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Abstract

Understanding human language often necessi-
tates understanding entities and their place in
a taxonomy of knowledge—their types. Previ-
ous methods to learn entity types rely on train-
ing classifiers on datasets with coarse, noisy,
and incomplete labels. We introduce a method
to instill fine-grained type knowledge in lan-
guage models with text-to-text pre-training on
type-centric questions leveraging knowledge
base documents and knowledge graphs. We
create the WikiWiki dataset: entities and pas-
sages from 10M Wikipedia articles linked to
the Wikidata knowledge graph with 41K types.
Models trained on WikiWiki achieve state-of-
the-art performance in zero-shot dialog state
tracking benchmarks, accurately infer entity
types in Wikipedia articles, and can discover
new types deemed useful by human judges.

1 Introduction

Entities can be categorized by their types, which
indicate where they belong in a taxonomy of knowl-
edge. For example, Venus is a planet and thus also
an astronomical body. Much like how knowledge
acquisition in cognitive development progresses
from recognizing concrete objects to gradually
understanding their relations to one another (Lu-
cariello et al., 1992), we aim to extend language
models’ existing rough understanding of entities
(Heinzerling and Inui, 2021) to the types that gov-
ern how entities are related. Instilling type knowl-
edge in multi-purpose models can improve per-
formance in tasks like entity linking (Onoe and
Durrett, 2020), question-answering (Févry et al.,
2020a), and semantic parsing (Thirukovalluru et al.,
2021).

While language models can memorize some
facts (Petroni et al., 2019), they frequently halluci-
nate false information (Logan IV et al., 2019; Shus-
ter et al., 2021). Current attempts to learn to infer
types for entities are hampered by 1) the difficulty

Figure 1: Via the WikiWiki dataset, we train a
model to answer questions about entities mentioned in
Wikipedia articles (top) and WIkidata types that such
entities are an instance of (P31) or subclass of (P279).

of collecting diverse, large-scale typing datasets;
and 2) how existing corpora assume independence
between types (Choi et al., 2018), while in reality
types sit at levels of granularity that are useful in
different settings: a pizza store may care whether a
user likes Cheese Pizza; a restaurant recommender
might care if the user wants Pizza; finally, a general
dialog agent might only care if a user wants Food.

We address both issues by proposing a simple
and effective approach for pre-training generative
language models to answer questions about entities,
types, and surface forms (mentions) in a large pub-
lic knowledge graph (KG) consisting of Wikipedia
articles and Wikidata nodes. We leverage high qual-
ity type labels in a large corpus of knowledge-rich
text and an ordered, hierarchical type ontology.

To summarize our main contributions: 1) We
create the new WikiWiki dataset comprising 10M
Wikipedia articles linked to nodes from Wikidata;
2) We propose a pre-training scheme for genera-
tive language models using type-centric question-
answering based on WikiWiki; 3) We achieve state-
of-the-art (SOTA) performance in zero-shot do-
main adaptation for dialog state tracking using
our type-instilled models, with average per-domain
gains of 14.9% (49.4% relative) joint accuracy; and
4) We show that our models can precisely infer
types for seen and unseen entities in new articles
from WikiWiki, and propose novel types that hu-



Training Test Test (New Ent)

Documents 10 M 5.0 K 5.0 K
Unique Entities 2.2 M 14.1 K 6.0 K
Unique Types 40.6 K 4.0 K 1.2 K
Num. of Mentions 38.7 M 19.3 K 6.4 K
Type References 43.8 M 21.5 K 6.5 K

Table 1: Unique documents/entities/types and number
of mentions in each split of WikiWiki. Test (New Ent)
comprises entities not seen in the training split.

mans judge to be accurate and appropriate.

2 Related Work

Knowledge Grounding in Language Models
Large pre-trained language models have been
shown to memorize some facts (Petroni et al.,
2019). One recent line of work aims to explicitly
condition generation on knowledge bases by com-
bining a retrieval module and a language model
(Majumder et al., 2020; Guu et al., 2020; Lewis
et al., 2020b; Mazaré et al., 2018). Peters et al.
(2019) propose instead to align token representa-
tions from pre-trained language models with entity
embeddings to reason over a limited set of entities.
Yamada et al. (2020) explicitly denote entity tokens
with a learned input embedding. Specific entity em-
beddings have also been learned jointly by using
knowledge graphs as auxiliary inputs during lan-
guage model pre-training (Sun et al., 2020a; Févry
et al., 2020b; Zhang et al., 2021). Another line
of work aims to model specific factual statements
from knowledge bases (Wang et al., 2021) for read-
ing comprehension (Lu et al., 2021) and trivia QA
(Agarwal et al., 2021). We propose text-to-text
pre-training on knowledge recovery tasks to instill
type-awareness. Our models learn type knowledge
that transfers to the type-adjacent downstream task
of dialog state tracking and can infer unseen types.

Entity Representation Learning Many SOTA
systems for knowledge retrieval and QA rely on
learned dense embeddings of individual entities or
types to perform multi-class classification (Ganea
and Hofmann, 2017; Karpukhin et al., 2020; Wu
et al., 2020a). Several recent frameworks aim to
learn entity knowledge during language model pre-
training via entity masking (Sun et al., 2020b) or
contrastive learning (Qin et al., 2021). Systems
for entity typing (Dai et al., 2021) and disambigua-
tion (Yamada et al., 2019) also learn dense vector
encodings that are later matched via dot-product
scoring. Cao et al. (2021) aim to address some

Context: These included carbon dioxide by burning
diamond, and mercuric oxide by heating mercury. This
type of experiment contributed to the discovery of
“dephlogisticated air” by Priestley, which became better
known as oxygen, following Lavoisier’s investigations.

Entity/Type Discovery (20%): List all concepts and
types mentioned here.
Answer: Priestley (chemist), Lavoisier (chemist), mercuric
oxide (chemical compound), mercury (chemical element),
and dephlogisticated air (superseded scientific theory)

Entity Typing (30%): What is dephlogisticated air an
example of?
Answer: superseded scientific theory

Entity Recognition (20%): What does Priestley refer to?
Answer: Joseph Priestley (chemist)

Slot Filling (30%): Which chemists are mentioned here?
Answer: Joseph Priestley and Antoine Lavoisier

Table 2: In pre-training, the model reads a Wikipedia
article and answers questions from four tasks involving
entities and types. It must generate answers containing
terms not found verbatim in the text. Surface forms
(mentions) in green, entities in red, and types in blue.

downsides of the above approaches—the linearly
increasing space required to store learned represen-
tations and difficulties in negative sampling—by
casting the task as generative language modeling:
predict the name of an entity to be linked. We
generalize this approach from entity names (which
appear verbatim) to include types, which require a
more nuanced understanding of a context.

3 Type-Centric Multitask Modeling

WikiWiki Corpus To train an entity- and type-
aware language model, we build the WikiWiki
dataset by combining Wikipedia articles with the
Wikidata KG (Vrandecic, 2012). Wikipedia articles
have been used to enrich corpora for dialog (Dinan
et al., 2019), coreference resolution (Singh et al.,
2012), and QA (Liu et al., 2020). KGs have been
used for entity typing and relation extraction (Sakor
et al., 2020). Yao et al. (2019) use Wikipedia pages
as context for relation triples mined from Wikidata.

We link articles, entities, and types as in Fig-
ure 1: like Wu et al. (2020b), we take Wikipedia
hyperlinks as links between entities (target page)
and their mentions (link text); we link pages to
Wikidata nodes via ID; and for each node we ex-
tract types T from Wikidata where t ∈ T is an
instance/subclass of the node (discarding entities
with no types).1 To address sparsity of hyperlinks,

1All humans on Wikidata are an instance of ‘human’; we
thus use the ‘occupation’ relation to determine their types.



we follow Yao et al. (2019) and use spaCy to iden-
tify additional entities. We sample 10M articles
for training, with two disjoint 5K-article splits for
evaluation, containing seen and unseen (New Ent)
entities respectively (Table 1). The ontology of
Wikidata types forms a directed acyclic graph with
41K type nodes applying to 2.2M entities. Pre-
vious entity typing datasets rely on annotations
from small groups of crowd-workers and include
a small type ontology in the hundreds (Ling and
Weld, 2012) and/or sacrifice label accuracy (Choi
et al., 2018). We instead rely on the cumulative,
cross-checked annotations from tens of thousands
of active Wikidata users.

Entities in Wikidata on average are assigned
1.28 types; for entities with multiple types, not all
types are necessarily relevant to a context. For
example, take the following passage: “Obama
was elected to the Illinois Senate in 1996, suc-
ceeding Democratic State Senator Alice Palmer
from Illinois’s 13th District, which, at that time,
spanned Chicago South Side neighborhoods from
Hyde Park–Kenwood south to South Shore and west
to Chicago Lawn.”

While Wikidata entities may have 5+ types,
many are not directly relevant to a context. For
example, while Barack Obama has types includ-
ing Politician, Jurist, Political Writer, Community
Organizer, and Podcaster, the latter is not relevant
to the context. To teach our models to infer types
relevant to the context at hand, in pre-training data
we take only types that are shared between Barack
Obama and other entities in the document (e.g. Al-
ice Palmer—Politician). We have made the Wiki-
Wiki dataset publicly available on Github.2

Pre-training Tasks To instill type-centric knowl-
edge from WikiWiki, we train our models to an-
swer four types of knowledge-based questions con-
ditioned on a passage from Wikipedia (examples
in Table 2). In entity/type discovery, the model is
tasked to recover all surface forms (mentions) that
reference an entity, along with their types—this is
analogous to simultaneous entity recognition and
typing. Entity typing consists of assigning types
to an entity of interest. For entity recognition, we
follow Cao et al. (2021) by training our model to
respond with an entity’s full name and type when
queried with a surface form. In slot filling we ask
our model to return all entities mentioned in the

2https://github.com/amazon-research/
wikiwiki-dataset/

User: I’m looking for a place to stay during my
upcoming trip to Cambridge.

System:
I can definitely help you with that! What
area are you staying in, and what is the
price range you are looking for?

User: It should be located in the west and it
should be cheap.

Belief State: [hotel price range]: cheap; [hotel area]: west

Table 3: In Dialog State Tracking (DST), a model infers
the belief state of a user given the dialog history thus
far, comprising slots (red) and their values (blue). In
Zero-shot DST, the model must infer the correct values
for slots that it has not seen during training, requiring
the agent to rely on general type knowledge.

passage belonging to a certain type. For multi-type
entities, we use a subset of relevant types given
other entities in the context (Appendix A). We treat
QA as a universal format for diverse NLU tasks
(McCann et al., 2018), and adopt the framework
of Raffel et al. (2020) to treat each of our tasks as
text-to-text generative modeling. We create 50M
questions for pre-training.

Model Architecture We use an encoder-decoder
(Sutskever et al., 2014) model initialized from
BART—a Transformer (Vaswani et al., 2017) lan-
guage model pre-trained via de-noising autoen-
coding (Lewis et al., 2020a). Our model gener-
ates an answer a as a text sequence given a doc-
ument D of length td and question q. The doc-
ument is encoded via the encoder—consisting of
l Transformer layers of hidden dimensionality h,
each applying 16-headed self-attention—to pro-
duce z := Enc(D) ∈ Rtd×h.

We train the model to perform QA via condi-
tional language modeling. Instead of concatenating
the question with the context in encoder input (Lin
et al., 2021), the decoder generates a sequence con-
sisting of the question and answer: x = [q; a]. We
can thus cache the document encoding at inference
to answer multiple questions. At training time we
perform next-token prediction, calculating cross-
entropy loss by maximizing the log likelihood of
the question and answer conditioned on the doc-
ument: P (q, a|D) =

∏T
t P (xt|x<t, D). We as-

sess the impact of our pre-training on Base (l=12,
h=768) and Large (l=24, h=1024) models.

4 Experiments

We demonstrate the effectiveness of our pre-
training on two tasks that require type understand-

https://github.com/amazon-research/wikiwiki-dataset/
https://github.com/amazon-research/wikiwiki-dataset/


# Params R H A T X

TRADE 90M 12.6 14.2 20.1 22.4 59.2
MA-DST 90M 13.6 16.3 22.5 22.8 59.3
SUMBT 355M 16.5 19.8 22.6 22.5 59.5
GPT2-DST 355M 26.2 24.4 31.3 29.1 59.6

BART 139M 27.9 31.9 38.4 34.3 70.5
Ours (Base) 139M 40.4 36.5 39.8 36.1 70.9
Ours (Large) 406M 46.7 38.8 49.8 37.7 72.1

Table 4: Zero-shot domain adaptation JGA (%) on
MultiWOZ 2.1 test set on the (R)estaurant, (H)otel,
(A)ttraction, (T)rain, and Ta(X)i domains. We achieve
SOTA results on all domains by significant margins.

ing: zero-shot domain generalization in dialog state
tracking (DST), and fine-grained entity typing.

Zero-Shot DST The goal of Dialog State Track-
ing (DST) is to infer user intent and goals from
conversations by filling in belief slots (Lemon et al.,
2006; Wang and Lemon, 2013). In many real-world
settings, DST models must be able to predict new
slot values (i.e. new entities that are not present
in the training corpus) and new slot types (e.g. re-
quirements for applications in new domains). This
problem setting is known as zero-shot DST (Ta-
ble 3). We follow the zero-shot setting in Cam-
pagna et al. (2020): train a model on multi-domain
DST data and evaluate on a held-out domain. We
measure domain generalization performance via
joint goal accuracy (JGA): the percent of turns
in which a model successfully predicts values for
all slots in the target domain. We use the Multi-
WOZ 2.1 benchmark (Eric et al., 2019), evaluating
zero-shot JGA for the Restaurant, Hotel, Attrac-
tion, Train, and Taxi domains. At each turn, we
ask the model a question about the preference for
each slot. We compare against recent systems that
can perform zero-shot DST: TRADE (Wu et al.,
2019), MA-DST (Kumar et al., 2020), SUMBT
(Lee et al., 2019), and GPT2-DST (Li et al., 2021).
Our method is complementary to systems for creat-
ing synthetic in-domain dialogs (Kim et al., 2021).

As seen in Table 4, our type-centric pre-training
allows a model to answer questions about unseen
slots. BART-base itself achieves SOTA JGA across
all domains, and our pre-training significantly in-
creases the gain to 10.6% absolute / 34.8% relative
JGA—despite only using one-third of the param-
eters. Our Large model achieves 14.9% absolute
and 49.4% relative gain in JGA compared to previ-
ous SOTA. The most significant gains come in the
Hotel and Restaurant domains, which contain the

100% 50% 20%

Base (139M) 13.7 14.7 39.0
Large (406M) 0.9 1.6 4.8

Table 5: Relative gain (%) in JGA for models trained on
WikiWiki vs standard BART pre-training. Our method
helps more in low-data regimes and for smaller models.

most categorical slots that resemble types (e.g. cui-
sine, hotel type). In Table 5 we compare our mod-
els against same-size BART models at different
levels of training data availability to demonstrate
the additive utility of our method. Our method is
particularly helpful with less fine-tuning data (low-
data regimes), with average gains of 39% for small
models and 4.8% for large models at 20% data
availability. Gains are magnified for smaller mod-
els, affirming that our method can effectively instill
type knowledge in lightweight language models.

Ultra-Fine Entity Typing Our method improves
generalization in type-adjacent tasks; we next aim
to infer entity types in unseen documents. In pre-
liminary experiments on the UltraFine dataset with
11K types (Choi et al., 2018), our models under-
perform SOTA (24.0 vs. 49.1 F1). Manual inspec-
tion of gold labels reveals two main causes for er-
ror: 1) inaccurate labels—e.g. “rare plants” as type
“bird”; and 2) inconsistent usage of gold labels:
different spellings (organization / organisation) or
synonyms (car / automobile) are treated as distinct
and often do not collocate. This suggests that la-
bel noise in UltraFine may make it unsuitable for
assessing granular, hierarchical type knowledge.

We examine these annotation errors via human
evaluation, presenting crowd-workers with 200
contexts from UltraFine (10% of the test set). Only
68% of gold type labels were judged accurate, and
21% inaccurate. We compare gold labels against
zero-shot predictions from our model in a second
trial with 200 pairs. Judges preferred our predic-
tions 51% of the time compared to 29% for gold.
We observed moderate inter-annotator agreement
of κ=0.4044 (Fleiss, 1971). This suggests that
our models can accurately infer types, but current
benchmarks do not suitably measure typing quality.

Entity Typing on WikiWiki We turn to Wiki-
Wiki to evaluate fine-grained entity typing, leverag-
ing type labels verified by active users of Wikidata.
To verify the accuracy of ground-truth type labels
in the WikiWiki test set, we asked human evalua-



Entities Model Precision Recall F1

Seen RoBERTa 62.35 59.38 60.82
Ours 78.13 72.39 75.15

Unseen RoBERTa 48.88 47.96 48.41
Ours 66.65 63.71 65.14

Table 6: P/R/F1 of pred. vs. gold types on WikiWiki
Test (seen) and Test New Ent (unseen entities) splits.

tors to judge the accuracy of 443 type labels from
200 randomly sampled contexts. We confirm that
WikiWiki is a high-quality benchmark for entity
typing, with 85% type precision assessed by human
judges (compared to 68% for UltraFine).

We found that multi-label classifiers built on
RoBERTa (Liu et al., 2019) that perform well on
UltraFine require significant hyper-parameter tun-
ing to output non-trivial predictions to classify our
large and sparse (41K) type ontology. To per-
form entity typing with our model, we generate
comma-delimited text sequences of types (Yang
et al., 2018). This allows our models to infer and
generate novel types while classifiers remain re-
stricted to the training ontology. We confirm that
our pre-training helps models better infer types for
both seen (+14.3 F1) and unseen entities (+16.7 F1)
in new contexts compared to classifiers (Table 6).

To investigate if our model can discover novel
types, we perform another human evaluation over
557 such predictions from 300 contexts, with inter-
annotator agreement of κ=0.4086. Our model ac-
curately extrapolates its type knowledge beyond
the training ontology—we observe 73.3% preci-
sion when inferring new types (compared to 74.5%
precision for seen types), demonstrating that our
pre-training enables models to reason about types
beyond simple memorization. Our model discov-
ers complex and specific scientific types, correctly
proposing that anorthosite (an aluminum silicate
rock) is a metallurgical rock3 and that speckled
tortoises are monotrophs.4 This reflects the robust
taxonomy of types in scientific disciplines. Our
model also proposes granular categories of events,
and is judged to correctly type the 2015 Tour of Tai-
wan as an instance of the Tour de Taiwan cycling
race. In the future, we seek methods to automati-
cally assess the factual accuracy of new types.

3rocks containing metallic compounds and properties
4has diet comprising one type of food (Herrera, 1976)

5 Conclusion

In this paper, we 1) propose a text-to-text pre-
training scheme to instill type knowledge in lan-
guage models via QA and 2) release the WikiWiki
dataset built from Wikipedia articles and the Wiki-
data KG. We show that WikiWiki is larger-scale
and more accurate than existing fine-grained type
recognition datasets. We demonstrate that our type-
centric pre-training framework allows us to train
language models that can better generalize to un-
seen domains, entities, and types—which in turn
lead to improved model performance on down-
stream tasks like dialog state tracking (achieving
SOTA results on zero-shot DST with average gains
of 14.9% joint accuracy). Our models can extrap-
olate type knowledge and infer novel types that
humans judge to be useful and precise. As the
body of human knowledge grows, we see an oppor-
tunity to use life-long learning (Parisi et al., 2019)
on news and publications to expand and model the
taxonomy of knowledge.
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A Data

We use the June 2021 Wikidata database file
from https://www.wikidata.org/wiki/
Wikidata:Database_download for raw
KG data. We use English Wikipedia article HTML
crawled from the same time period. While Wiki-
data contains multilingual definitions and labels for
each node, in this paper we use only English entity
and type names.

Wikipedia data was collected under the original
terms of release which allow free usage of such
materials for non-commercial purposes.5 We will
release WikiWiki under the same license.

When creating questions for pre-training tasks,
if a question has multiple answers (e.g. multiple
chemists in Table 2), the answers are a comma- and
and-delimited sequence, in order of appearance in
the context. For the entity typing question, we use
the order that types appear in the Wikidata page.

B Experimental Settings

We train all of our models on a node with eight
Nvidia V100 GPUs (comprising 256 GB total
VRAM) and 768 GB of RAM. We optimize us-
ing Deepspeed Stage 1 (Pudipeddi et al., 2020)
using FP16 and the Lamb optimizer (You et al.,
2020). Experimental results, where applicable, are
reported as median of 3 experiments.

Hyperparameters For pre-training, we use a
learning rate of 1e-4 with a linear warm-up for
the first 10% of training iterations, using an effec-
tive batch size of 960. Our models were trained
on a single pass of our pre-training dataset of 50M
questions, totaling 52K steps. We fine-tune mod-
els using the same learning rate schedule, using
an effective batch size of 2560 and early stopping
for a maximum of 10 epochs based on validation
loss. We aim to establish the general ability of our
pre-training scheme to instill type awareness, and
thus fix hyperparameters for generative language
models trained with our method without hyperpa-
rameter tuning.

As mentioned in Section 4, the RoBERTa-based
classifier for entity typing on WikiWiki required
significantly more hyperparameter tuning; we per-
formed a hyperparameter sweep on batch size (512
to 2048), learning rate (1e-3 to 1e-5), optimizer

5https://en.wikipedia.org/wiki/
Wikipedia:Copyrights
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# Params R H A T X

GPT2-DST 355M 26.2 24.4 31.3 29.1 59.6
+ SGD 355M 27.7 24.9 42.4 41.1 60.3

Ours (Base) 139M 40.4 36.5 39.8 36.1 70.9
Ours (Large) 406M 46.7 38.8 49.8 37.7 72.1

Table 7: Zero-shot domain adaptation JGA (%) on
MultiWOZ 2.1 test set on the (R)estaurant, (H)otel,
(A)ttraction, (T)rain, and Ta(X)i domains. Compared
to GPT2-DST (Li et al., 2021) augmented with out-
of-domain DST data (+SGD), our Base model out-
performs the augmented model in 3/5 domains and our
Large model out-performs it in 4/5 domains.

(Adam vs. Lamb), and whether to freeze the en-
coder. We achieved best performance (as in Ta-
ble 6) with a learning rate of 1e-4, the Adam op-
timizer, an effective batch size of 960, and with
gradual unfreezing (Howard and Ruder, 2018) over
5K steps. We found gradual unfreezing to be criti-
cal for model performance, with fully frozen and
fully unfrozen RoBERTa models achieving entity
typing F1 scores of ≤ 10.0.

C Dialog State Tracking Notes

As discussed in Section 4, our method is orthogonal
to and thus can be used simultaneously with tech-
niques for creating synthetic in-domain training
data for DST (Campagna et al., 2020; Kim et al.,
2021). For slot queries, we use templated ques-
tions of the form: What [domain] [slot]
is the user interested in?.

We compare our models against SOTA models
for zero-shot DST on MultiWOZ 2.1. We affirm
the observations of Lin et al. (2021) that while T5-
DST achieves strong DST performance on the 2.0
version of the dataset, performance degrades on the
2.1 benchmark.

Li et al. (2021) also present results for GPT2-
DST when training is augmented with additional
DST data from a wider pool of domains—the
Schema-Guided Dialog dataset (Rastogi et al.,
2020). In the interest of fairness, we do not
compare this setting in Table 4 as our models
do not have access to any conversational data in
pre-training and—like the other baseline models—
cannot access additional DST data in fine-tuning.
Despite the lack of exposure to conversational data,
in Table 7 we show that our Small and Large mod-
els out-perform GPT2-DST + SGD in 3/5 domains
(with absolute per-domain gain of 5.5% and rela-
tive gain of 18.3%) and 4/5 domains (with absolute

# Params R H A T X

BART-base 139M 29.6 31.5 38.7 35.0 70.5
Ours (Base) 139M 41.3 33.6 42.5 36.6 71.9
Ours (Large) 406M 46.4 37.6 52.3 38.0 72.1

Table 8: Zero-shot domain adaptation JGA (%) on Mul-
tiWOZ 2.1 validation set on the (R)estaurant, (H)otel,
(A)ttraction, (T)rain, and Ta(X)i domains.

gains of 9.7% and relative gains of 30.6%), respec-
tively. We additionally present zero-shot DST per-
formance (JGA) on the MultiWOZ 2.1 validation
set in Table 8.

D Human Evaluation Details

We perform our evaluation using the Amazon Me-
chanical Turk platform.6 To ensure high quality
annotations, we recruit only crowd workers with
Master qualification—indicating a history of high
quality accepted work—and who are native English
speakers.7 Crowd-workers remained anonymous
outside of their qualifications and we did not collect
any additional demographic information. Workers
were informed that their type accuracy judgements
were to be used in an academic research setting,
with an option to opt-out and reject the task.

As both gold types and predicted types could be
complex and require domain knowledge, evaluators
were instructed to search any relevant additional
material (textbooks, sites, papers) to ensure they
made a high confidence judgment of type accuracy.
Based on the average time spent evaluating each
article, our pay rate worked out to above Federal
minimum wage in the United States.

In Figure 2 we display the example instructions
given to a human evaluator for assessing the accu-
racy of a type for an entity referenced in a context.
In Figure 3 we show sample instructions given to
a human evaluator to choose which of two types
(predicted or gold label in random order) is more
suitable / applies more accurately to the referenced
entity.

E Ethics

As with all models capable of generating arbitrary
text sequences, models trained with our framework
and tasks run the risk of outputting toxic or of-
fensive text (Gehman et al., 2020). However, our
training aims to instill type knowledge for type-

6https://www.mturk.com/
7https://www.mturk.com/worker/help

https://www.mturk.com/
https://www.mturk.com/worker/help


Figure 2: Example of human evaluation question where the judge is asked to assess whether a predicted / ground
truth type accurately applies to the entity referenced.

Figure 3: Example of human evaluation question where the judge is asked to assess to determine the relative
suitability and quality of two different types for the entity referenced.

and concept-reliant downstream tasks. As such,
we expect that our pre-training does not heighten
the risk of offensive outputs compared to other
general-purpose pre-training schemes on wide in-
ternet corpora.

The primary risk of instilling models with type
knowledge lies in the potential for misinformation
(Weidinger et al., 2021). For example, if our model
is used to extend existing taxonomies, it runs the
risk of hallucinating false types. We observe in
Table 6 that while our model achieves high typing
precision and recall for seen and unseen types in
new documents, we are not at the point where it
can be used in isolation to discover and add knowl-
edge to existing knowledge graphs. In parallel
with developing better methods for verifying type
ontologies and assignments, it is important to incor-
porate domain experts or crowd-source verification
when language models are used to discover facts
or type relationships in new documents.

We also advocate for more careful inspection of
racial, gender, and socioeconomic biases in existing
type ontologies, as it is possible for type-aware
models to propagate such biases (e.g. associating
people with certain patterns of names with specific
occupations).


