \gamma^d = 5$

- $P^{max} = 70$
- $\bullet P^{min} = 30$

• $E^{max} = 7.00$ • $E^{min} = 1.00$

T = 100

DATA – Stochastic Problems

DATA – Stochastic Problems

DATA – Stochastic Problems

Overview

ad in the second state in 1955 beside the second state second state second

NEWERS

TRAFERENCE

ALL DEPENDENCE

S REED

- MotivationModelAlgorithmsMethodology
- Data
- Results
- Further Exploration

RESULTS – METRICS

Action Traces (Deterministic)

- Step Size over Updates
- Stored Energy over Time vs. Benchmark
- Performance over # of Training Iterations

DETERMINISTIC ACTIONS

DETERMINISTIC ACTIONS

DETERMINISTIC ACTIONS

DETERMINISTIC STORAGE

DETERMINISTIC PERFORMANCE

STEP SIZE TUNING

- Declining Step Sizes
- Tunable parameters
 - Harmonic: $\frac{a}{a+n}$
 - Ryzhov: Estimator update factor $\boldsymbol{\nu}$

HARMONIC STEP SIZES

HARMONIC PERFORMANCE

RYZHOV STEP SIZE

No-discount formula:

$$\alpha_{n-1} = \frac{(\bar{c}^n)^2}{(\bar{c}^n)^2 + (\bar{\sigma}^n)^2}$$

Tunable parameter:

$$\bar{c}^n = (1 - \nu_{n-1})\bar{c}^{n-1} + \nu_{n-1}\hat{c}^n$$
$$(\bar{\sigma}^n)^2 = (1 - \nu_{n-1})(\bar{\sigma}^{n-1})^2 + \nu_{n-1}(\hat{c}^n - \bar{c}^{n-1})^2$$

RYZHOV STEP SIZES

Ryzhov Step Sizes (Iteration 4M)

Ryzhov explanation

 It should even out at a certain constant depending on the variance in the rewards

 For this problem, the rewards are deterministic, so the variance measured is the variance in the different states that we reach/are in

RYZHOV STEP SIZES vs. ESTIMATOR VARIANCE

RYZHOV PERFORMANCE

AGGREGATE PARAMETERS

Resource , R_t		Wind, E_t			Price , P_t			
Label	Levels	ΔR	Levels	ΔE	\hat{E}_t	Levels	Process	$\hat{P}_{0,t}$
S1	61	0.50	13	0.50	$\mathcal{U}(-1,1)$	7	Sinusoidal	$N(0, 25^2)$
S2	61	0.50	13	0.50	$\mathcal{N}(0, 0.5^2)$	7	Sinusoidal	$\mathcal{N}(0, 25^2)$
S3	61	0.50	13	0.50	$\mathcal{N}(0, 1.0^2)$	7	Sinusoidal	$\mathcal{N}(0, 25^2)$
S4	61	0.50	13	0.50	$\mathcal{N}(0, 1.5^2)$	7	Sinusoidal	$\mathcal{N}(0, 25^2)$
S5	31	1.00	7	1.00	$\mathcal{U}(-1,1)$	41	1st-order + jump	$\mathcal{N}(0, 0.5^2)$
S6	31	1.00	7	1.00	$\mathcal{U}(-1,1)$	41	1st-order + jump	$\mathcal{N}(0, 1.0^2)$
S7	31	1.00	7	1.00	U(-1,1)	41	1st-order + jump	$\mathcal{N}(0, 2.5^2)$
S 8	31	1.00	7	1.00	$\mathcal{U}(-1,1)$	41	1st-order + jump	$\mathcal{N}(0, 5.0^2)$
S9	31	1.00	7	1.00	$\mathcal{N}(0, 0.5^2)$	41	1st-order + jump	$\mathcal{N}(0, 5.0^2)$
S10	31	1.00	7	1.00	$\mathcal{N}(0, 1.0^2)$	41	1st-order + jump	$N(0, 5.0^2)$
S11	31	1.00	7	1.00	$\mathcal{N}(0, 1.5^2)$	41	1st-order + jump	$N(0, 5.0^2)$
S12	31	1.00	7	1.00	$\mathcal{N}(0, 2.0^2)$	41	1st-order + jump	$N(0, 5.0^2)$
S13	31	1.00	7	1.00	$\mathcal{N}(0, 0.5^2)$	41	1st-order + jump	$\mathcal{N}(0, 1.0^2)$
S14	31	1.00	7	1.00	$\mathcal{N}(0, 1.0^2)$	41	1st-order + jump	$\mathcal{N}(0, 1.0^2)$
S15	31	1.00	7	1.00	$\mathcal{N}(0, 1.5^2)$	41	1st-order + jump	$\mathcal{N}(0, 1.0^2)$
S16	31	1.00	7	1.00	$\mathcal{N}(0, 0.5^2)$	41	1st-order	$\mathcal{N}(0, 1.0^2)$
S17	31	1.00	7	1.00	$\mathcal{N}(0, 1.0^2)$	41	1st-order	$\mathcal{N}(0, 1.0^2$
S18	31	1.00	7	1.00	$\mathcal{N}(0, 1.5^2)$	41	1st-order	$\mathcal{N}(0, 1.0^2$
S19	31	1.00	7	1.00	$\mathcal{N}(0, 0.5^2)$	41	1st-order	$\mathcal{N}(0, 5.0^2$
S20	31	1.00	7	1.00	$\mathcal{N}(0, 1.0^2)$	41	1st-order	$\mathcal{N}(0, 5.0^2$
S21	31	1.00	7	1.00	$\mathcal{N}(0, 1.5^2)$	41	1st-order	$\mathcal{N}(0, 5.0^2$

Table 2: Stochastic test problems.

AGGREGATE STORAGE

Explanations

- Ryzhov flattens out very noticeably because the step size is too high, it repeatedly overcompensates and bounces around.
- Harmonic looks like it's still getting better! Need to have it decline more slowly / not go to 0 so quickly. Ryzhov harmonic constant maybe?

STEP SIZE PERFORMANCE

Overview

s de la constant de l

ANNANAN

S REED

- Motivation
 Model
 Algorithms
 Methodology
- Data
- Results
- Further Exploration

FURTHER EXPLORATION

- Additional renewable energy sources / storage devices
- Finer levels of discretization
- Remove wind usage restriction
- Additional algorithms
 - Actor-Critic
 - Gradient Descent (Linear/Non-Linear VFAs)

UDE C UDE C OURE CURE CALFE TY EU FUREU FUREU

Questions?