PRICING LOS ANGELES FREEWAYS

Shuyang Li Max Kaplan

TRAFFIC IS A PROBLEM

SOLUTION: PAY LANES

Repurpose existing carpool lanes

Generate revenue and reduce congestion!

GOVERNMENT OBJECTIVE

Now that we have pay lanes, maximize revenue

Simply the freeway into two lanes:

Overall traffic volume is constant but use of pay lane is variable

We model 3 different time periods:

AM Rush Hour (7:00 – 9:00 AM) PM Rush Hour (5:00 – 8:00 PM) Graveyard Shift (2:00 – 4:00 AM)

In each 10-minute interval, the government sets the price of the pay lane

Then, the government observes demand/revenue

Lookup Table (Lookup Table, Online)

Linearized Logistic Belief (Linearized Logistic Belief, Online)

OFFLINE / ONLINE LEARNING

Clearly, the problem is online We collect revenue with each sample

But there is value in an offline simulation!

Offline:
$$\zeta = max_P^N(P \times D(P))$$

Online: $\zeta = \sum_{n=0}^N \gamma^n \times P \times D(P)$

DEMAND / REVENUE FUNCTION

$$D(P) = \frac{M}{1 + e^{-\mu_1 + \mu_2 P}}$$

$$\begin{array}{c}
10\ 000 \\
8000 \\
6000 \\
4000 \\
2000 \\
5 \ 10 \ 15 \ 20
\end{array}$$

$$R(P) = P \times D(P)$$

LOOKUP TABLE

Discretize price in \$0.10 increments (\$0-\$20)

Prior:
$$\theta_x^0 = -\frac{\beta}{200}x + \beta$$

Observation: $R^n = R(P) + \epsilon^n$, $\epsilon^n \sim N(0, \sigma^2)$

Covariance matrix:

 $Cov^{0}(R(P), R(P')) = \sigma^{2}e^{-\alpha|P-P'|}$, where $Var^{0}(R(P)) = \sigma^{2}$

LOOKUP TABLE

UPDATING OUR BELIEF MODEL (from Book, 2.2.3)

$$\begin{aligned} \theta^{n+1}(x) &= \theta^n + \frac{W^{n+1} - \theta^n_x}{\lambda^W + \Sigma^n_{xx}} \Sigma^n e_x, \\ \Sigma^{n+1}(x) &= \Sigma^n - \frac{\Sigma^n e_x (e_x)^T \Sigma^n}{\lambda^W + \Sigma^n_{xx}}. \end{aligned}$$

LOOKUP TABLE

Test the following policies:

Knowledge Gradient w/ Correlated Beliefs Interval Estimation (Offline) Upper Confidence Bound 1 (Online) Pure Exploitation

-2

- 4

Linearizing a logistic belief model

$$D(P) = \frac{M}{1 + e^{-\mu_1 + \mu_2 P}}$$

$$D^n = D(P) + \epsilon^n$$

$$\overline{D^n} = -\mu_1 + \mu_2 P = ln(\frac{M - (D^n - \epsilon^n)}{(D^n - \epsilon^n)})$$

$$\frac{\text{Proof}}{D^{n}} = \frac{M}{1 + e^{-\mu_{1} + \mu_{2}P}} + \epsilon^{n}$$

$$(D^{n} - \epsilon^{n}) + (D^{n} - \epsilon^{n}) \times e^{-\mu_{1} + \mu_{2}P} = M$$

$$e^{-\mu_{1} + \mu_{2}P} = \frac{M - (D^{n} - \epsilon^{n})}{(D^{n} - \epsilon^{n})}$$

$$-\mu_{1} + \mu_{2}P = ln(\frac{M - (D^{n} - \epsilon^{n})}{(D^{n} - \epsilon^{n})})$$

DIFFERENCES FROM LOOKUP TABLE

- **Continuous Price**
- **Prior and Covariance Creation**

UPDATING OUR DEMAND MODEL (from Book, 8.2)

$$\begin{split} \theta^{n} &= \theta^{n-1} + \frac{1}{\gamma^{n}} B^{n-1} x^{n} \varepsilon^{n}, \\ \gamma^{n} &= 1 + (x^{n})^{T} B^{n-1} x^{n}. \\ B^{n} &= [(X^{n})^{T} X^{n}]^{-1} \\ B^{n} &= B^{n-1} - \frac{1}{\gamma^{n}} (B^{n-1} x^{n} (x^{n})^{T} B^{n-1}). \end{split}$$

Test the following policies:

Knowledge Gradient w/ Correlated Beliefs Interval Estimation (Offline) Upper Confidence Bound 1 (Online) Pure Exploitation

ANTICIPATED CHALLENGE

Using revenue instead of demand in learning policies for linear belief model (and coding thereof)

EXTENSIONS OF OUR MODEL

Maximum Overall Traffic not constant Add congestion factor into objective function:

$$\zeta = P \times D(P) + \int_{M-D(P)}^{M} \psi(x) dx$$

Additional variables – weather conditions, events, bidirectional traffic, etc.

IMPLICATIONS

