
Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

1

	
	
	
	
	
	
	
	
	
	
	

Pricing	Los	Angeles	Expressways	
	

	

Shuyang	Li	
Max	A.	Kaplan	

	
	

May	13,	2014	
ORF	418	|	Professor	Warren	Powell	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

2

Table	of	Contents	
	
1.		Introduction	
	
2.		Mathematical	Model	
	 2.1		Lookup	Table	
	 	 2.1.1		Offline	Lookup	Table	
	 	 2.1.2		Online	Lookup	Table	
	 2.2		Local	Linear	Approximation	of	Logistic	Belief	Model	
	 	 2.2.1		Offline	Linear	Belief	
	 	 2.2.2		Online	Linear	Belief	
	
3.		Experimental	Policies	(Algorithms)	
	 3.1		Pure	Exploitation	
	 3.2		Constrained	Exploration	
	 3.3		Interval	Estimation	
	 3.4		Upper	Confidence	Bound	
	 3.5		Knowledge	Gradient	with	Correlated	Beliefs	
	
4.		Experimental	Design	
	 4.1		Simplifying	Assumptions	
	 4.2		Experimental	Setup	
	 	 4.2.1		Prior	Construction	
	 	 4.2.2		Truth	Generation	
	 	 4.2.3		Prior	Data	and	Parameters	
	
5.		Experimental	Results	
	 5.1		Lookup	Table	
	 	 5.1.1		Offline	Lookup	Table	
	 	 5.1.2		Online	Lookup	Table	
	 5.2		Local	Linear	Approximation	of	Logistic	Belief	Model	
	 	 5.2.1		Offline	Linear	Belief	
	 	 5.2.2		Online	Linear	Belief	
	
6.		Conclusion	
	 6.1		Summary	
	 6.2		Major	Limitations	
	 6.3		Possible	Extensions	
	
Appendix:	Code	
	
	
	
	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

3

1.	Introduction	
	
In	Los	Angeles,	the	Metro	created	Express	Lanes	on	the	I‐110	Freeway	about	a	year	and	a	
half	ago.	The	Express	Lanes	are	lanes	(one	or	two	each	direction	depending	where)	parallel	
to	the	rest	of	the	freeway	where	the	cost	to	enter	changes	dynamically	depending	on	how	
much	time	it	would	save	you.	These	lanes	were	converted	from	existing	carpool	lanes,	as	
the	carpool	lanes	were	being	underutilized	during	periods	of	high	traffic	(rush	hours).	
	
The	purpose	of	these	pay	lanes	were	twofold	–	(1)	a	source	of	revenue	in	part	to	help	
underwrite	the	cost	of	this	massive	public	works	undertaking	and	(2)	to	reduce	traffic	
overall	by	helping	to	distribute	traffic	into	what	were	underutilized	carpool	lanes.	The	
objective	function	for	the	government	is	a	combination	of	revenue	(#	of	cars	per	unit	time	
in	the	express	lane	*	price)	and	overall	traffic	flow	(#	of	cars	per	unit	time	total).	However,	
we	will	model	only	the	revenue	portion.	
	
At	any	given	time,	Metro	chooses	at	what	price	to	set	the	express	lanes.	Both	price	and	time	
are	continuous	but	we	can	discretize.	Metro	then	observes	the	use	of	the	express	lane	(and	
hence	the	revenue)	–	and	changes	the	price	to	learn	more	(the	cost	of	observing	
information	is	zero	–	the	Fastrak	sensor	in	the	car	measures	express	lane	traffic	and	we	
have	a	distribution	for	general	lane	traffic).		
	
This	is	ultimately	a	bandit	problem‐‐	online	learning	–	especially	so	in	this	case	since	the	
express	lanes	started	out	as	a	one‐month	experiment	to	see	how	well	they	worked	before	
continuing	their	use	in	subsequent	years.	Although	this	is	online	learning,	we	will	also	do	it	
offline	too	to	see	how	much	slower	(or	if)	online	finds	the	optimal	price.	Also,	since	this	was	
an	experiment	to	see	if	the	Express	Lane	program	should	be	spread	to	other	LA	freeways,	
we	can	treat	this	as	an	offline	problem	because,	if	the	experiment	worked	so	well	that	it	
spread	across	LA,	California,	or	the	nation,	the	revenues	from	this	one	freeway	for	one	
month	could	be	negligible.	
	
In	this	project	we	will	first	use	a	lookup	table	belief	model	with	a(n	unknown)	logistic	truth,	
and	then	we	will	use	a	local	linear	approximation	of	a	logistic	belief	model,	with	a	quadratic	
revenue	curve	fitted	to	the	local	maximum	of	the	true	logistic	revenue	curve.	
	
	
	
	
	
	
	
	
	
	
	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

4

2.	Mathematical	Model	
	
We	will	start	out	with	a	basic	offline	model.	We	will	be	implementing	a	lookup	table	belief	
model	for	this	problem.	Then,	we	will	adjust	our	lookup	table	belief	model	for	online	
learning,	as	our	original	problem	demands.	
	
Then,	we	will	use	a	logistic	model	for	demand,	which	we	will	approximate	using	a	linear	
belief	model	in	quadratic	form	for	a	limited	set	of	alternatives.	
	

	
2.1	Lookup	Table	
	
In	this	model,	the	government	has	constructed	the	lanes	already,	and	thus	its	objective	is	to	
maximize	the	revenue	from	these	lanes.	We	assume	the	government	has	two	pieces	of	
information:	(1)	that	at	P=$0.00,	the	traffic	is	uniformly	distributed	across	the	pay	and	
regular	lanes,	and	(2)	that	demand	for	the	pay	lane	decreases	as	one	increases	the	price.	
	
	
2.1.1	Offline	Lookup	Table	
	
Objective	Function:	
	

ߞ ൌ ݔܽ݉
ேॱగሾߤ

ேሿ	
	
where	ߤ ൌ ܴሺܲሻ ൌ ܲ ൈ 	us)	to	(unknown	function	demand	the	is	ሺܲሻܦ	and	ሺܲሻ,ܦ
representing	the	traffic	which	decides	to	take	the	pay	lane.	
	
Alternatives:	
The	alternatives	are	the	prices	of	the	pay	lane.	We	will	discretize	in	$0.10	increments	from	
$0	to	$20.	This	gives	us	201	price	alternatives.	
	
Observed	Values:	
In	each	experiment,	we	set	a	price,	P,	and	observe	revenue:	
	

ܴ ൌ ܴሺܲሻ ߳, 	߳~ܰሺ0, 	ଶሻߪ
	
Belief	Model:	
Our	first	belief	model	is	a	lookup	table.	Our	prior	is	a	vector	ߠ	with	201	entries,	ߠ௫		from	
x=0	($0.00)	to	x=200	($20.00).	
	
We	have	a	covariance	function	to	create	the	initial	covariance	matrix:	
	

,൫ܴሺܲሻݒܥ ܴሺܲᇱሻ൯ ൌ ଶ݁ିఈหିߪ
ᇲห	

	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

5

where	ߪଶ ൌ ,ଶߪ	adjust	will	We	ሺܴሺܲሻሻ.ݎܸܽ 	California	the	from	data	traffic	public	fit	to	ߙ
Department	of	Transportation.	
	
We	will	have	the	true	demand	function:	
	

ሺܲሻܦ ൌ
ܯ

1 ݁ିఓభାఓమ
	

	

ܯ ൌ
ߚ
2
ሺ1 ݁ିఓభሻ	

	
	.period	sample	the	during	expressway	the	over	traffic	peak	the	being	ߚ
	
Prior:	
The	prior	is	constructed	as	follows:	
	

ߠ ൌ ቐ
0.10 ൬െ

ߚ
10 ܲ௫

 ൰ߚ 0 10 ܲ௫

																							0 																				10 ܲ௫ ൏ 200
	

	
This	is	constructed	as	if	the	government	has	only	two	key	prior	pieces	of	information:	(1)	
that	the	demand	for	the	express	lane	at	x=0	(P=$0.00)	is	half	of	overall	traffic,	following	
from	uniform	distribution	of	traffic	given	non‐differentiated	pay/regular	lanes,	and	(2)	that	
the	demand	decreases	as	price	increases,	reaching	0	at	some	maximum	price.	The	
government	here	assumes	a	linear	decline	for	the	demand.	
	
For	AM	Rush	Hour,	the	government	assumes	$20.00	for	the	maximum	price;	for	PM	Rush	
Hour,	the	government	assumes	$10.00	for	the	maximum	price;	for	Graveyard	Shift,	the	
government	assumes	$2.00	for	the	maximum	price.	
	
Updating:	
Since	we	have	a	covariance	matrix,	we	are	using	Bayesian	Updating	with	Correlated	Beliefs:	
	

ሻାଵሺߠ ൌ ߠ
ܹାଵ െ ߠ

ௐߣ Σ
Σ݁	

	

Σାଵሺሻ ൌ Σ െ
Σ݁ሺ݁ሻ்Σ

ௐߣ Σ
	

	
Tested	Policies:	
Knowledge	Gradient	with	Correlated	Beliefs	
Interval	Estimation	
Pure	Exploitation	
Constrained	Exploration	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

6

Experimental	Procedure:	
We	will	test	the	policies	for	three	distinct	time	periods	of	the	business	day:	Morning	Rush	
(7:00	AM	‐	9:00	AM),	Evening	Rush	(5:00	PM	‐	8:00	PM),	and	Graveyard	Shift	(4:00	AM	‐	
5:00	AM).	We	will	choose	the	price	every	10	minutes	and	we	will	simulate	each	time	period	
over	one	month	(20	business	days),	giving	us	a	budget	of	240	for	Morning	Rush,	360	for	
Evening	Rush,	and	120	for	Graveyard	Shift.	
	
Each	time	period	has	a	different	demand	function.	We	will	obtain	the	maximum	overall	
traffic	volume	through	traffic	data.	We	will	also	obtain	ߤଵ, 	be	will	There	data.	traffic	from	ଶߤ
higher	demand	at	higher	prices	during	rush	hour.	
	
For	each	simulation,	we	will	start	with	one	of	the	time	periods	(splitting	it	up	into	three	
problems).	We	will	set	the	demand	function	for	that	time	period	(taken	from	traffic	data).	
We	will	then	loop	through	N	trials,	where	N	is	the	budget	for	that	time	period.	For	each	
iteration,	the	observation	is	found	by		

	
ܴ ൌ ܴሺܲሻ ߳, 	߳~ܰሺ0, 	ଶሻߪ

	
and	we	will	update	our	belief	model.	After	our	budget	has	been	exhausted,	we	return	the	
value	of	the	function	and	the	final	opportunity	cost:	
	

Ω ൌ ฬmax
∈

ேߠ െmax
∈

	ฬߤ

	
We	will	run	the	simulation	T	times	(100	for	UCB,	IE,	Exploitation,	Exploration;	10	for	KG	
due	to	processing	power	constraints)	and	obtained	the	average	final	opportunity	cost:	
	

Ωഥ ൌ
1
ܶ
Ω௧

்

௧ୀଵ

	

	
	
2.1.2	Online	Lookup	Table	
	
We	follow	the	same	principles	as	offline,	except	with	the	online	objective	function	and	
online	policies	(Online	KGCB,	Online	UCB,	Pure	Exploitation,	Constrained	Exploration).	Our	
simulations	will	also	be	online.	
	
Objective	Function	

ߞ ൌ max
∈

ॱగߛܴ
ே

ୀ

	

	
where	ߛ ൌ 1	in	our	case,	since	each	day	is	worth	the	same	to	us.	
	
Alternatives:	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

7

Refer	to	Alternatives	of	2.1.1	Offline	Lookup	Table	
	
Observed	Values:	
Refer	to	Observed	Values	of	2.1.1	Offline	Lookup	Table	
	
Belief	Model:	
Refer	to	Belief	Model	of	2.1.1	Offline	Lookup	Table	
	
	
Prior:	
Refer	to	Prior	of	2.1.1	Offline	Lookup	Table	
	
Updating:	
Refer	to	Updating	of	2.1.1	Offline	Lookup	Table	
	
Tested	Policies:	
Knowledge	Gradient	with	Correlated	Beliefs	
Upper	Confidence	Bound	
Pure	Exploitation	
Constrained	Exploration	
	
Experimental	Procedure:	
Refer	to	Experimental	Procedure	of	2.1.1	Offline	Lookup	Table.	
	
However,	instead	of	comparing	opportunity	costs,	we	store	a	value	for	the	cumulative	
revenue.	Following	each	sample	iteration,	we	add	the	observed	revenue	to	the	cumulative	
revenue.	We	will	compare	policies	using	cumulative	revenue	instead	of	opportunity	cost.	
	

	
2.2	Local	Linear	Approximation	of	Logistic	Belief	Model	
	
In	this	model,	we	assume	that	the	government	has	access	to	an	additional	key	piece	of	
information:	(3)	Demand	does	not	decrease	linearly	with	price;	at	a	certain	price	point,	the	
demand	decreases	sharply.	Thus,	the	government	believes	the	truth	to	be	logistic.	However,	
the	government	does	not	require	a	full	fitted	logistic	curve,	but	is	satisfied	with	a	linear	
approximation	of	the	curve	within	a	range	around	the	true	maximum.	As	such,	the	
government	here	proceeds	with	a	linear	belief	model	for	a	quadratic	revenue	function	
approximation.	We	will	take	a	quadratic	truth	as	well,	best	fitting	the	logistic	revenue	curve	
from	our	Lookup	Table	model.	
	
2.2.1	Offline	Linear	Belief	Model	
	
Objective	Function:	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

8

ߞ ൌ ݔܽ݉
ேॱగሾߤ

ேሿ	
	
where	ߤ ൌ ܴሺܲሻ,	representing	the	quadratic	approximation	of	the	revenue	curve	about	the	
maximum.	
	
Alternatives:	
The	alternatives	are	the	set	of	ݔ ൌ ሾ1 ܲ ܲ

ଶሿ
்	with	P	between	$0.00	and	$20.00	

corresponding	to	n	between	1	and	201,	discretized	in	$0.10	increments.	Each	vector	
ሾ1 ܲ ܲ

ଶሿ	is	the	set	of	variables	representing	the	chosen	price	in	the	linear	model:	
	

ܴሺܲሻ ൌ ଵߤ	 ଶܲߤ 	ଷܲଶߤ
	
Observed	Values:	
In	each	experiment,	we	set	a	price,	P,	and	observe	revenue:	
	

ܴ ൌ ܴሺܲሻ ߳, 	߳~ܰሺ0, 	ଶሻߪ
	
Belief	Model:	
In	this	model,	we	will	use	a	linear	belief	model	based	on	a	quadratic	truth.	This	quadratic	
revenue	curve	is	meant	to	model	a	section	of	the	true	revenue	function	(based	on	a	logistic	
demand	curve	as	defined	in	2.1.1	Offline	Lookup	Table)	around	its	maximum:	
	

ܴሺܲሻ ൌ ଵߤ	 ଶܲߤ 	ଷܲଶߤ
	
Our	true	quadratic	revenue	curve	is	obtained	by	finding	a	set	of	points	on	our	logistic	truth‐
based	revenue	curve	around	its	maximum	and	running	a	quadratic	regression.	
	
Prior:	
We	construct	the	prior	and	the	prior	covariance	matrix		Σ.	First,	we	assume	the	
government	has	the	same	information	as	in	2.1	Lookup	Table,	but	with	one	additional	key	
piece	of	information:	(3)	demand	does	not	decrease	linearly,	and	there	is	a	steep	decrease	
at	some	price	point,	making	the	true	demand	logistic.	The	government	has	elected	to	use	a	
linear	belief	model	(quadratic	function)	to	approximate	revenue	at	and	near	its	maximum,	
and	thus	creates	a	family	of	4	likely	quadratic	curves,	each	with	their	individual	ߤଵ, ,ଶߤ 	ଷߤ	
values.	The	point	estimate	of	ߤଵ, ,ଶߤ ,ଵߤfamily	the	of	mean	the	is	ଷߤ	 ,ଶߤ 	the	and	ଷ,ߤ	
covariance	matrix	is	found	as	such:	
	

,ߤ൫ݒܥ ൯ߤ ൌ
1

ܰ െ 1
ሺݔ െ ݔሻሺݔ̅ െ ሻݔ̅

ே

ୀଵ

	

	
Updating:	
We	are	using	the	updating	method	for	linear	belief	model	(section	8.2	of	Optimal	Learning):	
We	have	the	matrix	of	alternative	choices:	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

9

ܺ ൌ
ଵݔ
ଵ ⋯ ଷݔ

ଵ

⋮ ⋱ ⋮
ଵݔ
 ⋯ ଷݔ

	

	
as	well	as	the	matrix:	
	

ܤ ൌ ሾሺܺሻ்ሺܺሻሿିଵ	
	
We	update	the	following	matrices:	
	

ߠ ൌ ିଵߠ
1
ߛ

ߝ					,ߝݔିଵܤ ൌ ݕ െ 	ିଵݔିଵߠ

	

ܤ ൌ ିଵܤ െ
1
ߛ

ሺܤିଵݔሺݔሻ்ܤିଵሻ	

	
ߛ ൌ 1 ሺݔሻ்ܤିଵݔ	

	

Σఏ, ൌ Σఏ,ିଵ െ
1

ߛఢଶߪ
ሺΣఏ,ିଵݔሺݔሻ்Σఏ,ିଵሻ	

	
Tested	Policies:	
Knowledge	Gradient	with	Correlated	Beliefs	
Upper	Confidence	Bound	
Pure	Exploitation	
Constrained	Exploration	
	
Experimental	Procedure:	
We	will	test	the	policies	for	three	distinct	time	periods	of	the	business	day:	Morning	Rush	
(7:00	AM	‐	9:00	AM),	Evening	Rush	(5:00	PM	‐	8:00	PM),	and	Graveyard	Shift	(4:00	AM	‐	
5:00	AM).	We	will	choose	the	price	every	10	minutes	and	we	will	simulate	each	time	period	
over	one	month	(20	business	days),	giving	us	a	budget	of	240	for	Morning	Rush,	360	for	
Evening	Rush,	and	120	for	Graveyard	Shift.	
	
Each	time	period	has	a	different	true	revenue	function,	which	we	found	earlier	in	2.1.1	
Offline	Lookup	Table.	We	take	these	revenue	functions	and	fit	a	quadratic	function	
around	each	function’s	maxima	to	obtain	the	true	linear	approximations	for	a	logistic	belief	
model.	Using	these	approximations,	we	can	utilize	our	linear	belief	model	for	simulations.	
	
For	each	simulation,	we	will	start	with	one	of	the	time	periods	(splitting	it	up	into	three	
problems).	We	will	set	the	revenue	function	for	that	time	period.	We	will	then	loop	through	
N	trials,	where	N	is	the	budget	for	that	time	period.	For	each	iteration,	the	observation	is	
found	by		

	
ܴ ൌ ܴሺܲሻ ߳, 	߳~ܰሺ0, 	ଶሻߪ

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

10

	
and	we	will	update	the	belief	model.	After	our	budget	has	been	exhausted,	we	return	the	
value	of	the	function	and	the	final	opportunity	cost:	
	

Ω ൌ ฬmax
∈

ேߠ െmax
∈

	ฬߤ

	
We	will	run	the	simulation	T	times	(100	for	UCB,	IE,	Exploitation,	Exploration;	10	for	KG	
due	to	processing	power	constraints)	and	obtained	the	average	final	opportunity	cost:	
	

Ωഥ ൌ
1
ܶ
Ω௧

்

௧ୀଵ

	

	
	
2.2.2	Online	Linear	Belief	Model	
	
We	follow	the	same	principles	as	offline,	except	with	the	online	objective	function.	Our	
simulations	will	also	be	online.	
	
Objective	Function	

ߞ ൌ max
∈

ॱగߛܴ
ே

ୀ

	

	
where	ߛ ൌ 1	in	our	case,	since	each	day	is	worth	the	same	to	us.	
	
Alternatives:	
Refer	to	Alternatives	of	2.2.1	Offline	Linear	Belief	Model	
	
Observed	Values:	
Refer	to	Observed	Values	of	2.2.1	Offline	Linear	Belief	Model	
	
Belief	Model:	
Refer	to	Belief	Model	of	2.2.1	Offline	Linear	Belief	Model	
	
Prior:	
Refer	to	Prior	of	2.2.1	Offline	Linear	Belief	Model	
	
Updating:	
Refer	to	Updating	of	2.2.1	Offline	Linear	Belief	Model	
	
Tested	Policies:	
Knowledge	Gradient	with	Correlated	Beliefs	
Upper	Confidence	Bound	
Pure	Exploitation	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

11

Constrained	Exploration	
	
Experimental	Procedure:	
Refer	to	Experimental	Procedure	of	2.2.1	Offline	Linear	Belief	Model.	
	
However,	instead	of	comparing	opportunity	costs,	we	store	a	value	for	the	cumulative	
revenue.	Following	each	sample	iteration,	we	add	the	observed	revenue	to	the	cumulative	
revenue.	We	will	compare	policies	using	cumulative	revenue	instead	of	opportunity	cost.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

12

3.	Experimental	Policies	(Algorithms)	
	
For	offline	learning,	we	will	use	Pure	Exploitation	as	a	baseline	and	compare	it	with	
Constrained	Exploration,	Interval	Estimation,	and	Knowledge	Gradient	with	Correlated	
Beliefs.	For	our	offline	Linear	Belief	Model,	we	will	be	using	Upper	Confidence	Bound	in	
place	of	Interval	Estimation.	
	
For	online	learning,	we	will	use	Pure	Exploitation	again	as	a	baseline	and	compare	it	with	
Constrained	Exploration,	Upper	Confidence	Bound,	and	Online	Knowledge	Gradient	with	
Correlated	Beliefs.	
	

3.1	Pure	Exploitation	
	
The	pure	exploitation	heuristic	always	chooses	the	price	ܲగ	that	we	estimate	to	yield	the	
highest	revenue	at	that	point	in	time.	The	policy	is	described	by:	
	

 ൌ argmax
∈

	ߤ

	
where	ߤ	represents	our	belief	about	the	revenue	yielded	by	price	p	at	time	n.	
	
We	use	pure	exploitation	as	a	baseline	policy	against	which	we	compare	the	other	policies.	
It	is	generally	more	useful	in	an	online	setting	than	offline;	in	offline,	ignoring	uncertainty	
can	cause	our	learning	process	to	stagnate	around	a	suboptimal	subset	of	the	truth.	As	a	
result	of	the	stagnation,	it	can	be	difficult	to	lower	opportunity	costs.	Exploitation	ignores	
uncertainty	and	correlated	beliefs,	which	makes	it	suboptimal	for	our	belief	model.	
	

3.2	Constrained	Exploration	
	
We	base	our	constrained	exploration	policy	on	the	pure	exploration	heuristic.	This	
heuristic	assigns	an	equal	probability	to	each	alternative,	and	the	price		is	chosen	at	
random	given	this	probability	distribution.	
	
We	see	pure	exploration	as	an	effective	policy	in	our	offline	Lookup	Table	and	Linear	Belief	
Models,	as	it	allows	for	more	data	points	to	which	we	fit	our	estimated	curve.	However,	in	
an	online	situation,	pure	exploration	is	relatively	ineffective;	we	prioritize	cumulative	
revenue	and	pure	exploration	often	results	in	poor	revenue	for	any	given	sample	period.	
	
We	constrain	pure	exploration	in	two	ways.	(1)	We	do	not	select	 ൌ $0.00,	because	it	
invariably	results	in	zero	revenue—and	the	government	knows	this.	(2)	In	our	Linear	
Belief	Model,	we	constrain	exploration	to	only	choose	from	the	domain	of	price	alternatives	
in	which	the	estimated	revenue	is	nonnegative,	as	negative	revenues	cannot	logically	occur	
during	the	sampling.	This	is	a	defect	on	the	part	of	our	linear	belief	model;	because	we	
assume	a	base	truth	that	is	logistic	in	nature,	our	quadratic	approximation	of	the	maximum	
only	covers	a	small	subset	of	possible	prices	and	results	in	a	steep	decline	into	negative	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

13

revenues.	We	acknowledge	the	main	drawback	of	our	second	constraint—if	our	prior	is	
narrower	than	the	true	quadratic	function,	then	our	exploration	will	ignore	some	
positively‐valued	prices.	However,	our	belief	model	is	based	on	the	belief	that	those	points	
outside	of	the	prior	will	lead	to	true	revenues	far	below	the	maximum.	Thus,	the	drawback	
is	only	relevant	if	our	prior	is	significantly	narrower	than	the	truth.	We	assert	that	the	
government	is	confident	enough	in	the	relative	accuracy	of	its	prior	to	accept	this	possible	
weakness.	
	
We	note	that	given	these	constraints,	the	explored	alternative	is	still	chosen	based	on	a	
uniform	probability	distribution	over	the	valid	subset	of	alternatives.	
	

3.3	Interval	Estimation	
	
Interval	estimation	chooses	the	sample	price	as	such	:	
	

 ൌ argmax
∈

ߤ 	ߪఈݖ

	
We	have	ݖఈ	as	a	tunable	parameter	and	ߪ	as	the	standard	deviation	of	the	distribution	of	
our	belief	at	the	time	n.	The	term	ݖఈߪ	represents	our	“uncertainty	bonus”,	which	is	higher	
for	alternatives	which	have	been	infrequently	chosen	or	not	chosen	at	all.	
	
This	policy	depends	heavily	on	correct	tuning	of	ݖఈ.	We	tune	the	policy	and	then	use	it	as	
one	of	the	main	competitors	in	the	offline	Lookup	Table	model,	as	interval	estimation	has	
been	empirically	shown	to	perform	very	well.	
	

3.4	Modified	Upper	Confidence	Bound	
	
The	problem	with	normal	UCB	policies	is	that	they	experiment	with	every	alternative	
before	balancing	between	exploration	and	exploitation.	Our	budgets	are	120,	240,	and	360	
and	we	have	201	alternatives.	Obviously	it	would	not	be	efficient	to	try	all	201	prices	in	an	
online	environment	with	such	a	small	budget.	So	we	decided	to	create	our	own	modified	
UCB	policy.	

First,	we	explore	over	the	entire	range	of	prices	where	we	are	searching	for	the	maximum	
revenue	($0	to	$20	for	AM,	$0	to	$10	for	AM,	and	$0	to	$2	for	Graveyard	shift).	Doing	this	
allows	us	to	make	sure	our	prior	is	fairly	accurate	before	we	move	on	to	the	actual	UCB	
policy.	But	we	still	have	the	problem	that	UCB	tries	every	alternative	at	least	once.	We	must	
decrease	the	range	of	alternatives	–	even	more	than	the	assumptions	above.	To	do	this,	we	
find	the	variance	of	the	revenues	observed	from	the	first	step	of	exploration.	We	then	
create	a	“net”	around	our	current	best	estimate	of	a	price	that	maximizes	revenue.	Higher	
variance	in	exploration	means	a	wider	net.	Hopefully,	the	“net”	would	narrow	the	
alternatives	enough	to	use	UCB	while	still	“catching”	the	true	maximum	somewhere	in	the	
range.	

Then,	we	run	UCB	in	this	narrow	range.	We	found	that	an	exploration	of	30	trials	at	the	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

14

beginning	to	be	the	right	amount.	Our	net	size	was	the	prices	that	correspond	to	1/4	of	the	
standard	deviation	of	revenues	above	and	below	our	estimate	maximum.	So	our	UCB	runs	
in	3	distinct	steps.	First,	exploration.	Then,	exploration	(try	every	alternative)	within	our	
net.	Then,	the	UCB	mostly	exploits.	

This	policy	is	only	really	an	advantage	when	we	have	a	decent	prior.	If	we	had	an	
uninformative	prior,	we	could	“catch”	that	during	the	first	exploration	step	seeing	how	
much	our	estimates	changed.	In	this	case,	the	net	would	be	too	big	and	we	would	be	back	to	
a	standard	UCB	policy	that	tries	everything.	If	our	prior	were	wrong	and	we	didn’t	explore	
enough	to	begin	with,	we	would	cut	off	the	true	maximum	from	our	future	search.	However,	
we	found	a	budget	of	30	for	this	stage	to	be	enough	for	a	relatively	accurate	prior.	

	
3.5	Knowledge	Gradient	with	Correlated	Beliefs	
	
As	our	belief	model	relies	on	correlated	beliefs,	we	use	the	Knowledge	Gradient	policy	with	
Correlated	Beliefs.	The	offline	KGCB	value	is	computed	as	such	(5.3	in	Optimal	Learning):	
	

ߥ
ீ, ൌ ॱሾmax

ᇲ∈
ᇲߤ
ାଵ െ max

ᇲ∈
ᇲߤ
 ሿ	

	
For	the	sample	period	n,	we	define	two	vectors:	
	

ܽ ൌ 	ߤ
	

ܾ ൌ
Σ݁

ඥߣௐ Σ
	

	
We	use	these	in	the	function:	
	

݄ሺݖሻ ൌ ܽ ܾݖ	
	
which	generates	a	family	of	lines.	We	order	this	set	of	lines	by	slope	(ܾ)	and	remove	
dominated	lines.	The	intersection	points	of	successive	pairs	of	remaining	lines	will	be	
termed	ܿ.	The	KGCB	index	is	then	found:	
	

ߥ
ீ, ൌ ݄ሺܽ, ܾሻ ൌሺܾାଵ െ ܾሻ݂ሺെ|ܿ|ሻ

ெ

ୀଵ

	

	
݂ሺݖሻ ൌ ሻݖΦሺݖ ߶ሺݖሻ	

	
For	our	online	simulations,	we	choose	thusly	ሺߛ ൌ 1ሻ:	
	

 ൌ argmax
∈

ߤ ሺܰ െ ݊ሻߥ
ீ,	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

15

4.	Experimental	Design	
	

4.1	Simplifying	Assumptions	
	

1. Two‐Laned	Freeway:	We	group	all	of	the	regular	lanes	on	the	freeway	into	one	
“regular”	set,	and	we	group	all	of	the	pay	lanes	into	one	“pay	lane”	set.	This	way,	we	
can	model	general	demand	for	pay	lanes	and	we	do	not	consider	separate	demands	
for	each	lane.	Each	lane	is,	for	all	intents	and	purposes,	physically	identical	

	
2. Constant	Overall	Traffic:	We	assume	a	constant	number	of	cars	traveling	through	the	

entire	freeway	during	a	certain	time	period.	The	number	of	cars	that	decide	to	pay	
for	the	pay	lane	is	variable,	but	there	is	a	hard	cap	as	established	by	our	traffic	data.	
	

3. 	Limited	Alternative	Range:	We	consider	possible	alternatives	to	be	$0.00	or	greater	
and	less	than	or	equal	to	$20.00.	
	

4. Constant	Driving	Conditions:	We	assume	there	are	no	weather	or	external	factors	
that	significantly	impact	the	traffic	(i.e.,	hurricane,	quarantine,	sporting	event)	
	

5. Business	Days:	We	assume	all	of	our	measurement	to	take	place	during	business	
days.	
	

6. No	Maintenance	Costs:	We	assume	that	the	government	pays	no	cost	for	maintaining	
the	freeway,	and	thus	that	revenue	observed	must	be	non‐negative.	

	
4.2	Experimental	Setup	
	
4.2.1	Prior	Construction	
	
For	the	Lookup	Table	Belief	Model,	our	prior	is	generated	by	the	following	function:	
	

ߠ ൌ ቐ
0.10 ൬െ

ߚ
10 ܲ௫

 ൰ߚ 0 10 ܲ௫

																							0 																				10 ܲ௫ ൏ 200
	

	
This	is	constructed	from	two	key	pieces	of	information:	
	

1. Demand	at	x=0	(P=$0.00)	is	equal	to	half	of	the	overall	traffic.	At	P=$0.00,	the	pay	
lanes	and	regular	lanes	are	effectively	indistinguishable.	Therefore,	the	drivers	have	
no	preference	regarding	the	pay	lanes	and	half	of	all	traffic	takes	the	pay	lane.	

2. The	demand	decreases	at	price	increases,	reaching	0	at	some	maximum	price.	The	
government	assumes	that	the	demand	decreases	linearly	with	price.	

	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

16

There	is	an	implicit	assumption	that	revenue	is	equal	to	$0	at	P=$0.00,	as	regardless	of	the	
number	of	cars	taking	the	pay	lane,	nobody	pays	anything.	The	government	knows	the	
value	of	ߚ,	as	it	has	access	to	its	own	traffic	data.	
	
For	AM	Rush	Hour,	the	government	assumes	$20.00	for	the	maximum	price;	for	PM	Rush	
Hour,	the	government	assumes	$10.00	for	the	maximum	price;	for	Graveyard	Shift,	the	
government	assumes	$2.00	for	the	maximum	price.	
	
Our	prior	covariance	matrix	is	generated	by	the	covariance	function:	
	

,൫ܴሺܲሻݒܥ ܴሺܲᇱሻ൯ ൌ ଶ݁ିఈหିߪ
ᇲห	

	
where	ߪଶ ൌ ,ଶߪ		.ሺܴሺܲሻሻݎܸܽ 	California	the	from	data	traffic	public	fit	to	adjusted	are	ߙ
Department	of	Transportation.	
	
For	the	Linear	Belief	Model,	our	prior	is	generated	using	a	different	method.	The	
government	first	creates	a	family	of	quadratic	functions	that	it	believes	may	reasonably	
approximate	the	area	near	the	maximum	of	the	true	revenue	function:	
	

ܴଵሺܲሻ ൌ ଵߠ
ଵ ଶߠ

ଵܲ ଷߠ
ଵܲଶ	

ܴଶሺܲሻ ൌ ଵߠ
ଵ ଶߠ

ଵܲ ଷߠ
ଵܲଶ	

ܴଷሺܲሻ ൌ ଵߠ
ଵ ଶߠ

ଵܲ ଷߠ
ଵܲଶ	

ܴସሺܲሻ ൌ ଵߠ
ଵ ଶߠ

ଵܲ ଷߠ
ଵܲଶ	

	
We	then	create	our	prior	estimates	of	each	parameter:	
	

ߠ
 ൌ

1
4
ߠ

ସ

ିଵ

	

	
Our	covariance	matrix	for	the	parameters	also	comes	from	the	family	of	functions:	
	

,ߤ൫ݒܥ ൯ߤ ൌ
1

ܰ െ 1
ሺݔ െ ݔሻሺݔ̅ െ ሻݔ̅

ே

ୀଵ

	

	
The	priors	and	families	of	functions	are	listed	below	in	4.2.3	Data	and	Parameters.	

	
4.2.2	Truth	Generation	
	
For	the	Lookup	Table	Belief	Model,	we	take	our	true	demand	function	to	be	logistic,	and	
our	true	revenue	function	is:	

	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

17

ܴሺܲሻ ൌ
ܲ ∙ ܯ

1 ݁ିఓభାఓమ
	

	

ܯ ൌ
ߚ
2
ሺ1 ݁ିఓభሻ	

	
	generate	we	When	period.	sample	the	during	expressway	the	over	traffic	peak	the	being	ߚ
an	observation,	we	take	the	value	of	the	true	revenue	function	at	that	price	and	add	
measurement	noise:	
	

ܴ ൌ ܴሺܲሻ ߳, 	߳~ܰሺ0, 	ଶሻߪ
	
For	the	Linear	Belief	Model,	we	initially	wanted	to	use	the	same	true	demand	function	and	
use	the	same	observation	method.	However,	we	realized	that	observations	near	the	fringes	
would	significantly	affect	our	quadratic	function,	since	the	logistic‐based	true	revenue	is	
only	approximately	quadratic	at	or	near	the	maximum.	As	a	result,	we	are	using	a	quadratic	
approximation	of	the	true	revenue	curve	as	the	truth	for	the	linear	belief	model.	
	
We	create	this	curve	by	selecting	a	set	of	6	points	at	or	near	the	maximum	of	the	logistic‐
based	true	revenue	curve	and	running	a	quadratic	regression	to	create:	
	

ܴሺܲሻ ൌ ଵߤ	 ଶܲߤ 	ଷܲଶߤ
	
We	then	generate	a	set	of	values	of	the	revenue	function	for	each	alternative:	
	

1 ଵܲ ଵܲ

ଶ

⋮ ⋮ ⋮
1 ଶܲଵ ଶܲଵ

ଶ

ଵߤ
ଶߤ
ଷߤ
൩ ൌ

ܴሺ ଵܲሻ
⋮

ܴሺ ଶܲଵሻ
൩	

	
and	add	measurement	noise:	
	

ܴ
 ൌ ܴሺ ܲሻ ߳, 	߳~ܰሺ0, 	ଶሻߪ

	
Note	that	since	we	are	using	a	quadratic	truth	approximation,	this	can	return	negative	
revenue.	Realistically	speaking,	we	cannot	observe	negative	revenue,	as	the	pay	lanes	are	
already	built,	and	revenue	collected	is	always	nonnegative.	However,	we	run	into	a	
problem	here—we	tried	setting	the	observed	value	to	0	if	the	returned	observation	was	
negative,	but	this	tends	to	deform	the	estimated	curve.	We	will	explore	the	problem	in	
more	detail	in	6.2	Major	Limitations.	
	
4.2.3	Prior	Data	and	Parameters	
	
Simulation	Parameters	

AM	Rush	Hour	Budget:	240	
PM	Rush	Hour	Budget:	360	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

18

Graveyard	Shift	Budget:	120	
Total	#	of	Alternatives:	ܭ ൌ 201	
Upper	Confidence	Bound	Exploration	Budget:	30	

	
AM	Rush	Hour	(7‐9	AM)	

Overall	Sample	Traffic	(ߚ)	=	ଶଵହ

ൎ 3583	Cars	

	
Lookup	Table	Model	

Logistic	Parameter	ߤଵ ൌ 4.6	
Logistic	Parameter	ߤଶ ൌ 0.46	
Revenue	Standard	Deviation	ߪெ ൌ 1500	
True	Maximum	Revenue	ܴ௫ ൌ $10355.22	
True	Optimal	Price	ܲ∗ ൌ $7.90	
Covariance	Function	Parameter	ߙ ൌ 0.30	
	

Linear	Belief	Model	
	 Linear	Parameter	ߤଵ ൌ െ5988.57	
	 Linear	Parameter	ߤଶ ൌ 4164.45	
	 Linear	Parameter	ߤଷ ൌ െ265.83	
	
Linear	Belief	Prior	Generation	

ܴଵሺܲሻ ൌ െ5000 4000ܲ െ 280ܲଶ	
ܴଶሺܲሻ ൌ 0 6000ܲ െ 800ܲଶ	
ܴଷሺܲሻ ൌ 5000 1500ܲ െ 100ܲଶ	
ܴସሺܲሻ ൌ െ45000 15000ܲ െ 1000ܲଶ	

	 Point	Estimate	ߠଵ
 ൌ െ11250	

	 Point	Estimate	ߠଶ
 ൌ 6625	

	 Point	Estimate	ߠଷ
 ൌ െ545	

	
Interval	Estimation	Tuned		ݖఈ ൌ 3.0	

	
PM	Rush	Hour	(5‐8	PM)	

Overall	Sample	Traffic	(ߚ)	=	ଶଵହ
ଽ

ൎ 2389	Cars	
	
Lookup	Table	Model	

Logistic	Parameter	ߤଵ ൌ 3.7	
Logistic	Parameter	ߤଶ ൌ 0.82	
Revenue	Standard	Deviation	ߪெ ൌ 800	
True	Maximum	Revenue	ܴ௫ ൌ $2991.70	
True	Optimal	Price	ܲ∗ ൌ $3.60	
Covariance	Function	Parameter	ߙ ൌ 0.30	
	

Linear	Belief	Model	
	 Linear	Parameter	ߤଵ ൌ െ995.07	
	 Linear	Parameter	ߤଶ ൌ 2171.69	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

19

	 Linear	Parameter	ߤଷ ൌ െ296.47	
	
Linear	Belief	Prior	Generation	

ܴଵሺܲሻ ൌ െ500 2000ܲ െ 300ܲଶ	
ܴଶሺܲሻ ൌ 0 3500ܲ െ 850ܲଶ	
ܴଷሺܲሻ ൌ 1200 850ܲ െ 100ܲଶ	
ܴସሺܲሻ ൌ െ13600 10000ܲ െ 1500ܲଶ	

	 Point	Estimate	ߠଵ
 ൌ െ3225	

	 Point	Estimate	ߠଶ
 ൌ 4087.5	

	 Point	Estimate	ߠଷ
 ൌ െ687.5	

	
Interval	Estimation	Tuned		ݖఈ ൌ 3.0	

	
Graveyard	Shift	(2‐4	AM)	

Overall	Sample	Traffic	(ߚ)	=	ଶଵହ

ൎ 358	Cars	
	
Lookup	Table	Model	

Logistic	Parameter	ߤଵ ൌ 3.1	
Logistic	Parameter	ߤଶ ൌ 2.82	
Revenue	Standard	Deviation	ߪெ ൌ 40	
True	Maximum	Revenue	ܴ௫ ൌ $107.46	
True	Optimal	Price	ܲ∗ ൌ $0.90	
Covariance	Function	Parameter	ߙ ൌ 0.30	
	

Linear	Belief	Model	
	 Linear	Parameter	ߤଵ ൌ െ33.19	
	 Linear	Parameter	ߤଶ ൌ 302.82	
	 Linear	Parameter	ߤଷ ൌ െ162.99	
	
Linear	Belief	Prior	Generation	

ܴଵሺܲሻ ൌ െ50 300ܲ െ 150ܲଶ	
ܴଶሺܲሻ ൌ 0 350ܲ െ 300ܲଶ	
ܴଷሺܲሻ ൌ 75 75ܲ െ 50ܲଶ	
ܴସሺܲሻ ൌ െ400 1000ܲ െ 500ܲଶ	

	 Point	Estimate	ߠଵ
 ൌ െ93.75	

	 Point	Estimate	ߠଶ
 ൌ 431.25	

	 Point	Estimate	ߠଷ
 ൌ െ250	

	
Interval	Estimation	Tuned		ݖఈ ൌ 2.5	

	
	
	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

20

5.	Experimental	Results	
	
In	our	experimental	results	section,	we	will	compare	the	different	policies.	Instead	of	just	
presenting	the	results	and	all	of	the	graphs	of	every	experiment	we	will	try	to	write	the	
results	section	like	a	story,	including	the	pertinent	and	interesting	graphs	as	they	come	
about.	We	have	already	explained	our	belief	model	and	why	we	chose	to	model	the	
problem	in	these	ways.	In	the	results	section,	we	will	explore	(pun	point)	what	worked	and	
what	didn’t.	We	will	interpret	our	results	in	both	offline	and	online,	and	in	all	three	
scenarios:	AM,	PM,	and	Graveyard.	There	will	be	differences	in	all	of	these	scenarios	and	we	
will	highlight	these	differences	and	explain	why	they	occurred.	The	results	section	is	going	
to	include	not	only	our	results,	but	also	our	interpretations,	our	limitations,	and	our	
recommendations.	It	is	in	this	way	that	the	results	section	will	be	the	bulk	of	our	project	–	
with	our	conclusion	only	summarizing	the	most	important	parts	of	the	results	and	
wrapping	up	the	project	with	a	“bigger	picture”	outlook.	
	

5.1	Lookup	Table	
	
First,	we	will	look	at	our	lookup	table	implementation.	You	may	recall	that	we	created	our	
truths	from	public	traffic	data	online.	We	created	our	priors	from	the	two	assumptions	that	
(1)	the	government	knows	only	that	demand	of	the	pay	lane	is	half	of	total	traffic	at	P=0	
and	(2)	the	government	knows	the	price	(Pmax)	at	which	no	cars	will	be	willing	to	pay.	It	
then	creates	a	linear	demand	prior	between	these	two	points	and	coverts	this	linear	
demand	into	the	revenue	prior	by	just	multiplying	by	price.	
	
The	truths	and	priors	for	AM	Rush	Hour,	PM	Rush	Hour,	and	Graveyard	Shifts	are	as	such:	
	
	
	

	
	
	
	
	
	
As	the	range	of	advisable	prices	condenses	as	we	move	from	the	heaviest	traffic	in	AM	to	
the	lightest	traffic	in	Graveyard,	we	see	that	our	prior	estimate	maximum	is	closer	to	the	
true	maximum.	This	makes	intuitive	sense	as	we	are	working	on	a	smaller	scale	as	we	
move	down.	We	can	expect	that	our	Graveyard	shift	will	find	the	maximum	quicker.	We	can	
also	expect	for	Graveyard	to	be	more	accurate	when	we	exploit	or	during	online	policies	
and	we	will	explore	these	thoughts	further	on.	
	

AM	Rush	Hour	 PM	Rush	Hour Graveyard	Shift

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

21

For	each	simulation,	we	created	6	graphs.	First,	we	updated	the	graphs	above	and	
compared	our	final	estimate	to	the	truth.	Second,	we	graphed	opportunity	cost	(how	far	
away	the	max	of	our	estimate	is	from	the	true	maximum)	by	iteration.	Third	and	fourth,	we	
made	a	bar	graph	of	the	prices	we	tested	and	also	a	line	graph	to	see	if	the	prices	we	tested	
converged	to	a	specific	price.	Lastly,	for	the	online	simulations,	we	graphed	revenue	by	
iteration	and	cumulative	revenue.	
	
Obviously,	some	of	these	graphs	will	have	little	to	no	meaning.	Exploration	will	just	have	
close	to	a	uniform	bar	graph	of	prices	chosen	and	will	have	a	meaningless	graph	of	revenue	
by	iteration.	We	will	omit	these	graphs	and	only	explain	the	ones	with	meaning.	
	
First,	we	will	look	at	offline	policies.	We	will	present	the	average	opportunity	cost	results	in	
a	chart	at	the	end.	But	for	now,	we	will	do	a	qualitative	look	into	one	experiment	for	each	
situation	and	policy.	
	
5.1.1	Offline	Lookup	Table	
	
We	will	now	look	at	how	exploration	works	for	each	of	the	three	situations.	Remember,	we	
allotted	a	budget	of	240	for	AM,	360	for	PM,	and	120	for	Graveyard.	
	
Exploration	opportunity	cost	for	AM	Rush	Hour,	Exploration:	
	

The	opportunity	cost	graphs	for	PM	Rush	Hour	
and	Graveyard	Shift	are	similar.	

	
	
	
	
	
	
	
	
	
	
Final	estimates	compared	with	the	truth	for	Exploration:	
	
	
	
	
	
	
	
	
	
	 AM	Rush	Hour	 PM	Rush	Hour Graveyard	Shift

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

22

	
As	you	can	see,	exploration	finds	the	maximum	pretty	well.	This	makes	sense	because	our	
budget	is	fairly	high.	Opportunity	cost	is	improved	fairly	quickly	but	may	not	reach	zero	
exactly.	Graveyard	Shift	had	the	best	prior	and	consequently	found	the	max	most	often	
using	exploration.	The	weird	squiggly	things	you	see	on	the	right‐hand	side	of	PM	and	
Graveyard	result	from	our	using	correlated	beliefs	and	only	exploring	in	the	constrained	
ranges.	Since	we	assume	the	government	knows	that	these	aren’t	good	prices	to	charge,	the	
irregularities	are	not	important.	
	
Exploitation	is	highly	dependent	on	our	priors.	It	is	in	this	way	we	can	see	if	our	estimates	
can	be	corrected	if	we	continuously	exploit.	
	
Final	estimates	compared	with	the	truths	for	Exploitation:	
	

	
	
	
Only	Graveyard	shift	(with	the	most	accurate	prior)	turned	out	well.	AM	and	PM	rush	hour	
would	test	a	lower	price	and	observe	a	higher	value.	It	would	then	continue	to	exploit	that	
higher	value	and	never	have	a	higher	estimate	at	any	other	point.	Opportunity	costs	are	
high	and	we	do	not	try	many	different	prices	for	each.	
	
Prices	chosen	by	frequency,	Exploitation:	
	
	
	
	
	
	
	
	
	
	
	
	
If	we	were	to	imagine	what	LA	actually	does	when	pricing	the	freeways,	we	would	suspect	
something	like	pure	exploitation.	It	chooses	what	it	thinks	to	be	the	best	and	observes	a	
great	result	and	decides	to	repeat	it.	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

23

	
Okay	let’s	move	onto	a	couple	more	complicated	policies.	
	
Final	estimates	compared	with	the	truths	for	Interval	Estimation:	
	
	
	
	
	
	
	
	
	
	
	
	
Interval	estimation	looks	a	bit	funky.	Basically,	interval	estimation	is	exploiting	but	with	an	
uncertainty	bonus.	In	all	scenarios,	IE	worked	pretty	well.	The	uncertainty	bonus	allowed	
us	to	try	out	prices	closer	to	the	true	max	and	we	eventually	figure	it	out.	Opportunity	costs	
were	low.	The	weird	tails	on	the	right	side	of	each	graph	are	just	products	of	correlated	
beliefs.	The	uncertainty	bonus	was	never	enough	to	try	prices	that	high	so	those	estimates	
changed	up	or	down	depending	on	the	few	observations	at	higher	prices.	Again,	we	are	
only	trying	to	find	the	maximum,	not	fit	the	curve	so	these	are	fine.	
	
It	is	also	interesting	to	see	the	range	of	prices	we	end	up	trying	below.	As	long	as	prior	was	
close	enough	to	the	truth	that	the	uncertainty	“net”	included	the	truth,	we	ended	up	finding	
the	truth.	
	
Prices	chosen	by	frequency,	Interval	Estimation:	
	
	
	
	
	
	
	
	
	
	
	
	
IE	never	tried	truly	bad	choices	and	used	the	budget	wisely	to	find	the	truth.	
	
It	is	also	worth	mentioning	that	IE	tended	to	converge	in	testing	prices	close	to	the	
maximum.	The	graph	of	PM	below	is	indicative	of	the	three	cases.	This	is	in	contrast	to	
offline	knowledge	gradient	as	we	will	see	next.	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

24

Prices	chosen	by	iteration,	Interval	Estimation,	PM	Rush	Hour:	
	
	
	
	
	
	
	
	
	
	
	
	
	
Offline	Knowledge	Gradient,	as	you	can	see	below,	did	not	really	outperform	interval	
estimation.	They	were	both	great,	to	be	sure.	Both	of	the	two	policies	take	uncertainty	into	
account	and	find	the	maximum	(or	close	to	it)	with	ease.	They	had	similar	opportunity	
costs.	
	
Final	estimates	compared	with	the	truths	for	KGCB,	Offline:	
	

	
	
	
As	opposed	to	IE,	which	generally	narrowed	the	range	of	prices	it	would	search,	KG	
narrows	its	search	initially	then	explores	more	later	on.		
	
Prices	chosen	by	iteration,	KGCB,	Offline:	
	
	
	
	
	
	
	
	
	
	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

25

In	all	three	cases,	offline	KG	finds	the	maximum	within	the	first	50	iterations.	Once	it	is	
confident	in	the	local	maximum,	it	starts	exploring	since	there	is	nothing	left	to	learn	in	the	
vicinity	of	the	maximum.	It	got	a	similar	opportunity	cost	as	IE,	but	got	to	it	differently.	
	
5.1.2	Online	Lookup	Table	
	
We	will	now	do	the	same	problems,	but	online.	We	will	also	switch	offline	KG	to	online	KG	
and	switch	IE	to	our	own	UCB	policy.	We	will	include	revenue	graphs	where	they	are	
interesting	and	not	include	the	exploration	and	exploitation	graphs	that	we	did	offline.	
	
Exploration	and	Exploitation	are	pretty	intuitive.	Since	our	constrained	exploration	still	
surveys	most	of	the	area	of	the	function,	the	exploration	average	revenue	is	similar	to	the	
average	value	of	the	curve.	For	exploitation,	our	estimates	do	not	really	change	so	our	
revenue	is	the	value	of	the	truth	at	our	prior	maximum.	
	
Final	estimates	compared	with	the	truths	for	UCB:	
	
	
	
	
	
	
	
	
	
	
	
	
As	explained	earlier,	our	UCB	policy	works	in	three	broad	steps:	exploration,	exploration	
near	the	maximum,	then	exploitation.	You	can	see	the	three	distinct	steps	in	the	AM	prices	
chosen	by	iteration.	In	essence,	we	are	manually	starting	with	exploration	then	converging	
towards	exploitation	just	like	any	online	policy	should.	Since	the	pure	exploration	in	the	
first	30	of	the	budget	gets	bad	revenue	values,	we	can	see	how	the	revenue	increases	as	we	
continue	into	the	second	and	third	steps	below.	
	
Choice,	revenue,	and	cumulative	revenue	per	iteration	for	UCB,	AM	Rush	Hour:	
	
	
	
	
	
	
	
	
	

Choice	by	Iteration	 Revenue	by	Iteration	 Total	Rev.	by	Iteration	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

26

It	also	finds	the	maximum	very	well,	almost	as	well	as	online	KG.	In	the	end,	because	it	
spends	the	first	30	iterations	of	pure	exploration,	it	doesn’t	perform	as	well	in	the	online	
environment	as	KG.	
	
The	first	30	revenues	are	pretty	bad	and	they	are	a	significant	part	of	whichever	budget	
(120,240,360).	Even	though	the	rest	of	the	revenues	are	very	good,	UCB	only	performs	
about	as	well	as	pure	exploitation,	which	is	what	we’re	guessing	the	government	was	
already	doing	before	we	decided	to	take	on	this	project.	
	
Final	estimates	compared	with	the	truths	for	KGCB,	Online:	
	
	
	
	
	
	
	
	
	
	
	
	
Again,	knowledge	gradient	performs	well	in	the	online	environment.	The	average	
opportunity	cost	is	definitely	higher	than	offline	–	there	is	less	exploration	and	more	
exploitation.	However,	out	of	all	of	our	policies,	online	KG	maximized	revenue	best	for	the	
lookup	table	model.	
	
Online	KG	explores	but	quickly	decides	on	what	it	believes	to	be	the	maximum	and	then	
exploits	from	then	on.	
	
Prices	chosen	by	iteration,	KGCB	Online,	AM	Rush	Hour:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

27

5.2	Local	Linear	Approximation	of	Logistic	Belief	Model	
	
In	the	linear	implementation,	we	are	trying	to	approximate	only	the	maximum	of	the	
logistic	truth	by	using	a	quadratic	function	in	terms	of	P.	We	created	the	truth	by	
interpreting	each	of	our	three	logistic	truths	in	the	previous	section	and	just	finding	a	
quadratic	function	(linear	in	theta)	that	would	best	fit	it	near	the	maximum.	We	then	
created	our	priors	using	families	of	curves.	
	
The	truths	and	priors	for	AM	Rush	Hour,	PM	Rush	Hour,	and	Graveyard	Shifts	are	as	such:	
	
	
	
	
	
	
	
	
	
	
	
	
So	if	you	look	on	the	y‐axis	obviously	this	is	showing	mostly	negative	values	of	revenue,	
which	have	no	meaning	(and	are	impossible)	for	us.	Negative	values	for	revenue	were	a	
huge	problem	for	us	in	this	section	and	somewhat	impeded	our	progress	along	the	way.	
Basically,	in	order	to	use	a	quadratic	function	to	fit	the	top	of	a	logistic	curve	over	a	wide‐
enough	interval,	it	naturally	means	the	quadratic	function	will	fall	much	quicker	than	the	
logistic	curve	and	become	negative	in	our	range	of	prices.	See	the	picture	below	of	our	
translation	of	the	AM	truth:	
	
	
	
	
	
	
	
	
	
	
	
	
	
So,	it	was	a	huge	problem	for	us.	Basically	there	were	3	choices.	None	of	them	were	perfect.	
First,	we	could	limit	the	number	alternatives	into	the	range	where	the	truth	was	positive.	
This	was	insufficient	–	we	would	assume	the	government	knows	too	much.	In	this	case	it	
would	only	have	prices	$2‐$14	available	to	it.	But	we	would	be	fitting	our	model	based	on	a	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

28

truth	that	we	are	making	up	and	basically,	this	wouldn’t	have	been	good.	The	government	
does	have	the	choices	$0‐$2	and	$14‐$20	available	to	it.	We	can’t	just	ignore	that.	
	
The	second	choice	was	anytime	we	observe	negative	revenue;	just	change	the	negative	
revenue	to	zero.	This	makes	intuitive	sense.	The	minimum	revenue	we	can	observe	is	zero	
when	no	one	uses	the	lane.	But	when	we	observe	$0	at	say	P=$18	in	the	above	graph.	It	
drastically	shifts	the	curve	up	and	basically	messes	everything	up.	
	
It	is	worth	mentioning	that	this	is	worse	for	(1)	offline	and	(2)	exploratory	policies.	This	is	
because	the	observations	are	artificially	altered	most	when	they	are	most	negative.	
Because	this	is	a	quadratic	function,	this	is	to	the	far	left	and	the	far	right.	For	pure	
exploitation,	this	is	never	a	problem.	For	online	KG,	it	is	rarely	a	problem	too.	
	
Lastly,	we	could	just	cut	our	losses	and	allow	ourselves	to	observe	negative	revenue.	We	
will	adjust	our	policies	so	that	we	choose	negative	revenues	as	little	as	possible	but	will	not	
disallow	them	in	the	way	that	limiting	the	amount	of	alternatives	would.	We	are	not	going	
to	justify	this	decision	in	real	life	reasoning.	We	tried	both	setting	observations	to	zero	and	
allowing	them	to	be	negative	and	we	switched	throughout.	Basically,	it	is	not	a	huge	
problem	for	online.	For	offline,	we	would	quickly	decide	that	the	negative	observations	
cannot	be	the	maximum	so	we	wouldn’t	observe	them.	The	biggest	problem	is	that	since	
this	is	a	quadratic	function,	KG	likes	to	choose	where	it	would	learn	the	most	–	precisely	in	
the	places	where	the	truth	is	most	different	from	the	prior.	Since	it	is	all	connected	(unlike	
lookup	table)	an	observation	at	P=$18	would	drastically	change	the	entire	function,	and	
this	was	the	problem.	So	you	will	see	that	we	added	numerous	workarounds,	but	we	admit	
imperfections	in	this	model.	
	
5.2.1	Offline	Linear	Belief	
	
So,	for	our	first	work‐around,	we	limited	our	exploration	even	further.	We	limited	
exploration	to	only	values	of	P	where	we	expected	positive	revenue.	We	note	that	our	
estimates	are	not	the	same	as	the	truth	and	we	are	still	allowing	ourselves	to	choose	some	
prices	P	that	have	negative	revenue.	
	
But	we	are	assuming	that	are	estimates	are	close	enough	to	the	truth	to	minimize	the	
chances	of	choosing	a	negative	revenue.	We	found	this	to	be	a	both	realistic	and	clever	
workaround.	We	didn’t	adjust	it	further.	
	
But	if	we	had	an	uncertain	or	inaccurate	prior,	then	we	could	limit	the	exploration	even	
further	inside	the	boundary	P’s	to	even	further	minimize	the	chance	of	observing	negative	
revenue.	
	
With	our	constrained	exploration,	we	had	fantastic	results.	This	was	not	a	given,	nor	was	it	
only	a	product	of	our	workarounds.	It	was	basically	a	testament	to	our	linear	model.	Our	
opportunity	cost	was	basically	0.	It	found	the	function	around	the	maximum	perfectly.	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

29

Final	estimates	compared	with	the	truths	for	Constrained	Exploration:	
	
	
	
	
	
	
	
	
	
	
	
	
And	we	can	see	how	the	exploration	was	constrained	in	the	below	graphs.	
	
Prices	chosen	by	frequency,	Constrained	Exploration:	
	
	
	
	
	
	
	
	
	
	
	
	
The	reason	the	function	does	not	fit	perfectly	for	PM	and	Graveyard	is	simply	that	we	
constrain	ourselves	to	not	explore	over	there	so	it	won’t	fit	(but	we	won’t	observe	negative	
revenues	often	either).	
	
The	above	problem	did	not	affect	exploitation	since	exploitation	only	chooses	positive	
revenues.	
	
Final	estimates	compared	with	the	truths	for	Exploitation:	
	
	
	
	
	
	
	
	
	
	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

30

Exploitation	measured	the	same	cluster	of	points	for	each	of	the	three	situations.	Because	
of	this,	correlated	beliefs	raised	the	estimates	of	all	other	prices,	which	is	why	you	see	
raised	blue	lines.	Exploitation	was	hit	and	miss	again,	basically	dependent	on	the	prior.	
Also,	testing	a	cluster	of	points	is	not	the	most	efficient	way	of	fitting	a	curve	as	testing	the	
endpoints	would	be	more	helpful.	But	it	turned	out	decently	anyway.	
	
We	replaced	IE	with	UCB	and	we	will	cover	UCB	once	we	get	to	online,	but	for	now,	let	us	
consider	offline	Knowledge	Gradient.	Offline	KGCB	ended	up	being	poor	for	AM	but	better	
for	PM	and	graveyard.	
	
Final	estimates	compared	with	the	truths	for	KGCB,	Offline:	
	

	
	
	
We	note	that	the	graph	for	Graveyard	Shift	looked	nearly	identical	to	PM	Rush	Hour.	
	
Prices	chosen	by	iteration,	KGCB,	Offline:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

AM	Rush	Hour	 PM	Rush	Hour	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

31

Here	just	for	conversation’s	sake,	I	will	present	the	difference	(for	PM)	between	allowing	us	
to	observe	negative	revenues	and	setting	all	negative	revenues	to	zero.	
	
Final	estimates	compared	with	the	truth	for	KGCB,	Offline	for	PM	Rush	Hour:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	fit	is	much	better	for	negative	revenues.	Since	low	prices	correspond	to	zero	revenue	
or	higher.	The	y	intercept	on	the	graph	on	the	right	is	greater	than	zero.	There	are	also	
small	other	differences.	The	problem	is	that	KG	tested	the	below	choices	to	learn	most	
about	the	function.	This	would	be	okay	if	we	were	allowed	negative	revenues,	but	in	an	
online	environment,	this	would	give	us	huge	negatives	or	many	zeros	depending	which	rule	
you	use.	
	
Prices	chosen	by	frequency,	KGCB,	Offline	for	PM	Rush	Hour:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	reason	this	wasn’t	terrible,	like	I	alluded	to	at	the	beginning	of	the	section,	is	that	this	is	
the	result	of	another	one	of	our	workarounds.	Again,	we	constrained	KG	to	choose	only	
among	current	positive	estimates.	In	this	case	P=0	was	a	positive	estimate	(incorrect	in	real	
life)	so	we	were	allowed	to	observe	it.	With	our	work‐around,	it	would	have	been	possible	

Allowing	negative	revenue	 Observations	 0	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

32

to	set	negative	revenues	to	zero,	but	new	complications	would	have	arisen	during	online.	
	
5.2.2	Online	Linear	Belief	
	
Constrained	Exploration	was	its	normal	self.	Since	we	constrained	it	(not	overly	so	
though)	to	only	pick	decent	prices,	it	did	a	little	better	than	exploration	in	the	lookup	model	
by	comparison.	Otherwise,	it	does	terribly.	
	
Exploitation	does	surprisingly	well.	It	competes	with	KG	for	AM	and	PM	and	beats	it	in	the	
Graveyard	Shift.	This	is	because	it	doesn’t	have	any	negative	revenue	observations	in	the	
way	the	KG	would	explore	at	the	beginning	in	online.	Exploitation,	in	short,	is	a	great	choice	
when	your	model	is	only	accurate	near	the	true	maximum	–	like	our	quadratic	
approximation	of	the	logistic	curve.	
	
The	UCB	had	some	weird	results.	It	did	great	for	AM.	Even	after	losing	out	on	a	lot	of	
revenue	in	the	exploration	phase,	it	almost	caught	up	to	KG	and	the	average	opportunity	
cost	was	much	lower	than	online	KG.	This	means	that	if	we	had	a	larger	budget,	UCB	would	
have	won.	For	PM,	it	seems	as	though	the	initial	budget	of	30	for	exploration	might	not	be	
sufficient.	For	Graveyard,	the	budget	of	30	is	too	much	of	the	120	total	in	the	budget	to	be	
efficient.	If	UCB	were	tuned	perfectly,	and	I’m	not	convinced	it	could	be	without	knowledge	
of	how	accurate	your	prior	is,	then	it	would	easily	be	the	best	linear,	online	policy.	
	
Final	estimates	compared	with	the	truths	for	UCB:	
	
	
	
	
	
	
	
	
	
	
	
	
Prices	chosen	by	Iteration,	UCB:		
	
	
	
	
	
	
	
	
	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

33

Online	Knowledge	Gradient,	like	exploitation,	did	not	run	into	many	of	the	problems	we	
had	earlier.	Quite	frankly,	it	was	a	little	anti‐climactic.	It	did	well.	Expected.	
	
Final	estimates	compared	with	the	truths	for	KGCB,	Online:	
	

	
	
	
We	scaled	our	truths	for	the	lookup	and	linear	models	to	be	on	the	same	scale	and	to	be	
comparable.	In	general,	our	lookup	table	implementation	worked	a	bit	better,	though	the	
difference	is	pretty	small.	However,	we	felt	much	more	confident	in	the	lookup	table	since	
we	made	fewer	constraints	on	our	policies.	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

AM	Rush	Hour	 PM	Rush	Hour	 Graveyard	Shift	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

34

6.	Conclusion	
	

6.1	Summary	
	
Table	6.1.1	–	Lookup	Table	Belief	Model	
	
	
	
	
	
	
	
	
	
	
	
	
	
Our	results	are	consistent	with	prior	literature	that	compares	these	policies.	
	
Pure	Exploitation	as	the	baseline	was	consistently	the	worst‐performing	policy	for	AM	
Rush	Hour	and	PM	Rush	Hour	in	offline	settings.	For	Graveyard	Shift,	we	see	that	Pure	
Exploitation	performed	the	best;	we	do	note	that	upon	observation,	our	prior	for	the	
Graveyard	Shift	was	an	exceptionally	close	fit	to	the	true	revenue	function;	as	such,	Pure	
Exploitation	was	able	to	do	particularly	well.	In	the	online	setting,	Pure	Exploitation	
performed	well,	approaching	UCB	in	average	cumulative	revenue	accrued.	This	makes	
sense,	as	exploitation	eschews	uncertainty	in	favor	of	consistently	high	returns	for	each	
iteration.	
	
In	terms	of	average	opportunity	cost,	we	see	that	Pure	Exploration	did	reasonably	well,	and	
significantly	better	than	the	baseline	in	all	but	Graveyard	Shift	in	an	offline	setting.	With	
correlated	beliefs	updating,	exploration	is	able	to	amass	large	quantities	of	data	that	help	fit	
the	curve.	It	falls	through	in	an	online	setting,	however,	consistently	performing	the	worst	
in	terms	of	cumulative	revenue.	This	is	to	be	expected,	due	to	the	policy’s	tendency	to	
ignore	any	information	about	expected	revenue.	
	
Interval	Estimation	and	UCB	both	performed	very	well,	second	only	to	the	Knowledge	
Gradient.	We	do	note	that	our	tuning	for	ݖఈ	may	not	have	been	the	most	rigorous,	and	as	
such	Interval	Estimation	has	the	potential	to	outperform	Knowledge	Gradient—in	fact,	it	
did	outperform	the	Knowledge	Gradient	in	the	Graveyard	Shift.	
	
The	Knowledge	Gradient	performed	the	best	in	all	but	one	setting,	the	Graveyard	Shift—as	
we	expected.		
	
	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

35

Table	6.1.2	–	Local	Linear	Approximation	of	Logistic	Belief	Model	
	
	
	
	
	
	
	
	
	
	
	
	
Our	results	are	consistent	with	prior	literature	that	compares	these	policies.	
	
Pure	Exploitation	as	the	baseline	was	consistently	the	worst‐performing	policy	for	AM	
Rush	Hour	and	PM	Rush	Hour	in	offline	settings.	In	the	online	setting,	Pure	Exploitation	
performed	well,	surpassing	UCB	in	average	cumulative	revenue	accrued	for	PM	Rush	Hour	
and	Graveyard	Shift.	Again,	this	makes	sense,	as	exploitation	eschews	uncertainty	in	favor	
of	consistently	high	returns	for	each	iteration.	
	
In	terms	of	average	opportunity	cost,	we	see	that	Constrained	Exploration	did	extremely	
well,	always	outperforming	baseline	and	earning	the	best	average	opportunity	cost	in	AM	
Rush	Hour	and	coming	very	close	in	the	Graveyard	Shift.	Again,	the	strength	of	constrained	
exploration	lies	in	the	offline	area,	with	the	policy	performing	dismally	with	regards	to	
average	cumulative	revenue	but	coming	up	with	a	very	strong	final	approximation	of	the	
true	quadratic	curve.	
	
UCB	performed	well,	beating	Knowledge	Gradient	cleanly	for	AM	Rush	Hour	and	coming	
fairly	close	in	the	PM	Rush	Hour.	We	see	UCB	performing	rather	poorly	in	the	graveyard	
shift,	which	makes	sense,	as	we	allocate	30	of	the	budget	to	pure	exploration	to	populate	
the	estimation.	In	the	Graveyard	Shift,	this	amounts	to	a	quarter	of	the	total	budget	spent	
on	pure	exploration,	which	means	that	average	cumulative	revenue	takes	a	hit.	
	
The	Knowledge	Gradient	performed	the	best	in	every	online	setting,	despite	the	issues	
outlined	in	6.2	Major	Limitations.		

	
6.2	Major	Limitations	
	
The	major	limitation	of	our	belief	model	lies	with	the	Local	Linear	Approximation	of	our	
Logistic	Belief	Model.	We	were	not	able	to	linearize	our	original	true	revenue	function:	
	

ܴሺܲሻ ൌ
ܲ ∙ ܯ

1 ݁ିఓభାఓమ
	

	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

36

on	account	of	the	price	term	in	the	numerator.	As	such,	we	were	forced	to	use	a	linear	
model	to	approximate	the	portion	of	the	logistic	curve	near	the	peak:	
	
	
	
	
	
	
	
	
	

	
	
	
We	also	used	a	quadratic	true	revenue	function,	which	was	a	quadratic	regression	on	a	set	
of	points	at	the	top	of	the	logistic‐based	true	revenue	curve.	With	the	quadratic	truth	
function,	certain	sets	of	prices	would	return	negative	revenue	as	an	observation.	The	
problem	we	had	with	this	was	three‐fold:	
	

1. If	we	take	our	truth	from	the	quadratic	truth,	we	cannot	justify	it	in	context	of	reality.	
It	is	not	realistic	to	observe	negative	revenue.	Because	the	pay	lanes	have	already	
been	constructed	and	we	assume	no	maintenance	costs,	the	government	must	
observe	non‐negative	revenue	during	each	sample	period.	

	
2. If	we	generate	our	truth	using	the	logistic‐based	true	revenue	function	from	the	

Lookup	Table	belief	model,	then	there	is	the	possibility	of	choosing	points	past	the	
point	of	inflection,	where	the	true	revenue	function	is	concave	upwards.	In	this	
range	of	points,	the	revenue	function	is	certainly	not	quadratic.	As	a	result,	updating	
our	quadratic	estimate	using	these	observed	points	will	deform	the	estimated	
quadratic	curve,	most	commonly	by	widening	the	curve.	
	

3. If	we	take	our	truth	from	the	quadratic	truth	but	add	a	conditional	statement	that	
converted	negative	observations	into	zero,	we	run	into	the	same	issue	as	(2).	

	
We	tested	all	three	methods	of	truth	generation	and	ultimately	decided	to	use	the	first	
method	of	truth	generation	(quadratic	truth	with	no	non‐negativity	constraint),	as	the	
other	two	methods	led	to	particularly	deformed	graphs	that	lent	high	variability	in	the	
results	for	Exploration,	UCB,	and	Knowledge	Gradient	policies.	Thus,	we	chose	to	go	with	
the	first	method	to	ensure	that	we	could	still	compare	policies.	
	
We	attempted	to	somewhat	mitigate	the	problem	by	constraining	our	exploration,	UCB,	
and	Knowledge	Gradient	policies	in	the	methods	described	in	3.2	Constrained	
Exploration	and	3.4	Modified	Upper	Confidence	Bound.	
	

Approximately
Quadratic

Not
Quadratic

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

37

6.3	Possible	Extensions	
	

1. Additional	Variables	–	As	noted	above,	our	problem	contains	several	simplifications.	
One	way	to	complicate	the	model	is	to	account	for	different	parameters.	Instead	of	
testing	for	three	separate	time	periods,	we	could	add	a	variable	representing	the	
hour	of	the	day.	We	could	also	add	binary	variables	representing	rain,	snow,	or	heat	
waves.	Furthermore,	we	could	account	for	a	changing	amount	of	total	overall	traffic	
rather	than	setting	it	equal	to	a	constant.	

	
2. Separate	Lanes	–	We	could	relax	our	simplification	regarding	a	single	pay	lane	and	a	

single	regular	lane.	In	this	way	we	could	model	the	effects	of	changing	the	number	of	
lanes,	or	the	sections	of	the	road	where	two	pay	lanes	merge	into	one	pay	lane.	We	
could	also	model	different	prices	for	each	pay	lane,	thus	effectively	changing	the	pay	
area	of	the	road	into	a	series	of	graded	lanes	with	a	gradient	of	shifting	demands.	
	

3. Accounting	for	congestion	–	Currently,	we	only	take	revenue	as	a	response	variable.	
However,	we	know	that	relieving	congestion	is	also	a	priority	of	the	government.	
Here,	we	are	assuming	that	the	drivers’	utility	from	relieving/escaping	congestion	is	
contained	within	their	demand	function.	However,	we	can	also	add	congestion	relief	
to	the	government’s	objection	function:	

	

ߤ ൌ ܴሺܲሻ න Ψሺܲሻ	݀

ே

ேିሺሻ

	

	 	
where	Ψሺܲሻ	is	the	marginal	utility	the	government	derives	from	reducing	
congestion	in	the	regular	lanes	by	one	car,	converted	into	monetary	value.	We	
integrate	this	from	N‐D(P)	to	N,	representing	the	cars	moving	to	the	pay	lane	(D(P))	
from	the	total	overall	traffic	(N).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

38

Appendix	–	Code	
	
lookupExample.m	–	Information	for	the	Lookup	Table	Belief	Model	
x=0.10*(0:200)'; %domain of the problem [prices]

peakAADT=21500*(2/3)/6;
%average number of cars total in sample period
% in our case, 10 minute interval during specific time of day (ie rush
% hour)

b = peakAADT/2; % for prior below

Pmax = 10; %gov't assumption that no one will pay more than Pmax

%Set the measurement variance (lambda) -- depends on AM,PM, or Grave
lambda=800^2;

mu_0=ones(201,1);

%our prior demand is linear from half of total traffic (because of two lanes)
at
% p=0 to no demand at p=20
% SO, our prior revenue is just our prior demand times p
for i=1:201
 if x(i)<=Pmax
 mu_0(i) = x(i)*(-b*(i-1)/(10*Pmax) + b);
 else
 mu_0(i) = 0;
 end
end

%generate the covariance matrix
 M=length(x);
 covM=zeros(M,M);

 %the matrix will be symmetric
 %instead of looping over all elements, just loop over the first half
 for i=1:M
 for j=(i+1):M
 covM(i,j)=lambda*exp(-0.3*abs(x(i)-x(j)));
 end
 end

 %and copy the rest to the other part
 covM=covM+covM';
 covM=covM+diag(lambda*ones(M,1));

mu1=3.7;
mu2=0.82;

%defined so that D(0) is equal to half of peak traffic
C = peakAADT/2*(1+exp(-mu1));

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

39

for i=1:M
 mu(i)= x(i)*(C/(1+exp(-mu1+mu2*x(i))));
end

%%
%THIS PART RUNS THE KGCB ON THE VALUES GENERATED BY ABOVE

beta_W=1/lambda*ones(M,1);
%Precision(Beta)=1/Variance

%Run the KGCB N many times
N=360;

%number of experiments
L=1;

totaloc=0;
revenuetotalavg=0;

for i=1:L
%The simple function to run KGCB
[mu_est, OC, choices, mu_estALL,revenuetotal]=lookup(mu,mu_0,beta_W,covM,N);
totaloc=totaloc+OC(N);
revenuetotalavg=revenuetotalavg + revenuetotal;
end

%disp(OC);
disp(totaloc/L);
disp(revenuetotalavg/L)

%Plot the final estimates vs. truth
figure;
plot(x,mu,'-r','LineWidth',2); %'-r' makes it a red line, LineWidth is the
thickness
hold on %hold the figure, as we'll also put on a second one
plot(x,mu_est,'.b','LineWidth',2); %'.b' makes it a blue dotted line
hold off
title('Final Estimates versus Truth');

%adjust the axes and add legends
%axis([1 100 min(mu)-0.5 max(mu)+0.5]);
legend('Truth','Estimate');

%Plot the estimate at the Kth time step vs. truth
K=1;
figure;
plot(x,mu,'-r','LineWidth',2); %'-r' makes it a red line, LineWidth is the
thickness
hold on %hold the figure, as we'll also put on a second one
plot(x,mu_0,'.b','LineWidth',2); %'.b' makes it a blue dotted line
%plot(x,mu_estALL(:,K),'.b','LineWidth',2); %'.b' makes it a blue dotted line
hold off
title('True Revenue and Prior');

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

40

%adjust the axes and add legends
%axis([1 100 min(mu)-0.5 max(mu)+0.5]);
legend('Truth','Estimate');

%Plot Opportunity Cost vs Time
figure;
plot(1:N,OC,'-g','LineWidth',1.5);
title('Opportunity Cost');
xlabel('Iteration');
ylabel('Opportunity Cost');

%or the log of it
%semilogy(1:N,OC,'-g','LineWidth',1.5);
%xlabel('Iteration');
%ylabel('Log_{10}(Opportunity Cost)');
%}

lookup.m	–	simulating	the	Lookup	Table	Belief	Model	
notation for the following:
K is the number of alternatives.
M is the number of time-steps
K x M stands for a matrix with K rows and M columns

This function takes in
mu: true values for the mean (K x 1)
mu_0: prior for the mean (K x 1)
beta_W: measurement precision (1/lambda(x)) (K x 1)
covM: initial covariance matrix (K,K)
M: how many measurements will be made (scalar)

And returns
mu_est: Final estimates for the means (K x 1)

OC: Opportunity cost at each iteration (1 x M)
choices: Alternatives picked at each iteration (1 x M)
mu_estALL: Estimates at each iteration (K x M)
%}

function [mu_est, OC, choices, mu_estALL,
revenuetotal]=lookup(mu,mu_0,beta_W,covM,M)

K=length(mu_0); %number of available choices
mu_est=mu_0;

OC=[];
choices=[];
revenueiter=[];
revenuecum=[];
revenuetotal=0;
mu_estALL=[];
count=zeros(K);

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

41

T=0; %only for UCB below
%{
%----------------------
%SAMPLE TO FIND RANGE TO LIMIT SEARCH OF UCB

T=30; %Number in UCB Exploration Sample

for i=1:T
 x = ceil(rand()*51);
 W_k=mu(x)+randn(1)*1./sqrt(beta_W(x));

 if W_k<0
 W_k=0;
 end

 e_x=zeros(K,1);
 e_x(x)=1;

 %updating equations for Normal-Normal model with covariance
 addscalar = (W_k - mu_est(x))/(1/beta_W(x) + covM(x,x));
 mu_est=mu_est + addscalar*covM*e_x;
 covM = covM - (covM*e_x*e_x'*covM)/((1/beta_W(x)) + covM(x,x));

 [max_est, max_choice]=max(mu_est);

 %calculate the opportunity cost
 o_cost=max(mu)-mu(max_choice);

 OC=[OC,o_cost]; %update the OC matrix
 choices=[choices, x]; %update the choice matrix

 %update revenue
 revenuetotal=revenuetotal+W_k;
 revenueiter=[revenueiter, W_k];
 revenuecum=[revenuecum, revenuetotal];

 count(x) = count(x)+1;

end
 uncertainty=std(revenueiter);
 r = max_est-.25*uncertainty;

 mu_esthalf1=mu_est(1:max_choice);

 mu_esthalf2=mu_est(max_choice:K);
 [~,a]=min(abs(mu_esthalf1-r));
 [~,b]=min(abs(mu_esthalf2-r));
 b=b+max_choice;
 disp(a);
 disp(b);
 disp(r);

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

42

%----------------------
%}
for k=1:(M-T) %try the kgcb for M number of times

 %Plogy is the log values of KG for alternatives
 Plogy=[];
 Py=[];
 onlinePy=[];

 %KNOWLEDGE GRADIENT
 %{
 for iter1=1:K
 a=mu_est';
 b=covM(iter1,:)/sqrt(1/beta_W(iter1) + covM(iter1,iter1));

 [KG,LogKG] = LogEmaxAffine(a,b);

 [Plogy]=[Plogy, LogKG];
 [Py]=[Py,KG];

 end
 %[maxh,x]=max(Plogy);

 %ONLINE KG

 for i=1:K
 onlinevalue = mu_est(i) + (M-k)*Py(i);
 [onlinePy] = [onlinePy, onlinevalue];
 end

 [maxh,x]=max(onlinePy);
 %}

 %PURE EXPLORATION
 x = ceil(rand()*101);

 %PURE EXPLOITATION
 % [maxh,x]=max(mu_est);

 %INTERVAL ESTIMATION
 %{
 zalpha = 3;
 sigma=ones(K,1);
 v=ones(K,1);
 for i=1:K

 sigma(i) = sqrt(covM(i,i));

 v(i) = mu_est(i) + zalpha*sigma(i);
 end

 [best_value, x] = max(v);

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

43

 %}

 %UPPER CONFIDENCE BOUNDING FOR ONLINE
 %{
 v=zeros(K,1);
 for i=a:b
 %v(i) = mu_est(i) + 4*(1/beta_W(i))*sqrt(log(k)/(count(i)));
 v(i) = mu_est(i) + sqrt(2*log(k)/(count(i)));
 end

 [best_value, x] = max(v);

 %}

 %max_value is the best estimated value of the KG
 %x is the argument that produces max_value

 %observe the outcome of the decision
 %W_k=mu_k+Z*SigmaW_k where SigmaW is standard deviation of the
 %error for each observation
 W_k=mu(x)+randn(1)*1./sqrt(beta_W(x));

 if W_k<0
 W_k=0;
 end

 e_x=zeros(K,1);
 e_x(x)=1;

 %updating equations for Normal-Normal model with covariance
 addscalar = (W_k - mu_est(x))/(1/beta_W(x) + covM(x,x));
 mu_est=mu_est + addscalar*covM*e_x;
 covM = covM - (covM*e_x*e_x'*covM)/((1/beta_W(x)) + covM(x,x));

 %pick the best one to compare OC
 [max_est, max_choice]=max(mu_est);

 %calculate the opportunity cost
 o_cost=max(mu)-mu(max_choice);

 OC=[OC,o_cost]; %update the OC matrix
 choices=[choices, x]; %update the choice matrix

 %update revenue
 revenuetotal=revenuetotal+W_k;
 revenueiter=[revenueiter, W_k];
 revenuecum=[revenuecum, revenuetotal];

 count(x) = count(x)+1;

 if nargout>3 %if more than three outputs were asked
 mu_estALL=[mu_estALL,mu_est];
 end

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

44

end

figure;
bar(count, 'LineWidth',2);
title('Prices Chosen by Frequency');
xlabel('Price');
ylabel('Frequency');
figure;
plot(choices, 'LineWidth',2);
title('Price Choices by Iteration');
xlabel('Trial Number');
ylabel('Chosen Price');

figure;
plot(revenueiter, 'LineWidth',2);
title('Revenue by Iteration');
xlabel('Trial Number');
ylabel('Revenue');
figure;
plot(revenuecum, 'LineWidth',2);
title('Cumulative Revenue');
xlabel('Trial Number');
ylabel('Revenue');
%}
end

% logy = LogEmaxAffine(a,b)
% Calculates log(Exp[max_x a_x + b_x Z]-max_x a_x), where Z is a standard
% normal random variable and a,b are 1xM input vectors.
function [y,logy, a,b,c] = LogEmaxAffine(a,b)
 if (any(isnan(a)) || any(isnan(b)))
 warning('a or b is NaN');
 end
 assert(all(isreal(a)));
 assert(all(isreal(b)));

 a = a';
 b = b';

 % Check that a and b are column vectors of the right size
 if (any(size(a) ~= size(b)))
 error('LogEmaxAffine: a and b must be column vectors of the same
size');
 end

 [a,b] = AffineBreakpointsPrep(a,b);

 [c, keep] = AffineBreakpoints(a,b);

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

45

 a = a(keep);
 b = b(keep);
 c = c([1,keep+1]);
 M = length(keep);
 assert(all(isreal(c)));

 % I need logbdiff=log(diff(b)). I thought that the following code would
be
 % more numerically stable, able for example to distinguish cases like
 % logb = [-25 -.3] vs. logb = [-35 -.3], but it doesn't seem to be able
to.
 % Indeed, in the debugging output that I have below, the difference was 0.
 %{
 logb = log(abs(b)); % If b is 0, this is -Inf.
 sgnb = sign(b); % If b is 0, this is 0.
 logbdiff = zeros(size(c(2:M)));
 for i=1:length(b)-1
 [logbdiff(i),logbdiffsgn] = LogPlusExpSigned(logb(i),sgnb(i),logb(i+1),-
sgnb(i+1));
 %assert(logbdiffsgn>=0); % The b are distinct, so bdiff(i) can't be 0.
 end
 disp(sprintf('log(b)=%s log(diff(b))=%g logbdiff=%g
difference=%g',mat2str(log(b)),log(diff(b)),logbdiff,log(diff(b))-logbdiff));
 %}
 logbdiff = log(diff(b))';

 if M==1
 logy=log(a);
 elseif M>=2
 logy = LogSumExp(logbdiff+LogEI(-abs(c(2:M))));
 end

 logy=real(logy);
 y=exp(logy);
end
% Prepares vectors for passing to AffineEmaxBreakpoints, changing their
% order and removing elements with duplicate slope.

function [a,b] = AffineBreakpointsPrep(a,b)
 % Make sure a and b are column vectors.
 rows = size(a); if (rows == 1), a=a'; end
 rows = size(b); if (rows == 1), b=b'; end

 % 11/29/2008 PF: Experimental preprocessing step, which I hope will
remove
 % a large number of the entries.
 [b1, i1] = min(b); % [a1,b1] is best at z=-infinity
 [a2, i2] = max(a); % [a2,b2] is best at z=0
 [b3, i3] = max(b); % [a3,b3] is best at z=+infinity
 a1 = a(i1);
 b2 = b(i2);
 a3 = a(i3);
 cleft = (a - a1)./(b1 - b); % intersection with leftmost line.
 cright = (a - a3)./(b3 - b); % intersection with rightmost line.
 c2left = (a2 - a1)./(b1 - b2); % intersection with leftmost line.
 c2right = (a2 - a3)./(b3 - b2); % intersection with rightmost line.

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

46

 keep = find(b==b1 | b==b3 | cleft <= c2left | cright >= c2right);
 %disp(sprintf('Preprocessing cut %d of %d entries', length(a)-
length(keep), length(a)));
 a = a(keep);
 b = b(keep);
 clear keep cleft cright

 % Form a matrix for which ba(x,1) is the slope b(x) and ba(x,2) is the
 % y-intercept a(x). Sort this matrix in ascending order of slope,
 % breaking ties in slope with the y-intercept.
 ba = [b, a];
 ba = sortrows(ba,[1,2]);
 a = ba(:,2);
 b = ba(:,1);

 % Then, from each pair of indices with the b component equal, remove
 % the one with smaller a component. This code works because the sort
 % above enforced the condition: if b(i) == b(i+1), then a(i) <= a(i+1).
 keep = [find(diff(b)); length(b)];
 % This previous line is equivalent to:
 % keep = [];
 % for i=[1:length(b)-1]
 % if b(i)~=b(i+1)
 % keep = [keep, i];
 % end
 %end
 %keep = [keep, length(b)]; % We always keep the last one.

 % Note that the elements of keep are in ascending order.
 % This makes it so that b(keep) is still sorted in ascending order.
 a = a(keep);
 b = b(keep);
end

% Inputs are two M-vectors, a and b.
% Requires that the b vector is sorted in increasing order.
% Also requires that the elements of b all be unique.
% This function is used in AffineEmax, and the preparation of generic
% vectors a and b to satisfy the input requirements of this function are
% shown there.
%
% The output is an (M+1)-vector c and a vector A ("A" is for accept). Think
of
% A as a set which is a subset of {1,...,M}. This output has the property
% that, for any i in {1,...,M} and any real number z,
% i \in argmax_j a_j + b_j z
% iff
% i \in A and z \in [c(j+1),c(i+1)],
% where j = sup {0,1,...,i-1} \cap A.
%
% A note about indexing:
% Since Matlab does not allow indexing from 0, but instead requires
% indexing from 1, what is called c_i in the paper is written in matlab as
% c(1+i). This is because in the paper we reference c_0. For the vectors
% a and b, however, we don't need to reference a_0 or b_0, so we reference

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

47

% a_i and b_i by a(i) and b(i) respectively, rather than a(i+1) or b(i+1).
%
function [c,A] = AffineBreakpoints(a,b)
 % Preallocate for speed. Instead of resizing the array A whenever we add
 % to it or delete from it, we keep it the maximal size, and keep a length
 % indicator Alen telling us how many of its entries are good. When the
 % function ends, we remove the unused elements from A before passing
 % it.
 M = length(a);
 c = zeros(1,M+1);
 A = zeros(1,M);

 % Step 0
 i=0;
 c(1+i) = -inf;
 c(1+i+1) = +inf;
 A(1) = 1;
 Alen = 1;

 for i=[1:M-1]
 c(1+i+1) = +inf;
 while(1)
 j = A(Alen); % jindex = Alen
 c(1+j) = (a(j) - a(i+1))/(b(i+1)-b(j));
 % The if statement below replaces these lines from version 2 of the
 % function.
 % kindex = jindex-1 = Alen-1
 % if kindex > 0 && c(1+j)<=c(1+A(kindex))
 if Alen > 1 && c(1+j)<c(1+A(Alen-1))
 Alen = Alen-1; % Remove last element j
 % continue in while(1) loop
 else
 break % quit while(1) loop
 end
 end
 A(Alen+1) = i+1;
 Alen = Alen + 1;
 end
 A = A(1:Alen);
end

% Returns the log of Exp[(s+Z)^+], where s is a constant and Z is a standard
% normal random variable. For large negative arguments Exp[(s+Z)^+] function
% is close to 0. For large positive arguments, the function is close to the
% argument. For s large enough, s>-10, we use the formula
% Exp[(s+Z)^+] = s*normcdf(s) + normpdf(s). For smaller s we use an
asymptotic
% approximation based on Mill's ratio. EI stands for "expected improvement",
% since Exp[(s+Z)^+] would be the log of the expected improvement by
measuring
% an alternative with excess predictive mean s over the best other measured
% alternative, and predictive variance 0.
function logy = LogEI(s)

% Use the asymptotic approximation for these large negative s. The
% approximation is derived via:

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

48

% s*normcdf(s) + normpdf(s) = normpdf(s)*[1-|s|normcdf(-|s|)/normpdf(s)]
% and noting that normcdf(-|s|)/normpdf(s) is the Mill's ratio at |s|, which
is
% asymptotically approximated by |s|/(s^2+1) [Gordon 1941, also documented in
% Frazier,Powell,Dayanik 2009 on page 14]. This gives,
% s*normcdf(s) + normpdf(s) = normpdf(s)*[1-s^2/(s^2+1)] =
normpdf(s)/(s^2+1).

i=find(s<-10);
if (length(i)>0)
 logy(i) = LogNormPDF(s(i)) - log(s(i).^2 + 1);
end

% Use straightforward routines for s in the more numerically stable region.
i=find(s>=-10);
if (length(i)>0)
 logy(i) = log(s(i).*normcdf(s(i))+normpdf(s(i)));
end

assert(all(isreal(logy)));
end

% logy = LogNormPDF(z)
% Returns the log of the normal pdf evaluated at z. z can be a vector or a
scalar.
function logy = LogNormPDF(z)
 const = -.5*log(2*pi); % log of 1/sqrt(2pi).
 logy = const - z.^2/2;
end

% function y=LogSumExp(x)
% Computes log(sum(exp(x))) for a vector x, but in a numerically careful way.
function y=LogSumExp(x)
xmax = max(x);
y = xmax + log(sum(exp(x-xmax)));
end
	
quadraticExample.m	–	Information	for	the	Linear	Belief	Model	

%%
%THIS PART GENERATES THE TRUTH
%X (Regression Matrix)
%theta_0 (PRIOR BELIEF ABOUT THE REGRESSION VALUES)
%theta (TRUE VALUES FOR THE REGRESSION)
%truth (TRUE VALUES FOR PARAMETERS)
%(in a unreal perfect setting where this model explains everything
truth=X*theta)

%offline = 1 means run offline KG; offline = 0 means run online
offline = 0;

%First form the X Matrix

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

49

%price
x_i1=0.10*(0:200)';

x_i2=ones(201,1);

%price squared
for i=1:201
 x_i2(i)= (x_i1(i))^2;
end

%X=[1,p,p^2]
X=[ones(201,1),x_i1,x_i2];

disp(X);

%Prior Estimates
theta_0=[-93.75;431.25;-250];

%Pick a true value for theta
theta=[-33.19;302.82;-162.99];

%Set the prior on covariance matrix, assume independence
C=zeros(3,3);
C(1,1)=44322.91667;
C(1,2)=-82552.08333;
C(1,3)=36666.66667;
C(2,1)=-82552.08333;
C(2,2)=158072.9167;
C(2,3)= -74166.66667;
C(3,1)=36666.66667;
C(3,2)= -74166.66667;
C(3,3)=38333.33333;

%Set the measurement variance
MVar=40^2;

%Set the true values as X*theta
truth=X*theta;

disp(truth);

disp(C);
%%
%THIS PART RUNS THE KGCBLinR ON THE VALUES GENERATED BY ABOVE

%Run the KGCBLinR L many times
L=120;

totaloc=0;
revenuetotalavg=0;

%number of experiments
N=100;

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

50

for i=1:N
 [thetaLast,OC,choices,thetaEst,
revenuetotal]=quadratic(X,theta_0,MVar,truth,L,C,offline,1);
 totaloc=totaloc+OC(L);
 revenuetotalavg=revenuetotalavg + revenuetotal;
end

disp('Ended');
disp(totaloc/N);
disp(revenuetotalavg/N);

%{
%Plot the final estimates vs. truth
figure;
plot(truth,'-r','LineWidth',2); %'-r' makes it a red line, LineWidth is the
thickness
hold on %hold the figure, as we'll also put on a second one
plot(X*thetaLast,'.-b','LineWidth',2); %'.b' makes it a blue dotted line
hold off

%add legends
legend('Truth','Estimate');

figure;
plot(truth,'-r','LineWidth',2); %'-r' makes it a red line, LineWidth is the
thickness
hold on %hold the figure, as we'll also put on a second one
plot(X*theta_0,'.-b','LineWidth',2); %'.-b' makes it a blue dotted line
hold off

%add legends
legend('Truth','Estimate');

%Plot Opportunity Cost vs Time
figure;
plot(1:L,OC,'-g','LineWidth',1.5);
xlabel('Iteration');
ylabel('Opportunity Cost');

%}
	
quadratic.m	–	simulating	the	Linear	Belief	Model	
%{
notation for the following:
K is the number of features (variables in the model).
M is the number of alternatives. This may be quite large.
N is the number of alternatives we have actually sampled.
K x M stands for a matrix with K rows and M columns

This function takes in
X: the design matrix for the linear regression model (K x N)
theta_0:prior for the linear regression parameters (N x 1)
MVar: variance of measurement noise (scalar)

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

51

truth: true values for the means of alternatives (K x 1)
L: how many measurements will be made (scalar)

C: Prior covariance matrix for theta. If nothing is used, the default
parameter is
(X'*X)^-1*MVar (the empirical estimate)

Weigher: This is a scalar between 0 and 1 (default is 1).
If the mesaurements are from a non-stationary distribution, a smaller
"Weigher" puts less weight on the previous observations.
Please see pg. 145 of the book (and the paragraph before equation 7.7).

And returns
theta: Final estimates for the lin. reg. parameters (N x 1)

OC: Opportunity cost at each iteration (1 x M)
choices: Alternatives picked at each iteration (1 x M)

thetaEst: Estimates at each iteration (N x M)
%}

function
[theta,OC,choices,thetaEst,revenuetotal]=quadratic(X,theta_0,MVar,truth,L,C,o
ffline,Weigher)

theta=theta_0;

[rows,n] = size(X);

OC=[];
choices=[];
thetaEst=[];
revenueiter=[];
revenuecum=[];
revenuetotal=0;
count=zeros(rows);
T=0;

%{
%----------------------
%SAMPLE TO FIND RANGE TO LIMIT SEARCH OF UCB

T=30; %Number in UCB Exploration Sample

for i=1:T
 currentestimates = X*theta;
 for i=2:rows
 if (currentestimates(i)>=0 && currentestimates(i-1)<0)
 a=i;
 end
 if (currentestimates(i)<=0 && currentestimates(i-1)>0)
 b=(i-1);
 end
 end

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

52

 choice = a + ceil(rand()*(b-a));

 %Observe the choice
 observation=truth(choice)+randn(1)*sqrt(MVar);

 if observation<0
 observation=0;
 end

 %Few things for the recursive updating eq.
 errorU=observation-theta'*X(choice,:)';
 gammaU=Weigher*(MVar)+X(choice,:)*C*X(choice,:)';

 %Update parameters
 theta=theta+(errorU./gammaU)*C*X(choice,:)';
 C=1./Weigher*(C-(1./gammaU)*C*X(choice,:)'*X(choice,:)*C);

 %pick the best one to compute OC
 [max_est, max_choice]=max(X*theta);

 %calculate the opportunity cost
 o_cost=max(truth)-truth(max_choice);

 OC=[OC,o_cost]; %update the OC matrix
 choices=[choices, choice]; %update the choice matrix

 %update revenue
 revenuetotal=revenuetotal+observation;
 revenueiter=[revenueiter, observation];
 revenuecum=[revenuecum, revenuetotal];

 count(choice) = count(choice)+1;

end
 uncertainty=std(revenueiter);
 r = max_est-.25*uncertainty;

 mu_est = X*theta;

 mu_esthalf1=mu_est(1:max_choice);

 mu_esthalf2=mu_est(max_choice:rows);
 [~,a]=min(abs(mu_esthalf1-r));
 [~,b]=min(abs(mu_esthalf2-r));
 b=b+max_choice-1;
 disp(a);
 disp(b);
 disp(r);

%----------------------
%}

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

53

for n=1:(L-T)

 %Choose using KG
 %choice=KGCBLin(theta,C,X,MVar,n,L,offline);

 %{
 %PURE EXPLORATION
 %
 currentestimates = X*theta;
 for i=2:rows
 if (currentestimates(i)>=0 && currentestimates(i-1)<0)
 a=i;
 end
 if (currentestimates(i)<=0 && currentestimates(i-1)>0)
 b=(i-1);
 end
 end

 choice = a + ceil(rand()*(b-a));
 %}

 %PURE EXPLOITATION
 currentestimates = X*theta;
 [maxrevest,choice]=max(currentestimates);
 %}
 %{
 %UPPER CONFIDENCE BOUNDING FOR ONLINE
 mu_est = X*theta;

 v=zeros(rows,1);
 for i=a:b
 v(i) = mu_est(i) + sqrt(2*log(n)/(count(i)));
 end

 [best_value, choice] = max(v);

 %}

 %Observe the choice
 observation=truth(choice)+randn(1)*sqrt(MVar);

 if observation<0
 observation=0;
 end

 %Few things for the recursive updating eq.
 errorU=observation-theta'*X(choice,:)';
 gammaU=Weigher*(MVar)+X(choice,:)*C*X(choice,:)';

 %Update parameters
 theta=theta+(errorU./gammaU)*C*X(choice,:)';

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

54

 C=1./Weigher*(C-(1./gammaU)*C*X(choice,:)'*X(choice,:)*C);

 %pick the best one to compute OC
 [max_est, max_choice]=max(X*theta);

 %calculate the opportunity cost
 o_cost=max(truth)-truth(max_choice);

 OC=[OC,o_cost]; %update the OC matrix
 choices=[choices, choice]; %update the choice matrix

 %update revenue
 revenuetotal=revenuetotal+observation;
 revenueiter=[revenueiter, observation];
 revenuecum=[revenuecum, revenuetotal];

 count(choice) = count(choice)+1;

 if nargout>3
 thetaEst=[thetaEst,theta];
 end

end
%{
figure;
bar(count, 'LineWidth',2);
title('Prices Chosen by Frequency');
xlabel('Price');
ylabel('Frequency');
figure;
plot(choices, 'LineWidth',2);
title('Price Choices by Iteration');
xlabel('Trial Number');
ylabel('Chosen Price');

figure;
plot(revenueiter, 'LineWidth',2);
title('Revenue by Iteration');
xlabel('Trial Number');
ylabel('Revenue');
figure;
plot(revenuecum, 'LineWidth',2);
title('Cumulative Revenue');
xlabel('Trial Number');
ylabel('Revenue');
%}

end

%KGCBLin uses the linear model to choose what appears to be the best
%alternative.

%X matrix for alternatives (M,K)

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

55

%Theta belief about parameters (K,1)
%C covariance for Theta (K,K)
%MVar is a scalar for measurement variance

function [bestX,KGVal,maxKG]=KGCBLin(theta,C,X,MVar,n,L,offline)

[rows, N]=size(X);
mu=X*theta;

a=1;
b=201;

for i=2:rows
 if (mu(i)>=0 && mu(i-1)<0)
 a=i;
 end
 if (mu(i)<=0 && mu(i-1)>0)
 b=(i-1);
 end
 end

B=X*C;

offline_KGVal=[];
online_KGVal=[];
KGVal=[];

for i=a:b
 Sigma=B*(X(i,:)');
 b=Sigma./sqrt(MVar+Sigma(i));
 [KG,LogKG] = LogEmaxAffine(mu',b');
 offline_KGVal=[offline_KGVal; KG];
 online_KGVal=[online_KGVal; mu(i)+(L-n)*KG];
 if offline==0
 KGVal=online_KGVal;
 elseif offline>0
 KGVal=offline_KGVal;
 end
end

%disp(KGVal);

[maxKG, bestX]=max(KGVal);

end

% logy = LogEmaxAffine(a,b)
% Calculates log(Exp[max_x a_x + b_x Z]-max_x a_x), where Z is a standard
% normal random variable and a,b are 1xM input vectors.
function [y,logy, a,b,c] = LogEmaxAffine(a,b)
 if (any(isnan(a)) || any(isnan(b)))
 warning('a or b is NaN');
 end
 assert(all(isreal(a)));
 assert(all(isreal(b)));

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

56

 a = a';
 b = b';

 % Check that a and b are column vectors of the right size
 if (any(size(a) ~= size(b)))
 error('LogEmaxAffine: a and b must be column vectors of the same
size');
 end

 [a,b] = AffineBreakpointsPrep(a,b);

 [c, keep] = AffineBreakpoints(a,b);
 a = a(keep);
 b = b(keep);
 c = c([1,keep+1]);
 M = length(keep);
 assert(all(isreal(c)));

 % I need logbdiff=log(diff(b)). I thought that the following code would
be
 % more numerically stable, able for example to distinguish cases like
 % logb = [-25 -.3] vs. logb = [-35 -.3], but it doesn't seem to be able
to.
 % Indeed, in the debugging output that I have below, the difference was 0.
 %{
 logb = log(abs(b)); % If b is 0, this is -Inf.
 sgnb = sign(b); % If b is 0, this is 0.
 logbdiff = zeros(size(c(2:M)));
 for i=1:length(b)-1
 [logbdiff(i),logbdiffsgn] = LogPlusExpSigned(logb(i),sgnb(i),logb(i+1),-
sgnb(i+1));
 %assert(logbdiffsgn>=0); % The b are distinct, so bdiff(i) can't be 0.
 end
 disp(sprintf('log(b)=%s log(diff(b))=%g logbdiff=%g
difference=%g',mat2str(log(b)),log(diff(b)),logbdiff,log(diff(b))-logbdiff));
 %}
 logbdiff = log(diff(b))';

 if M==1
 logy=log(a);
 elseif M>=2
 logy = LogSumExp(logbdiff+LogEI(-abs(c(2:M))));
 end

 logy=real(logy);
 y=exp(logy);
end
% Prepares vectors for passing to AffineEmaxBreakpoints, changing their
% order and removing elements with duplicate slope.

function [a,b] = AffineBreakpointsPrep(a,b)
 % Make sure a and b are column vectors.
 rows = size(a); if (rows == 1), a=a'; end
 rows = size(b); if (rows == 1), b=b'; end

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

57

 % 11/29/2008 PF: Experimental preprocessing step, which I hope will
remove
 % a large number of the entries.
 [b1, i1] = min(b); % [a1,b1] is best at z=-infinity
 [a2, i2] = max(a); % [a2,b2] is best at z=0
 [b3, i3] = max(b); % [a3,b3] is best at z=+infinity
 a1 = a(i1);
 b2 = b(i2);
 a3 = a(i3);
 cleft = (a - a1)./(b1 - b); % intersection with leftmost line.
 cright = (a - a3)./(b3 - b); % intersection with rightmost line.
 c2left = (a2 - a1)./(b1 - b2); % intersection with leftmost line.
 c2right = (a2 - a3)./(b3 - b2); % intersection with rightmost line.
 keep = find(b==b1 | b==b3 | cleft <= c2left | cright >= c2right);
 %disp(sprintf('Preprocessing cut %d of %d entries', length(a)-
length(keep), length(a)));
 a = a(keep);
 b = b(keep);
 clear keep cleft cright

 % Form a matrix for which ba(x,1) is the slope b(x) and ba(x,2) is the
 % y-intercept a(x). Sort this matrix in ascending order of slope,
 % breaking ties in slope with the y-intercept.
 ba = [b, a];
 ba = sortrows(ba,[1,2]);
 a = ba(:,2);
 b = ba(:,1);

 % Then, from each pair of indices with the b component equal, remove
 % the one with smaller a component. This code works because the sort
 % above enforced the condition: if b(i) == b(i+1), then a(i) <= a(i+1).
 keep = [find(diff(b)); length(b)];
 % This previous line is equivalent to:
 % keep = [];
 % for i=[1:length(b)-1]
 % if b(i)~=b(i+1)
 % keep = [keep, i];
 % end
 %end
 %keep = [keep, length(b)]; % We always keep the last one.

 % Note that the elements of keep are in ascending order.
 % This makes it so that b(keep) is still sorted in ascending order.
 a = a(keep);
 b = b(keep);
end

% Inputs are two M-vectors, a and b.
% Requires that the b vector is sorted in increasing order.
% Also requires that the elements of b all be unique.
% This function is used in AffineEmax, and the preparation of generic
% vectors a and b to satisfy the input requirements of this function are
% shown there.
%

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

58

% The output is an (M+1)-vector c and a vector A ("A" is for accept). Think
of
% A as a set which is a subset of {1,...,M}. This output has the property
% that, for any i in {1,...,M} and any real number z,
% i \in argmax_j a_j + b_j z
% iff
% i \in A and z \in [c(j+1),c(i+1)],
% where j = sup {0,1,...,i-1} \cap A.
%
% A note about indexing:
% Since Matlab does not allow indexing from 0, but instead requires
% indexing from 1, what is called c_i in the paper is written in matlab as
% c(1+i). This is because in the paper we reference c_0. For the vectors
% a and b, however, we don't need to reference a_0 or b_0, so we reference
% a_i and b_i by a(i) and b(i) respectively, rather than a(i+1) or b(i+1).
%
function [c,A] = AffineBreakpoints(a,b)
 % Preallocate for speed. Instead of resizing the array A whenever we add
 % to it or delete from it, we keep it the maximal size, and keep a length
 % indicator Alen telling us how many of its entries are good. When the
 % function ends, we remove the unused elements from A before passing
 % it.
 M = length(a);
 c = zeros(1,M+1);
 A = zeros(1,M);

 % Step 0
 i=0;
 c(1+i) = -inf;
 c(1+i+1) = +inf;
 A(1) = 1;
 Alen = 1;

 for i=[1:M-1]
 c(1+i+1) = +inf;
 while(1)
 j = A(Alen); % jindex = Alen
 c(1+j) = (a(j) - a(i+1))/(b(i+1)-b(j));
 % The if statement below replaces these lines from version 2 of the
 % function.
 % kindex = jindex-1 = Alen-1
 % if kindex > 0 && c(1+j)<=c(1+A(kindex))
 if Alen > 1 && c(1+j)<c(1+A(Alen-1))
 Alen = Alen-1; % Remove last element j
 % continue in while(1) loop
 else
 break % quit while(1) loop
 end
 end
 A(Alen+1) = i+1;
 Alen = Alen + 1;
 end
 A = A(1:Alen);
end

% Returns the log of Exp[(s+Z)^+], where s is a constant and Z is a standard

Li	and	Kaplan:	Pricing	Los	Angeles	Expressways	 	

59

% normal random variable. For large negative arguments Exp[(s+Z)^+] function
% is close to 0. For large positive arguments, the function is close to the
% argument. For s large enough, s>-10, we use the formula
% Exp[(s+Z)^+] = s*normcdf(s) + normpdf(s). For smaller s we use an
asymptotic
% approximation based on Mill's ratio. EI stands for "expected improvement",
% since Exp[(s+Z)^+] would be the log of the expected improvement by
measuring
% an alternative with excess predictive mean s over the best other measured
% alternative, and predictive variance 0.
function logy = LogEI(s)

% Use the asymptotic approximation for these large negative s. The
% approximation is derived via:
% s*normcdf(s) + normpdf(s) = normpdf(s)*[1-|s|normcdf(-|s|)/normpdf(s)]
% and noting that normcdf(-|s|)/normpdf(s) is the Mill's ratio at |s|, which
is
% asymptotically approximated by |s|/(s^2+1) [Gordon 1941, also documented in
% Frazier,Powell,Dayanik 2009 on page 14]. This gives,
% s*normcdf(s) + normpdf(s) = normpdf(s)*[1-s^2/(s^2+1)] =
normpdf(s)/(s^2+1).

i=find(s<-10);
if (length(i)>0)
 logy(i) = LogNormPDF(s(i)) - log(s(i).^2 + 1);
end

% Use straightforward routines for s in the more numerically stable region.
i=find(s>=-10);
if (length(i)>0)
 logy(i) = log(s(i).*normcdf(s(i))+normpdf(s(i)));
end

assert(all(isreal(logy)));
end

% logy = LogNormPDF(z)
% Returns the log of the normal pdf evaluated at z. z can be a vector or a
scalar.
function logy = LogNormPDF(z)
 const = -.5*log(2*pi); % log of 1/sqrt(2pi).
 logy = const - z.^2/2;
end

% function y=LogSumExp(x)
% Computes log(sum(exp(x))) for a vector x, but in a numerically careful way.
function y=LogSumExp(x)
xmax = max(x);
y = xmax + log(sum(exp(x-xmax)));
end

This paper represents our own work in accordance with University regulations.
SHUYANG LI
MAX KAPLAN

