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Abstract

Dialog State Tracking (DST), an integral part
of modern dialog systems, aims to track user
preferences and constraints (slots) in task-
oriented dialogs. In real-world settings with
constantly changing services, DST systems
must generalize to new domains and unseen
slot types. Existing methods for DST do not
generalize well to new slot names and many
require known ontologies of slot types and
values for inference. We introduce a novel
ontology-free framework that supports natural
language queries for unseen constraints and
slots in multi-domain task-oriented dialogs.
Our approach is based on generative question-
answering using a conditional language model
pre-trained on substantive English sentences.
Our model improves joint goal accuracy in
zero-shot domain adaptation settings by up to
9% (absolute) over the previous state-of-the-
art on the MultiWOZ 2.1 dataset.

1 Introduction

Dialog agents are gaining increasing prominence
in daily life. These systems aim to assist users via
natural language conversations, taking the form of
digital assistants who help accomplish everyday
tasks by interfacing with connected devices and
services. A key component to understanding and
enabling these task-oriented dialogs is Dialog State
Tracking (DST): extracting user intent and goals
from conversations via filling in belief slots (Lemon
et al., 2006; Wang and Lemon, 2013). Assistive
and recommendation use-cases for dialog agents in
production settings are particularly challenging due
to constantly changing services and applications
with which they interface.

Traditional DST systems have achieved high ac-
curacy when presented with a known ontology of
slot types and valid values (Chen et al., 2020). In
a real-world setting, however, a DST model must

Figure 1: Based on a dialog history, a natural language
questions are provided to our model to query a user’s
requirements and preferences (dialog state).

generalize to new slot values (e.g. new entities that
are not present at training time) and new slot types
(e.g. requirements regarding a new application).
Recent work has sought to address these issues by
posing DST as a reading comprehension or ques-
tion answering (QA) task (Gao et al., 2019)—such
models predict each slot value independently at any
given turn and can theoretically be queried for new
slots at inference time.

Some approaches toward DST as QA learn em-
bedding vectors for each slot and/or domain word
(Wu et al., 2019), but this is not robust to unseen
slots whose specific names (e.g. ‘Internet Access’)
may be totally unlike those in the training set. Gao
et al. (2020) attempt to remedy this by posing a
natural language question for each slot, but their
hybrid span-extraction and classification-based sys-
tem nonetheless requires access to the full ontology
for unknown domains. We present an ontology-
free model using natural language questions to
represent slots that builds on conditional language
modeling techniques—taking advantage of the rise
of powerful generative language models (Radford
et al., 2019)—to tackle DST as a generative QA



task. Our model can generalize to unseen domains,
slot types, and values, and allows developers to
query for arbitrary user requirements via simple
questions. To summarize our main contributions:

• We propose an ontology-free conditional lan-
guage modeling framework for dialog state
tracking via generative question answering,
achieving state-of-the-art performance in zero-
shot domain adaptation settings for DST on
MultiWOZ 2.1 (Eric et al., 2020) across all do-
mains with average per-domain gains of 5.9%
joint accuracy over previous best methods;

• We demonstrate performance competitive
with state-of-the-art methods in a fully super-
vised setting;

• We show that our approach can be easily
adapted to predict slot carry-over and transfer
knowledge from a larger, more diverse dataset
(Kim et al., 2019), improving zero-shot DST
performance across all domains to 11% joint
accuracy over the state-of-the-art.

2 Approach

We follow Gao et al. (2019) in treating Dialog State
Tracking as a reading comprehension problem: at
each turn of dialog, our model reads the dialog his-
tory and answers a fixed set of queries about user
requirements and preferences (slots), with predic-
tions aggregated to form the belief state. In our
framework (Figure 1), we query for a given slot
(e.g. Hotel Price Range) by asking a natural lan-
guage question (Gao et al., 2020)—“What is the
price range of the hotel the user prefers?”. As our
model’s predictive ability is based on its general
understanding of language and task-oriented con-
versation, we support zero-shot inference without
the need to re-train the model or extend a formal
ontology. For example, if a model has not been
trained on data from the hotel domain, when pre-
sented with a hotel booking conversation we may
nonetheless ask it a question like “In what area is
the user looking for a hotel?” and received a pre-
diction for that unseen requirement (Hotel Area).

While we conduct our experiments on English-
language DST datasets, our approach is applicable
to state tracking in any language, provided a con-
versation history is available.

Problem Statement We consider a conversation
with T turns of user ut and system utterances yt:

Figure 2: Our model performs DST via generative
question-answering. Natural language questions for di-
alog slots allow our model to generalize to new slot
types through its understanding of general language.

C = {y1, u1, . . . yT , uT }. The belief state Bt at
turn t comprises many tuples of slots s ∈ S and
their associated values vs,t ∈ Vs, extracted from
the conversation history Ct = {y1, u1, . . . , yt, ut}.
The set of possible values Vs can be arbitrarily
large (e.g. possible hotel names), so we repre-
sent these values as sequences of vocabulary to-
kens vs,t = {w1, w2, . . . , wk}, wi ∈ W . At in-
ference time we pose a natural language question
s = {w1, . . . , wn} and our model predicts an an-
swer (slot value vs,t) based on its understanding of
the dialog history Ct. To predict the belief state
Bt, our model independently answers |S| different
questions (Figure 1). In zero-shot DST, the system
must predict values for slots outside of the initial
ontology—these slot queries correspond to arbi-
trary natural language questions s′ about entities
and relationships in the conversation Ct.

Generalizing to New Domains and Slots Dia-
log State Tracking systems in real-world settings
must scale to new users and services, accommodat-
ing new slot values (e.g. a new movie release) as
well as new domains and slot types (e.g. a service
update, or a new connected API). Existing methods
require the developer to either write a complete on-
tology of slots and allowed values or modify their
model architecture to add slot-specific prediction
heads (Chen et al., 2020). Span-based approaches
(Zhang et al., 2019; Zhou and Small, 2019) can
correctly predict values that appear verbatim in a
conversation but fail when a user paraphrases or
mis-phrases a value. They also fall back to treating
open-valued slots as classification problems (Zhang
et al., 2019; Gao et al., 2020). We approach DST
as an ontology-free generative question answering
task, as generative methods (Wu et al., 2019; Ku-
mar et al., 2020) have shown promise in few-shot
and supervised DST settings.



JGA (%) # Params

DistilGPT2 LM 36.35 82 M
DistilGPT2 CLM no PT 39.34
DistilGPT2 CLM 49.55

+Question (CLMQ) 50.83

GPT2 CLMQ 51.02 124 M

GPT2-medium CLMQ 52.58 355 M

Table 1: Ablation study of our framework, reporting
supervised JGA on the MultiWOZ 2.1 test set.

While some approaches toward DST as QA learn
a set of embeddings for each slot and/or domain
(Gao et al., 2019; Wu et al., 2019; Kumar et al.,
2020), this is not robust to unseen slots. We en-
code slots as natural language questions—manually
formulating one question per slot—allowing us to
share a pre-trained encoder for both dialog context
and slot to leverage shared linguistic knowledge
(Gao et al., 2020). Thus, our model is also agnos-
tic to ontologies and can answer arbitrary English
questions about the dialog history. We treat DST
via QA as a conditional language modeling task,
and train our model to predict the conditional like-
lihood of question (slot s) and answer (value vs,t)
tokens given a dialog context Ct at a given turn t:

P (vs,t, s|Ct) = P (vs,t|s, Ct) ∗ P (s|Ct)

At inference time, the model is given the dialog
context alongside a question—[Ct; s]—and asked
to predict the value vs,t for that slot.

3 Model Architecture

For our conditional language model, we compared
two common architectures: 1) an encoder-decoder
model (Sutskever et al., 2014) with a bi-directional
encoder; and 2) a purely auto-regressive decoder-
only model. We conducted preliminary experi-
ments using both a Transformer (Vaswani et al.,
2017) encoder-decoder language model pre-trained
using a de-noising auto-encoder objective (Lewis
et al., 2020), as well as a Transformer decoder
pre-trained with next-token prediction on English
web pages. We achieved 1% better supervised
DST performance with the decoder-only model
in half the training time. Our model architecture
thus comprises a Transformer decoder language
model that allows us to leverage pre-trained lan-
guage models like GPT2 (Radford et al., 2019) and
common-sense world knowledge accrued through
pre-training (Petroni et al., 2019).

MultiWOZ DSTC8

Train 7,906 16,142
Validation 1,000 2,482
Test 1,000 4,201

Domains 5 19

Slots 30 124
Open 9 59
Numeric 5 12
Temporal 5 10
Categorical 11 43

Table 2: Dataset statistics for MultiWOZ 2.1 and
DSTC8: number of dialogs in each split, number of
domains, and slots with slot category breakdowns.

We use a BPE (Sennrich et al., 2016) tokenizer
to convert input text into a sequence of tokens.
These are embedded in Rh and added to an Rh

sinusoidal positional embedding. This input em-
bedding is processed by l Transformer layers with
hidden dimensionality h, each of which applies
multi-headed attention with k heads followed by
a feed-forward layer with a softmax nonlinearity.
The final output hidden states are then projected
into our vocabulary space of 50,257 sub-word to-
kens. We initialize our model weights with Distil-
GPT2 (Sanh et al., 2019), GPT2 (Radford et al.,
2019), or GPT2-medium with h = 768, 768, 1024,
l = 6, 12, 24, and k = 12, 12, 16 respectively.

As seen in Figure 2, our input sequence con-
sists of a concatenation of dialog context Ct, slot
query s, and slot value vs,t: [Ct; s; vs,t]. We pre-
pend each utterance with a speaker token [usr]
or [sys] for a user or system speaker to allow
our model to identify additional context about each
utterance. We pre-pend the slot query and value
with question: and answer: respectively to
distinguish slot queries from user-posed questions
in the conversation. At training time, we calculate a
cross-entropy loss similar to encoder-decoder mod-
els by maximizing the log likelihood of the slot
query and value conditioned on the dialog context:

P (s, vs,t|Ct) =
n∏
i

P (xi|x<i, Ct)

where n = |[s; vs,t]|. We find through ablation
experiments on our architecture that this loss com-
putation method out-performs a naı̈ve language-
modeling approach that maximizes log likelihood
of the full concatenated sequence [Ct; s; vs,t] via
the factorized joint distribution (Peng et al., 2020;



Model Type JGA NLQ

TRADE (Wu et al., 2019) G 45.60
SUMBT (Lee et al., 2019)* C 46.70
STARC (Gao et al., 2020)* C+S 49.48 Y
MA-DST (Kumar et al., 2020) G 51.88
GPT2-m CLMQ G 52.58 Y

Table 3: Supervised DST performance on MultiWOZ
2.1 of our model (underlined) compared to prior meth-
ods capable of zero-shot inference. Models using nat-
ural language questions (NLQ) are marked. *Requires
access to slot-value ontologies at inference time.

Hosseini-Asl et al., 2020):

P (x) =
n∏
i

P (xi|x<i)

This allows for flexibility in learned representations
for dialog context while regularizing slot query
hidden states.

4 Data

We perform our experiments on MultiWOZ
(Budzianowski et al., 2018), which contains over
10K single- and multi-domain task-oriented dialogs
written by crowd-workers. We use the 2.1 version,
with corrected and standardized annotations from
Eric et al. (2020). We follow Wu et al. (2019)
in lower-casing all dialogs and removing dialogs
from training-only domains (Police and Hospital).
The final dataset contains 9,906 conversations from
5 domains (Restaurant, Hotel, Attraction, Train,
Taxi) covering 30 domain-slot pairs. Each dialog
contains an average of 7 user and system turns.

We also experiment with augmenting our train-
ing dataset in zero-shot settings with observations
drawn from the DSTC8 (Kim et al., 2019) dataset,
1 which contains 16,152 dialogs from 45 domains.
DSTC8 was created via template-based dialog mod-
els provided with service APIs, and then edited
by crowd-workers (Shah et al., 2018). We nor-
malize domains and slots corresponding to the
same domain (e.g. Bus 1, Bus 2) for a total of
19 domains and 124 slot types in DSTC8. We
further manually annotate each dataset with slot
value types: open-valued (e.g. Hotel Name), nu-
meric (e.g. Restaurant Guests), temporal (e.g. Taxi
LeaveAt), and categorical (e.g. Attraction Type).
Dataset statistics are shown in Table 2.

1https://github.com/
google-research-datasets/
dstc8-schema-guided-dialogue

Model Type JGA Extra Supervision

DSTQA C+S 51.17 Knowledge Graph
DS-DST C+S 51.21
GPT2-m CLMQ G 52.58
SOM-DST G 53.68 Previous Dialog State
SST C 55.23 Schema
TripPy S 55.30 Previous Dialog Actions
SimpleToD G 55.72 Actions (Training)

Table 4: Supervised DST performance on MultiWOZ
2.1 of our model (underlined) against state-of-the-art
DST methods incapable of zero-shot inference.

5 Experiments

We measure DST performance via Joint Goal Ac-
curacy (JGA): the proportion of turns with all be-
lief slots predicted correctly, including those not
present. In Section 5.1, we evaluate our model on
fully supervised DST, in which all domains and
slots are known at training time. In Section 5.2, we
investigate zero-shot domain adaptation in which
the model is evaluated on conversations from an
unseen domain with previously unseen slots. We
then explore how our framework seamlessly ac-
commodates teaching a model to predict slot carry-
over (Section 5.3) and transfer learning with signif-
icantly more diverse domains and slot types (Sec-
tion 5.4). To measure zero-shot JGA, we follow
Campagna et al. (2020) and only consider slots spe-
cific to the held-out domain. We focus our analysis
on the zero-shot setting, as our goal is to build DST
systems that can easily and effectively generalize
to new domains and services. We train all mod-
els to convergence with a maximum of 10 epochs
on Nvidia V100 GPUs, using the Lamb optimizer
(You et al., 2020) with a base learning rate of 2e-5.
All predictions are made using greedy decoding.

5.1 Supervised DST

We first evaluate on the commonly benchmarked
supervised DST task to demonstrate performance
competitive with state-of-the-art. In this setting we
compare our approach against prior methods ca-
pable of zero-shot inference in Table 3—TRADE,
STARC, SUMBT, and MA-DST—and those inca-
pable of doing so in Table 4, including DSTQA
(Zhou and Small, 2019), DS-DST (Zhang et al.,
2019), SOM-DST (Kim et al., 2020), SST (Chen
et al., 2020), TripPy (Heck et al., 2020), and Sim-
pleToD (Hosseini-Asl et al., 2020). Our model
outperforms all prior models that support zero-
shot generalization and is competitive with meth-

https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue


Rest. Hot. Attr. Train Taxi

TRADE 12.59 14.20 20.06 22.39 59.21
MA-DST 13.56 16.28 22.46 22.76 59.27
SUMBT 16.50 19.80 22.60 22.50 59.50

Ours (GPT2) 21.05 18.54 23.67 24.34 59.10
Ours (GPT2-m) 26.17 24.41 31.31 29.07 59.61

Table 5: Zero-shot domain adaptation JGA (%) on
MultiWOZ 2.1 test set for recent works and our mod-
els with question loss, on the (Rest)aurant, (Hot)el,
(Attr)action, Train, and Taxi domains. Previous state-
of-the-art results are underlined, with new best bolded.

ods that focus solely on supervised DST—most
of which require extra supervision at training and
inference time, including dialog actions and prior
dialog states. We distinguish models by their pre-
diction type as (C)lassification-, (S)pan extraction-,
and (G)eneration-based methods.

As seen in Table 1, our formulation of DST as
a generative QA task benefits significantly from
the usage of a conditional decoder-style model. A
standard auto-regressive language modeling for-
mulation (LM) with loss computed over the entire
input sequence achieves 13% lower JGA compared
to computing cross entropy loss only over slot
value tokens (CLM). Pre-training is also crucial—
we see a 10-point drop in JGA when randomly
initializing model weights (no PT) compared to
initializing from pre-trained DistilGPT2 weights.
We also compare two other sizes of our models:
GPT2-based—comparable in size to SUMBT’s
(Lee et al., 2019) 112M parameters—and GPT2-
medium-based—comparable in size to STARC’s
(Gao et al., 2020) 355M parameters. We find that
scaling the size of our model results in modest im-
provements in supervised JGA. We hypothesize
that extending our loss to cover both slot query and
value tokens (+Question/CLMQ) helps regularize
the hidden representations of question tokens, and
we achieve a 1.3% improvement in JGA.

5.2 Zero-Shot DST

Our primary focus lies in the zero-shot domain
adaptation setting, where conversations and target
slots at inference time come from unseen domains.
We use a leave-one-out setup, training our models
on four domains from MultiWOZ and evaluating
on the held-out domain. Our model must under-
stand a wide variety of possible questions about
unseen conversations to generalize well. We com-
pare our model against strong baseline models for

zero-shot DST: TRADE, SUMBT, and MA-DST;
Table 5 contains results from our models alongside
baseline results reported by Kumar et al. (2020)
and Campagna et al. (2020). These models repre-
sent slots as domain-slot tuples: TRADE learns a
separate embedding for each domain and word in
slot names, while SUMBT and MA-DST encode
domain-slot tuples via BERT (Devlin et al., 2019)
and an RNN encoder, respectively.

Our GPT2-medium based model achieves state-
of-the-art zero-shot performance on all five do-
mains, and by a significant (5-10%) margin on
the Restaurant, Hotel, Attraction, and Train do-
mains. While increased model size modestly im-
pacts supervised DST performance (Table 1), larger
models perform significantly better in a zero-shot
setting with average absolute gains of 4.8% and
relative gains of 22% in JGA across domains. Such
improvements are consistent with findings from
Brown et al. (2020) that up-sizing language mod-
els improves zero-shot performance across various
tasks and Petroni et al. (2019), who observe that
larger pre-trained models can retain more common-
sense and world knowledge from their pre-training
corpus—which may help our model understand
queries for unseen domains and slots.

Effect of Natural Language Questions Prior
work that frames DST as QA typically represents
the slot query as a concatenation (tuple) of do-
main and slot name. Zhang et al. (2019) explore
the impact of three different slot representations—
domain-slot tuples, short slot descriptions, and full
questions—on a hybrid classification-extraction
model for DST, and find little difference in per-
formance. However, we find that full questions
work much better than domain-slot tuples for our
generative framework, especially in zero-shot DST.
We hypothesize that natural language questions—
structurally similar to dialog utterances and pre-
training sentences—allow our model to best lever-
age its linguistic knowledge with minimal friction
when jointly encoding the dialog history, slot query,
and slot value.

Wu et al. (2019) find that zero-shot generaliza-
tion in models that represent slots as tuples is pri-
marily due to shared slot names between domains
(e.g. Taxi and Train ‘leaveAt’). In a real-world
setting a newly added dialog service is unlikely
to share slot names verbatim with existing ser-
vices. To fairly compare tuples and natural lan-
guage questions under our framework, we per-



USER My friend told me about Carolina Bed and Breakfast. Do you know anything about it?
SYS It’s a 4 star guesthouse. What would you like to know about it?
USER Can you give me the postcode? And, do they have internet?
SYS The postcode is cb13nx; they have internet.
USER Thanks. Any boat attractions in the west?
SYS Nothing in west. Closest boat is the Cambridge Punter in centre. Too far?
USER Yes, it is. How about a museum?

Error Modality Slot Gold Prediction Open Numeric Temporal Categorical

Spurious (Attraction, Name) n/a cambridge punter 8.4 % 22.3 % 47.7 % 16.0 %
Ignored (Hotel, Internet) yes n/a 65.3 % 53.5 % 19.9 % 76.8 %
Wrong Value (Attraction, Type) museum boat 26.3 % 24.2 % 32.4 % 7.2 %

Table 6: Example of different classes of DST errors, and the proportion of errors they make up across the four slot
categories for all five domains in a zero-shot setting. Latest (target) turn is bolded.

form zero-shot experiments using each representa-
tion. For tuple-based questions, our model takes as
slot query a synonym of the slot name (e.g. Taxi
‘leaveAt’→ ‘Pick Up Time’) instead of a full ques-
tion (e.g. ‘What time does the user want the taxi
to pick them up¿). Full question models achieved
6% higher per-domain JGA compared to slot-tuple
models, supporting the notion that slot-tuple mod-
els memorize slot names rather than understanding
their meaning and thus do not generalize well in
real-world settings. Using full questions, our model
(Table 5) achieves state-of-the-art performance in
zero-shot settings.

Error Modalities To analyze our model, we fol-
low Gao et al. (2020) and categorize DST errors in
three modalities: 1) the model predicts a spurious
value for an irrelevant slot; 2) the model ignores
a relevant slot; and 3) the model correctly infers
the presence of a slot but predicts a wrong value.
Table 6 shows examples of each type of error for a
sample conversation, and what proportion of errors
they make up in each slot category for our GPT2-
m CLMQ model in a zero-shot setting. Temporal
slots are least likely to be ignored by our model, as
verbatim HH:MM values are easily identifiable in a
conversation. However, it is difficult to distinguish
between closely related unseen temporal slots like
‘leaveAt’ and ‘arriveBy’. Values for categorical,
numeric, and open-valued slots on the other hand
can comprise common (non-slot) phrases used in
conversation, and thus it is easy for our model to
ignore such slot references.

We also examine the source of dialog slots: users
explicitly express the majority (79.5%) of slot val-
ues, while a minority are either derived via user
reactions to system suggestions (9.7%) or implicitly
valued (10.8%)—not present verbatim in a conver-
sation. However, our errors are distributed evenly

between user, system, and implicit sourced slots—
suggesting that it is challenging for our model to
track dialog states that are updated reactively via
user feedback. We thus see a future opportunity to
improve DST models by emphasizing multi-hop
reasoning and common-sense inference.

5.3 Predicting Carried Over Slots

Long-range dependencies and slot values carried
over from early turns are particularly important to
model for accurate DST in long conversations (Ku-
mar et al., 2020). We observe this in the zero-shot
setting: our model is able to predict all slots accu-
rately for 61% of conversation first-turns, dropping
to 46% after one turn, and 5.7% after seven turns
(the average conversation duration). We implement
an oracle module to discard predictions when a
dialog state does not need updating, obtaining an
upper bound for DST improvements due to carry-
over prediction. With this oracle, we see an average
5-point improvement in JGA across domain, indi-
cating that carry-over prediction can greatly benefit
our model. State-of-the-art models for fully su-
pervised DST often rely on explicitly processing
previous dialog states—via slot-value graphs (Zhou
and Small, 2019; Chen et al., 2020) or as a sepa-
rate input to the model at each turn (Heck et al.,
2020; Kim et al., 2020). In our framework we can
target slot carry-over by training a model to predict
a carried over token in place of the true slot
value whenever a slot value does not need updating
at the current turn (+ Carryover). At inference
time, we replace predicted carry-over tokens with
the slot’s last predicted value.

Our carry-over implementation improved JGA
for all domains (Table 7) by an average of 3.14%,
and improved JGA across all context lengths—
with the largest improvements (+7%) at the sec-



Rest. Hotel Attr. Train Taxi

Previous SOTA 16.50 19.80 22.60 22.76 59.50

GPT2 CLMQ 21.05 18.54 23.67 24.34 59.10
+ Carryover 24.00 19.91 28.45 30.75 59.29
+ DSTC8 24.65 22.94 34.30 38.55 59.68

GPT2-m CLMQ 26.17 24.41 31.31 29.07 59.68
+ CO, DSTC8 27.69 24.88 42.39 41.05 60.32

Table 7: Zero-shot JGA on MultiWOZ 2.1 test set with
carry-over prediction and transfer learning.

ond and third turn of a conversation (Figure 4).
The carried over token allows our model to
hedge against low confidence slots, falling back to
predictions from previous turns where the target
slot may be directly mentioned. This helps reduce
the wrong value error rate by an average of 31%
across each domain. Our model can also propa-
gate null values with carry-over, reducing spurious
predictions by an average of 36% across domains.
However, we also observe our carry-over model
propagating 78% of its errors from previous turns,
suggesting that further improvements can result via
accurately predicting slot updates.

5.4 Transfer Learning for Generalization

Our framework is ontology-agnostic and thus eas-
ily supports transfer learning without modifying
the architecture by simply writing natural language
questions for additional slots. Gao et al. (2020)
found that intermediate fine-tuning of RoBERTa-
Large (Liu et al., 2019) on passage-based QA tasks
(Fisch et al., 2019) improved zero-shot DST perfor-
mance. In preliminary experiments, we found no
significant impact from intermediate fine-tuning on
the SQuAD v2.0 (Rajpurkar et al., 2018) passage-
based QA dataset. However, we observe signifi-
cant improvements when training with joint, non-
curriculum learning (McCann et al., 2018; Raffel
et al., 2019)—augmenting our training data with an
equal number of examples sampled from DSTC8,
taking care to remove data from the held-out do-
main in both MultiWOZ and DSTC8.

Our framework allows for easy joint optimiza-
tion with carry-over and transfer learning: by train-
ing new models on MultiWOZ 2.1 augmented with
DSTC8 (+ DSTC8) we gain a further average 3.5-
point improvement in per-domain JGA (Table 7).
On average, our model makes 29% fewer spuri-
ous errors, and 6.9% fewer errors in open-valued
slots, suggesting that our model scales well with
additional training data with semantically distinct

Figure 3: Our model can be trained to predict the pres-
ence of slot carry-over by replacing slot values from
previous turns with the carried over token.

slot types and values. Our model also makes 9.7%
fewer errors on categorical slots and 63% fewer
mistakes where it assigns the value of one categori-
cal slot to another, despite being unable to observe
the set of possible categorical options—suggesting
that exposure to more diverse categorical slots al-
lows our model to better understand and distinguish
between such slots. While temporal slots comprise
only 17% of MultiWOZ and 10% of DSTC8 slots,
these additional examples seem to help our model
better disambiguate temporal references and make
32% fewer errors in such slots.

By applying both carry-over and transfer learn-
ing to our largest model, we observe further im-
provements in zero-shot JGA for all domains—
averaging 5.1 points better than GPT2-m CLMQ,
for an average gain of 11% JGA over previous
state-of-the-art across domains (Table 7).

6 Qualitative Analysis

We manually reviewed 300 errors made by our
GPT2-medium CLMQ model in the zero-shot
setting—annotating 20 errors from each modality
(spurious, ignored, wrong value) from each domain
with the gold label quality and perceived cause of
error totaling 300 annotated examples. As widely
observed in recent DST work (Zhou and Small,
2019; Kumar et al., 2020), a significant propor-
tion of DST errors on MultiWOZ are unavoidable—
caused by annotation errors. While version 2.1 cor-
rected some of these, annotation errors and incon-
sistencies remain responsible for 30% of sampled
errors—in particular, in 10% of errors the original
annotator did not record reactive preferences while
in 5% of errors the original annotator did. These
inconsistencies can hurt our model’s ability to infer



Figure 4: Per-turn JGA on MultiWOZ Test set for
GPT2-CLMQ with and without carry-over prediction.

reactive and implied requirements and preferences.
We are also particularly interested in slot trans-

fers—when our model mistakenly predicts one
slot’s value for a different slot, comprising 36% of
our manually reviewed errors. In the Taxi and Hotel
domains, our model transfers slots from the same
domain over 75% of the time, with most swaps
occurs between same-category slots (e.g. temporal
slots like Taxi ‘LeaveAt’ and ‘ArriveBy’). Slots
in these domains are closely semantically related,
with values that can fit any slot of that category
(e.g. 13:10 vs. 15:15). While a human can easily
infer that the earlier of two times must be depar-
ture and the later arrival, our model has no inherent
understanding of temporal mechanics or numer-
acy (Wallace et al., 2019). In future work, we
will explore learning such knowledge directly via
hierarchical softmax output distributions to distin-
guish between output modalities (Spithourakis and
Riedel, 2018), and fine-tuning our model with con-
trastive losses to learn to rank numerals and times
(Hoffer and Ailon, 2015).

For Restaurant, Attraction, and Train, our model
tends to swap slot values with those from other
domains in the conversation. This is often due
to semantically similar slots whose values, at first
glance, may not be obviously identifiable as such
(e.g. ‘Bridge’ or ‘The Place’). Kumar et al. (2020)
similarly observe a particularly high incidence of
slot transfers between different-domain ‘Name’
slots. Other such slots include price ranges and
numbers of guests. We have seen that data augmen-
tation with DSTC8 can improve our model’s ability
to disambiguate such slots—this suggests that we
could further improve our model by exposing it to
in-domain, conversational reading comprehension
data.

While no such dataset currently exists, in future
work we aim to explore using question generation
(Du et al., 2017) and paraphrasing (Tseng et al.,
2014) models to perform in-domain data augmen-

tation, creating reading comprehension questions
for task-oriented dialogs that targeting entities and
relations not covered by an ontology. We also wish
to explore methods for generating general reading
comprehension questions for out-of-domain con-
versations (Shakeri et al., 2020) to improve our
model’s domain adaptation ability.

7 Related Works

Modern dialog state tracking seeks to capture evolv-
ing user intents in a structured belief state (Thom-
son and Young, 2010). Traditional systems rely
on hand-crafted features (Henderson et al., 2014)
and classify slot values from a fixed ontology (Mrk-
sic et al., 2017; Ramadan et al., 2018). Gao et al.
(2019) and Zhou and Small (2019) fill some slots
via spans extracted from dialog history, although
they treat non-numeric slots as categorical. Gener-
ative methods (Xu and Hu, 2018; Wu et al., 2019)
can predict arbitrary unseen values, with Hosseini-
Asl et al. (2020) achieving state-of-the-art super-
vised DST performance in MultiWOZ 2.1 although
they cannot predict unseen slots.

By posing DST as generative QA, our frame-
work can leverage language models pre-trained
on open-domain documents (Radford et al., 2019)
to understand unfamiliar queries. Like Gao et al.
(2020), we seek to answer natural language ques-
tions about each slot. We contrast our approach to
zero-shot DST—which never has access to slots or
dialog from the target domain—and that of Cam-
pagna et al. (2020), who expose their ‘zero-shot’
models to synthetic in-domain conversations that
require access to the full ontology of the ‘held-out’
evaluation domain.

We take inspiration from previous work that
frames a wide selection of natural language un-
derstanding (NLU) tasks (Wang et al., 2019) as
QA (McCann et al., 2018) and span extraction
(Keskar et al., 2019). While question-answering
can be posed as a span extraction task (Wang et al.,
2016), generative approaches have proven success-
ful in answering questions about complex passages
(Fan et al., 2019). We use a language modeling ap-
proach, taking cues from Raffel et al. (2019) who
demonstrate that a large language model trained
on next-token prediction can learn to solve many
different NLU tasks posed as text. Recent work has
also shown that large pre-trained language models
can generalize to new NLU tasks with few or no
examples (Brown et al., 2020), and we leverage



this alongside world knowledge acquired during
the pre-training process (Petroni et al., 2019) to
build a DST model that is robust to new domains
and slot-value ontologies.

8 Conclusion

This paper proposes a conditional language model-
ing approach to multi-domain DST posed as a gen-
erative question answering task. By leveraging nat-
ural language questions as state queries, our model
can generalize to unseen domains, slots, and val-
ues via its understanding of language. Our model
achieves state-of-the-art zero-shot results on the
MultiWOZ 2.1 dataset with average per-domain
absolute improvements of 5.9% joint accuracy. We
also demonstrate that our framework is easily ex-
tensible to support transfer learning and learning
slot carry-over. In the future, it is worth explor-
ing mechanisms for our model to better understand
relative temporal values and general reading com-
prehension questions from conversations in order
to disambiguate semantically similar dialog slots.
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Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz - A large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In EMNLP.

Giovanni Campagna, Agata Foryciarz, Mehrad Morad-
shahi, and Monica S. Lam. 2020. Zero-shot transfer

learning with synthesized data for multi-domain dia-
logue state tracking. In ACL.

Lu Chen, Boer Lv, Chi Wang, Su Zhu, Bowen Tan,
and Kai Yu. 2020. Schema-guided multi-domain di-
alogue state tracking with graph attention neural net-
works. In AAAI.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In ACL.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Kumar Goyal, Peter Ku, and Dilek Hakkani-
Tür. 2020. Multiwoz 2.1: A consolidated multi-
domain dialogue dataset with state corrections and
state tracking baselines. In LREC.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
long form question answering. In ACL.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eu-
nsol Choi, and Danqi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In MRQA@EMNLP.

Shuyang Gao, Sanchit Agarwal, Tagyoung Chung,
Di Jin, and Dilek Hakkani-Tür. 2020. From machine
reading comprehension to dialogue state tracking:
Bridging the gap. arXiv preprint arXiv:2004.05827.

Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagy-
oung Chung, and Dilek Hakkani-Tür. 2019. Dialog
state tracking: A neural reading comprehension ap-
proach. In SIGDIAL.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gasic. 2020. Trippy: A triple copy strategy
for value independent neural dialog state tracking.
In SIGDIAL.

Matthew Henderson, Blaise Thomson, and Steve J.
Young. 2014. Word-based dialog state tracking with
recurrent neural networks. In SIGDIAL.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning
using triplet network. In ICLR Workshop.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. arXiv
preprint arXiv:2005.00796.

Nitish Shirish Keskar, Bryan McCann, Caiming Xiong,
and Richard Socher. 2019. Unifying question an-
swering and text classification via span extraction.
arXiv preprint arXiv:1904.09286.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://aaai.org/ojs/index.php/AAAI/article/view/6250
https://aaai.org/ojs/index.php/AAAI/article/view/6250
https://aaai.org/ojs/index.php/AAAI/article/view/6250
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://www.aclweb.org/anthology/2020.lrec-1.53/
https://www.aclweb.org/anthology/2020.lrec-1.53/
https://www.aclweb.org/anthology/2020.lrec-1.53/
https://doi.org/10.18653/v1/p19-1346
https://doi.org/10.18653/v1/p19-1346
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://arxiv.org/abs/2004.05827
https://arxiv.org/abs/2004.05827
https://arxiv.org/abs/2004.05827
https://doi.org/10.18653/v1/W19-5932
https://doi.org/10.18653/v1/W19-5932
https://doi.org/10.18653/v1/W19-5932
https://arxiv.org/pdf/2005.02877.pdf
https://arxiv.org/pdf/2005.02877.pdf
https://doi.org/10.3115/v1/w14-4340
https://doi.org/10.3115/v1/w14-4340
http://arxiv.org/abs/1412.6622
http://arxiv.org/abs/1412.6622
https://arxiv.org/pdf/2005.00796.pdf
https://arxiv.org/pdf/2005.00796.pdf
http://arxiv.org/abs/1904.09286
http://arxiv.org/abs/1904.09286


Seokhwan Kim, Michel Galley, R. Chulaka Gu-
nasekara, Sungjin Lee, Adam Atkinson, Baolin
Peng, Hannes Schulz, Jianfeng Gao, Jinchao Li,
Mahmoud Adada, Minlie Huang, Luis A. Lastras,
Jonathan K. Kummerfeld, Walter S. Lasecki, Chiori
Hori, Anoop Cherian, Tim K. Marks, Abhinav Ras-
togi, Xiaoxue Zang, Srinivas Sunkara, and Raghav
Gupta. 2019. The eighth dialog system technology
challenge. arXiv preprint arXiv:1911.06394.

Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-
Woo Lee. 2020. Efficient dialogue state tracking by
selectively overwriting memory. In ACL.

Adarsh Kumar, Peter Ku, Anuj Kumar Goyal, Ange-
liki Metallinou, and Dilek Hakkani-Tür. 2020. MA-
DST: multi-attention-based scalable dialog state
tracking. In AAAI.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
SUMBT: slot-utterance matching for universal and
scalable belief tracking. In ACL.

Oliver Lemon, Kallirroi Georgila, James Henderson,
and Matthew N. Stuttle. 2006. An ISU dialogue sys-
tem exhibiting reinforcement learning of dialogue
policies: Generic slot-filling in the TALK in-car sys-
tem. In EACL.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In ACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv: 1907.11692.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Nikola Mrksic, Diarmuid Ó Séaghdha, Tsung-Hsien
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