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 
Abstract— Objective: Segmentation of skin lesions is an important 
step in the automated computer aided diagnosis (CAD) of 
melanoma. However, existing segmentation methods have a 
tendency to over- or under-segment the lesions and perform 
poorly when the lesions have fuzzy boundaries, low contrast with 
the background, inhomogeneous textures, or contain artifacts. 
Furthermore, the performance of these methods are heavily 
reliant on the appropriate tuning of a large number of parameters 
as well as the use of effective pre-processing techniques such as 
illumination correction and hair removal. Methods: We propose 
to leverage fully convolutional networks (FCNs) to automatically 
segment the skin lesions. FCNs are a neural network architecture 
that achieves object detection by hierarchically combining 
low-level appearance information with high-level semantic 
information. We address the issue of FCN producing coarse 
segmentation boundaries for challenging skin lesions (e.g., those 
with fuzzy boundaries and/or low difference in the textures 
between the foreground and the background) through a 
multi-stage segmentation approach in which multiple FCNs learn 
complementary visual characteristics of different skin lesions; 
early-stage FCNs learn coarse appearance and localization 
information while late-stage FCNs learn the subtle characteristics 
of the lesion boundaries. We also introduce a new parallel 
integration method to combine the complementary information 
derived from individual segmentation stages to achieve a final 
segmentation result that has accurate localization and 
well-defined lesion boundaries, even for the most challenging skin 
lesions. Results: We achieved an average Dice coefficient of 
91.18% on the ISBI 2016 Skin Lesion Challenge dataset and 
90.66% on the PH2 dataset. Conclusion and Significance: Our 
extensive experimental results on two well-established public 
benchmark datasets demonstrate that our method is more 
effective than other state-of-the-art methods for skin lesion 
segmentation.   
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I. INTRODUCTION 
alignant melanoma has one of the most rapidly increasing 
incidences in the world and has a considerable mortality 

rate [1]. Early diagnosis is particularly important since 
melanoma can be cured with prompt excision [2]. Dermoscopy 
is a non-invasive dermatology imaging technique for the in 
vivo observation of pigmented skin lesions [3] and plays an 
important role in the early diagnosis of malignant melanoma 
[2]. It uses optical magnification and either liquid immersion 
and low angle-of-incidence lighting or cross-polarized lighting 
to make the contact area translucent, increasing the visibility of 
subsurface structures when compared to conventional clinical 
images. Identifying melanoma in dermoscopic images using 
human vision alone can be inaccurate, subjective, and 
irreproducible even among experienced dermatologists [4, 5]. 
This is attributed to the challenges in interpreting images with 
diverse characteristics (Figure 1) including lesions of varying 
sizes and shapes, lesions that may have fuzzy boundaries, 
different skin colors, and the presence of hair [4, 6]. These 
significant challenges have motivated the development of 
computer aided diagnosis (CAD) systems that can assist the 
dermatologists’ clinical diagnosis [7-9].  

A. Related Work 
Lesion segmentation is a fundamental requirement for 

melanoma CAD. A number of segmentation methods have 
been recently proposed to segment skin lesions, divided across 
three main categories: (1) semi-automatic, which attempts to 
segment the skin lesions in an interactive manner; (2) 
un-supervised fully automatic, which attempts to segment the 
skin lesions automatically without using training data; and (3) 
supervised fully automatic, which attempts to segment the skin 
lesions automatically using trained classifiers. For a more 
detailed discussion of the field, readers can refer to the two 
comprehensive skin lesion segmentation survey papers written 
by Celebi et al. [10, 11]. 

Semi-automatic methods require user initialization of the 
segmentation process, such as through seed selection [12] or 
contour placement [12, 13]. These seeds and contours can then 
be grown or morphed to the skin lesion boundaries according to 
predefined functions. However, the manual initializations are 
usually subjective, time-consuming, and non-reproducible. As 
a consequence, such methods are unreliable for wide adoption 
in clinical environments.  
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Unsupervised fully-automatic skin lesion segmentation 
methods mainly focus on thresholding [12, 14-18], energy 
functions [19-21] and iterative/statistical region merging [22, 
23]. Thresholding methods attempt to separate the skin lesions 
based on a threshold value, which is generally calculated by 
analyzing pre-defined image features e.g., intensity histogram. 
Methods based on energy functions attempt to identify skin 
lesion boundaries by minimizing a well-defined cost (energy) 
function defined on image characteristics such as edges, 
smoothness, and statistical distributions. Iterative/statistical 
region merging based methods recursively merge pixels or 
regions together in a hierarchical manner. More recently, 
saliency [24], multi-scale superpixel with cellular automata 
(MSCA) [25], sparse coding with dynamic rule based 
refinement (SCDRR) [26] and delaunay triangulation [27] have 
also been applied for skin lesion segmentation. However, 
unsupervised methods have a limited capacity to accurately 
segment challenging skin lesions, such as lesions that touch the 
image boundary and those with artifacts nearby (Figure 1d and 
Figure 1e). Thresholding based methods are further limited by 
the intensity distribution of the lesion and may fail if the 
distribution contains multiple peaks (e.g., inhomogeneous 
lesions, Figure 1a).  

There have been a limited number of studies that investigated 
the segmentation of skin lesions in a fully automatic supervised 
manner. These methods usually extract pixel or region features 
such as pixel-level Gaussian features [28, 29], RGB color 
features [30] and texture features [31] and then use various 
classifiers, such as Bayes classifier [29], wavelet network [30] 
or support vector machines [31], to separate the skin lesions 
from the surrounding healthy skin. However, all these methods 
rely on using low-level features, such as color and texture 
features, which do not capture image-wide variations. In 
addition, their performance depends heavily on correctly tuning 
a large number of parameters and effective pre-processing 
techniques such as illumination correction and hair removal, 
which thereby restricting its generalizability.  

Deep learning methods based on convolutional neural 
networks (CNN) have recently achieved great success in image 
classification, object detection and segmentation problems 
[32-34]. This success is primarily attributed to the capability of 
CNNs to learn image feature representations that carry a 
high-level of semantic meaning [35, 36]. More recently Yu et 
al. [37] used a 50-layer deep residual network for segmentation, 
where the residual blocks proposed by He et al. [38] were used 
to increase the overall depth of the networks (number of layers) 
and enable segmentation based upon more meaningful image 
features. However, this resulted in much lower segmentation 

performance for melanoma studies, which are usually more 
challenging for segmentation due to severe inhomogeneity. 

B. Our Contribution 
In order to overcome the challenges in skin lesion 

segmentation and the limitations of the existing methods, we 
propose a new automatic skin lesion segmentation method for 
dermoscopic images, which we have named multi-stage fully 
convolution networks (FCN) with parallel integration 
(mFCN-PI). Our method is based on the state-of-the-art object 
detection method of FCN [32] adapted for skin lesion 
segmentation with multiple key improvements. The great 
success of FCN on object detection is primarily attributed to the 
capability of FCN to capture feature representations that 
contain a high-level of semantic information. While FCN may 
be generally applied to skin lesion segmentation, it is unable to 
accurately delineate the skin lesion boundary and produces 
inconsistent outcomes for challenging inhomogeneous skin 
lesions, which results in coarse and noisy segmentation results. 
In contrast, our proposed method learns and refine the skin 
lesion segmentation results across multiple stages, and then 
integrates these complementary multi-stage segmentation 
results. In addition, our method behaves like an ensemble of 
many deep learners, where each deep learner in the ensemble 
learns distinct additional information and their fusion allows 
capabilities that may not be captured via a single deep learner. 
Once trained, our method provides end-to-end segmentation at 
interference time with no pre- or post-processing required. 
When compared with FCN and all other skin lesion 
segmentation methods mentioned above, our method 
introduced the following contributions:  

Our method harnesses high-level semantic information with 
multi-stage learning in an end-to-end way for effective skin 
lesion segmentation. Leveraging the fully convolutional 
networks (FCN) [32], our method can take an image of 
arbitrary size and output the segmentation label directly 
without any pre-processing, e.g., illumination correction, 
filtering and hair removal, or manual intervention, e.g., seed 
selections, contour placement. Hence, our method is 
particularly effective on images with complex artifacts that are 
difficult to pre-process.  

We propose a multi-stage FCN (mFCN) approach to train 
and to predict the segmentation in multiple stages and therefore 
minimized the segmentation errors for challenging skin lesions. 
During training, mFCN is capable of learning from both the 
training data (images and the manual annotations) and the 
estimated results derived from the previous mFCN stage. The 
ability to learn from previous stages has the advantage in not 

 
 
Figure 1. Examples of skin lesions with various visual characteristic such as fuzzy boundaries (a, b, c, e), presence of hair (b, e), inhomogeneity (a, c) and 
low-contrast to the background (d, f) which adds complexity to automated image analysis. 
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only boosting the training data but also in optimizing the 
learning of the lesion boundaries, which are usually difficult to 
segment. During prediction, mFCN uses dermoscopic images 
and the estimated probabilities derived from previous stage to 
iteratively and gradually improve the segmentation accuracy.  

We propose a parallel integration (PI) approach to further 
refine the segmentation of the skin lesion boundaries. We 
integrated the complementary segmentation results produced at 
individual stages of the mFCN to encourage agreement 
between the labels of neighboring pixels, which ensured that 
the appearance of segmented lesion was spatially consistent 
and resulted in better segmentation of the boundaries.  

The rest of the paper is organized as follows. Section 2 
describes our method. Sections 3 presents the experimental 
results on two well-established public datasets, comparing our 
method to the existing state-of-the-art methods and also the 
conventional FCN architecture. This is followed by discussions 
in Section 4. Finally, conclusions are made in Section 5.  

II. METHODS  

A. Overview of the Framework 
The outline of our proposed segmentation method is shown 

in Figure 2. The mFCN was applied to the input dermoscopic 
images to obtain a probability map ࢅଵ, ࢅଶ,…,ࢀ|ࢅ| of the lesion 
area. This estimated probability map together with the input 
dermoscopic image were then fed into the following mFCN 
networks. Finally, we used a multi-scale segmentation with 
parallel integration approach to integrate the segmentation 
results generated at different stages ࡴଵ ଶࡴ , |ࢀ|ࡴ,…,  and to 
produce the final segmentation results.  

B. Multi-stage Fully Convolutional Networks  
The traditional FCN architecture contains downsampling 

and upsampling components [32]. The downsampling part has 
convolutional and max-pooling layers to extract high-level 
abstract information and has been widely used in convolutional 
neural networks (CNN) for image classification related tasks 
[39]. The upsampling part has convolutional and 

deconvolutional layers that upsample the feature maps to 
output the score masks [40]. 

Convolutional layers are defined on a translation invariance 
basis and have shared weights across different spatial locations. 
Both the input and the output of convolutional layers are feature 
maps and are calculated by convolving convolutional kernels: 

 
௦݂(ࢃ;ࢄ, (࢈ = ࢃ ∗௦ +ࢄ  (1)                         ࢈

 
Where ࢄ is the input feature map, ࢃ denotes the kernel, ࢈ is 

the bias, ∗௦ represents convolution operation with stride ݏ. As a 
result, the resolution of the output feature map ௦݂(࢈,ࢃ;ࢄ) is 
downsampled by a factor of ݏ. Convolutional layers are usually 
interleaved with max-pooling layers. Max-pooling layers are 
form of non-linear downsampling, which is usually used to 
further improve translation invariance and representation 
capability [34]. In addition, max-pooling layers have the 
capability to partition the input into non-overlapping 
sub-regions, which minimizes the computation cost of the 
upper layers and also reduces over-fitting [32]. The FCN 
network can be defined as: 

 
ࢅ = ;ࡵ)ࡿࡲ)ࡿࢁ  (2)                       (࣐;(ࣂ

 
where ࢅ is the output prediction, ࡵ is the input image, ࡿࡲ 

denotes the feature map produced by the stacked convolutional 
layers with a list of stride ࡿ ࡿࢁ ,  denotes the deconvolution 
layers that upsamples the feature map by a list of factors ࡿ to 
ensure both the output ࢅ and input ࡵ have the same size (height 
and width). ࣂ  and ࣐  are the learned parameters for 
convolutional and deconvolution layers. 

For skin lesion segmentation, the FCN takes an image of 
arbitrary size and outputs a probability map of the same size 
which indicates the lesion area. Our multi-stage FCN embeds 
the probability map produced at the previous FCN for training 
and testing and this can be defined as: 

 

 
Figure 2: Flow diagram of our proposed multi-stage fully convolutional networks with parallel integration (mFCN-PI) method. 
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൜ࢅ
௧ = ,ࡵ)ࡿࡲ)ࡿࢁ ;௧ିଵࢅ ݐ	݂݅			,	(௧);࣐௧ࣂ > 1
௧ࢅ = ;(௧ࣂ;ࡵ)ࡿࡲ)ࡿࢁ ࣐௧)	, ݐ	݂݅ = 1                      (3) 

 
where ݐ is the stage, and ࢅଵ is the output of the original FCN. 
Each stage of our mFCN can be trained individually by 

minimizing the overall loss between the predicted results and 
the ground truth annotation of the training data: 

 
min݃ݎܽ
೟,࣐೟ࣂ

∑ℒ(࢚ࢅ, ௧ࣂ|ࢆ ,࣐௧)                                     (4) 

 
where ℒ calculates the loss (per-pixel multinomial logistic 

loss) of the ground truth annotation ࢆ and the predicted results. 
The mFCN network parameters ࣂ௧  and ࣐௧ can then be 
iteratively updated using stochastic gradient descent (SGD) 
[41] algorithm. 

C. Parallel Integration  
To further enhance the segmentation results such as the 

contour of the lesions, we used a multi-scale segmentation 
approach on each individual stage thereby improving the 
robustness of our algorithm when segmenting lesions of 
various sizes and contrasts. We scaled down the input image at 
the testing time for a number of times with/without flip (a 
flipped image is mirrored across the vertical axis). The 
probability maps of the flipped inputs were flipped back to 
return to their original orientation and all images were scaled up 
to return to the same size as the input. We then averaged these 
results to produce the multi-scale probability map ࡴ௧ at stage ݐ, 
defined according to: 

 
௧ࡴ = ଵ

|ࡸ|×|ࡳ|
∑ ∑ ,ࡵ)௧ࢅ ,ߪ ݈)௟∈ࡸఙ∈ࡳ                            (5) 

 
Where ࡳ represents different scales and ࡸ represents the flip 

operation where ࡸ = ,ℎݐ݅ݓ}  Scale down was used to .{ݐݑ݋ℎݐ݅ݓ
reduce the production of coarse images with many isolated 
regions, which is common when FCN’s are applied to 
upsampled (scale up) images. We used |ࡳ| = 11  different 
scales ranging from 0.5 to 1 of the original size of the input 
image with an increment of 0.05 at the testing time. 

In general, the mFCN produced results at different stages 
were complementary to each other, in which the early stages 
produced strong skin lesion detection results (detect most of the 
skin lesion area) while later stages generated finer lesion 
boundary definitions. Therefore, we produce the final 
segmentation map by leveraging a parallel integration approach 
based on cellular automata (CA) [42-44]. CA is an evolving 
model and has the capability to optimize a single probability 
map via exploiting local similarity (neighborhood pixels). For 
each iteration of CA, individual pixels of the probability map 
propagate according to their neighborhood pixels and 
constrains the boundary of the probability map. To take 
advantage of the different stages on different aspects of the 
segmentation process, we assumed that the spatially 
corresponding pixels of the probability maps (having the same 
coordinates) on different stages would have equal influence in 
determining the pixels’ probability value in the following 

iteration. Therefore, we treat these corresponding pixels the 
same as the neighborhood pixels and evolved via CA, which 
can be calculated as: 

 
݅)௧ࡴ + 1) = (݅)௧ࡴ + ∑ ݎ ∙ (݅)௖ࡴ൫݊݃݅ݏ − ௖(݇)൯ࡴ൫ࣆ ∙௖∈ࢀ/௧

[1,… ,1]⊺൯,݇ = 0                            (6) 
 
Where ݅  represents number of iterations, ࢀ  represents all 

different stages (ݐ ∈  represents a threshold value for ࣆ and ,(ࢀ
binarizing the original probability map. For simplicity, we set ࣆ 
to the Otsu threshold [45]. ݎ is a constant weight that controls 
the importance of the foreground (skin lesion) and background, 
and was empirically set to 0.15 to encourage the pixel to follow 
the neighborhood skin lesion pixels. ݅ was set to 5 iterations to 
ensure convergence and when ݅ = 0, we used the results of the 
multi-scale probability map at different stages. After the 
convergence, we averaged the CA produced results of different 
stages to produce the final integrated probability map. 

The final integrated probabilistic map was converted into a 
binary segmentation result via thresholding at 50% of the 
maximum value of the map. We refined the segmentation, 
using the process in Celebi et al.’s prior work [10, 11]: a 
morphological erosion process was used to smooth the 
boundary and fill holes, while connected thresholding was used 
to remove small isolated single pixels. 

D. Training mFCN 
There is a scarcity of medical image together with 

annotations for use as training data due to the cost and 
complexity of the acquisition procedures [46]. In contrast to the 
limited data in the medical domain, there are much more data 
available in the field of general images [47]. Existing works 
have shown evidence that the problem of insufficient training 
data can be alleviated by fine-tuning, where the lower layers of 
the fine-tuned network are more general filters (trained on 
general images) while those in the higher layers are more 
specific to the target problem [40, 46, 48]. Therefore, we used 
the off-the-shelf MatConvNet [49] version of FCN trained on 
the PASCAL VOC 2011 dataset. In order to achieve more 
precise details of pixel prediction, we fine-tuned a stride-8 FCN 
architecture (FCN-8s) on the ISBI 2016 Skin Lesion Challenge 
training dataset (more details about the dataset can be found in 
Section III); Data augmentation techniques including random 
crops and flips were used to improve robustness [33, 50]. For 
the first stage ݐ = 1, we fine-tuned the pre-trained FCN model 
using the RGB dermoscopic images. In the following stages, 
there was an additional fourth input channel (the probability 
map), which meant we could not directly fine-tune the FCN-8s, 
which expected 3-channel inputs (usually RGB images). As 
such, we replaced one of the RGB channels to facilitate the 
fine-tuning process because the alternative would require 
scratch training a new FCN architecture (with 4-channel input) 
for which there is insufficient training data. We rotated 
replacement of the three color channels over stages 2 to 4 to 
cover all different replacement variations. Our experiments on 
a small training set found that the order of RGB channel 
replacement had negligible influence on the final segmentation 
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results. Each stage took about 12 hours to fine-tune over 200 
epochs with a batch size of 20 on a 12GB Titan X GPU, with 
converged at about the 150th epoch.  

III. EXPERIMENTS AND RESULTS 

A. Datasets 
We used two well-established public benchmark datasets to 

test the effectiveness of our algorithm. 
 

 The ISBI 2016 Skin Lesion Challenge dataset [51] is a 
subset of the large International Skin Imaging 
Collaboration (ISIC) archive, which contains images 
acquired on a variety of different devices at numerous 
leading international clinical centers. The challenge dataset 
provides 900 training images (727 non-melanoma and 173 
melanoma) and a separate test dataset of 379 images (304 
non-melanoma and 75 melanoma) for evaluation. 

 The PH2 public dataset [52] was collaboratively collected 
by the Universidade do Porto, Técnico Lisboa, and the 
Dermatology service of Hospital Pedro Hispano in 
Matosinhos, Portugal. All 200 dermoscopic images (160 
non-melanoma and 40 melanoma) were obtained under the 
same conditions through Tuebinger Mole Analyzer system 
using a 20-fold magnification. They are 8-bit RGB color 
images with a resolution of 768×560 pixels. 
 

Both datasets provided ground truth segmentations based on 
the manual delineations by clinical experts. 

B. Experiment Setup 
We performed the following experiments on the two 

datasets: (a) analysis of the performance of each component in 
our proposed method; (b) comparison of the overall 
performance of our method with baselines from the 
state-of-the-art; and (c) analysis of the overall performance of 
our method on non-melanoma and melanoma dermoscopic 
images. Our method and all supervised baselines were trained 
on the ISBI 2016 Skin Lesion Challenge training dataset, and 
tested on both the ISBI 2016 test dataset and the PH2 dataset. 

The baseline skin lesion segmentation methods included: (1) 
MSCA [25] – multi-scale superpixel based cellular automata; 
(2) SSLS [24] – saliency based skin lesion segmentation; (3) 
FCN [32] – fully convolutional networks (FCN-8s). 

We also compared our method with dataset specific 
baselines (i.e., methods optimized to a particular dataset). For 
the ISBI 2016 dataset, these were the top 5 results (out of 28 
teams) from the ISBI 2016 Skin Lesion Challenge [51]: ExB, 
CUMED (Yu et al [37]), Rahman, SFU and TMU. For the PH2 
dataset, these were: (1) SCDRR [26] – sparse coding with 
dynamic rule-based refinement; (2) DT [27] – skin lesion 
segmentation using delaunay triangulation; and (3) JCLMM 
[53] – a recently published method for psoriatic plaque 
segmentation by joining circular-linear distributions with 
mixture models, this method was also applied for skin lesion 
segmentation on PH2 dataset. 

C. Evaluation Metrics 
The most common skin lesion segmentation evaluation 

metrics were used for comparison including: dice similarity 
coefficient (Dic.), Jaccard index (Jac.), sensitivity (Sen.), 
specificity (Spe.) and accuracy (Acc.). They are defined as: 

 
=.ܿ݅ܦ ଶ|ீ்∩஺௉|

|ீ்|ା|஺௉|
                  (7) 

=.ܿܽܬ |ீ்∩஺௉|
|ீ்∪஺௉|

                      (8) 

ܵ݁݊. = |்௉|
|்௉|ା|ிே|

          (9) 

=.݁݌ܵ |்ே|
|்ே|ା|ி௉|

         (10) 

.ܿܿܣ = |்௉|ା|்ே|
|்௉|ା|்ே|ା|ி௉|ା|ிே|

       (11) 

Where ܶܩ  denotes the ground truth, ܲܣ  is the algorithm 
predicted segmentation result, ܶܲ  is the true positive pixels 
(lesions), ܶܰ is the true negative pixels (background),  ܲܨ is 
the false positive pixels and ܰܨ is the false negative pixels. In 
addition, we calculated the pixel-level receiver operating 
characteristic (ROC) curve and the precision-recall (PR) curve 
for additional comparisons. Both ROC and PR curves have 

 

 
Figure 3.  ROC (left) and PR (right) curves of our method at different stages on 

ISBI 2016 Skin Lesion Challenge dataset (top) and PH2 dataset (bottom). 
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been widely used for object detection related problems on 
general images [54]. 

D. Component Analysis of our Method  
Figure 3 shows the PR and ROC curves of our method at 

different stages on two datasets. The curves indicate that the 
results from the later stages of our method can outperform the 
segmentation at earlier stages. It also illustrates that the parallel 
integration improved upon the results produced at any 

 
 

Figure 4. ROC (top) and PR (bottom) curves of different methods on ISBI 2016 Skin Lesion Challenge dataset: overall (left), non-melanoma (middle) and 
melanoma (right) studies. 

 

  
 

Figure 5. ROC (top) and PR (bottom) curves of different methods on PH2 dataset: overall (left), non-melanoma (middle) and melanoma (right) studies. 
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individual stage.  

E. Results on ISBI 2016 Skin Lesion Challenge Dataset 
Table 1. Segmentation results of our method compared with other methods 

on the ISBI 2016 Skin Lesion Challenge dataset for all studies, where Bold 
represents the best results. 

ISBI 2016 – Overall Dic. Jac. Sen. Spe. Acc. 
Team - ExB 91.00 84.30 91.00 96.50 95.30 

Team - CUMED 89.70 82.90 91.10 95.70 94.90 
Team - Rahman 89.50 82.22 88.00 96.90 95.20 

Team - SFU 88.50 81.11 91.50 95.50 94.40 
Team - TMU 88.80 81.10 83.20 98.70 94.60 

MSCA 75.88 66.19 78.30 91.31 85.68 
SSLS 69.97  57.20 70.04 97.31 84.67 
FCN 88.64 81.37 91.70 94.90 94.13 
Our  91.18 84.64 92.17 96.54 95.51 

 
Table 2. Segmentation results of our method compared with other methods 

for non-melanoma studies on the ISBI 2016 Skin Lesion Challenge dataset. 
ISBI 2016 – Non-melanoma Dic. Jac. Sen. Spe. Acc. 

Team - ExB 91.18 84.64 91.12 97.22 95.78 
Team - CUMED 89.68 82.95 90.82 96.55 95.30 
Team - Rahman 89.44 82.04 87.84 97.51 95.70 

Team - SFU 88.32 80.88 91.55 95.82 94.93 
Team - TMU 88.58 80.73 82.89 99.04 94.87 

MSCA 75.11 65.57 78.59 91.14 85.84 
SSLS 70.81 58.34 72.87 97.15 86.15 
FCN 88.66 81.38 91.17 95.87 94.55 
Our 90.97 84.34 91.63 97.20 95.71 

 
Table 3. Segmentation results of our method compared with other methods 
for melanoma studies on the ISBI 2016 Skin Lesion Challenge dataset. 
ISBI 2016 – Melanoma Dic. Jac. Sen. Spe. Acc. 

Team - ExB 90.11 82.94 90.57 93.84 93.23 
Team - CUMED 89.98 82.90 92.47 92.34 93.21 
Team - Rahman 89.93 82.65 88.72 94.44 93.22 

Team - SFU 89.44 81.88 91.16 94.13 92.19 
Team - TMU 89.68 82.31 84.62 97.48 93.43 

MSCA 79.00 68.68 77.12 92.01 85.02 
SSLS 66.55 52.59 58.58 97.94 78.67 
FCN 88.56 81.33 93.83 90.98 92.39 
Our 92.03 85.84 94.34 93.89 94.70 

 
Tables 1 to 3 and Figure 4 show that our method achieved the 

overall best performance across all the different measurements. 
Our method performed better with a large margin for melanoma 
studies (~3% increase in Jaccard measure) when compared with 
the best challenge results. Figure 4 also indicates that our 
proposed method could perform significantly better when 
compared with the existing fully automatic works with/without 
supervision. 

F. Results on PH2 Dataset 
Table 4. Segmentation results on the PH2 dataset for all studies. 

PH2 – Overall Dic. Jac. Sen. Spe. Acc. 
SCDRR 86.00 76.00 - - - 

DT - - 80.24 97.22 89.66 
JCLMM 82.85 - - - - 
MSCA 81.57 72.33 79.87 95.57 88.75 
SSLS 78.38 68.16 75.32 98.18 84.85 
FCN 89.38 82.15 93.14 93.00 93.48 
Our 90.66 83.99 94.89 93.98 94.24 

 
 
 

 

Table 5. Segmentation results on the PH2 dataset for non-melanoma studies. 
PH2 – Non-melanoma Dic. Jac. Sen. Spe. Acc. 

DT - - 86.79 97.47 93.74 
MSCA 85.52 76.88 85.78 96.33 93.86 
SSLS 84.72 75.52 83.96 98.05 91.77 
FCN 89.27 82.01 94.83 94.22 94.79 
Our 90.77 84.15 95.64 95.12 95.61 

 
Table 6. Segmentation results on the PH2 dataset for melanoma studies. 

PH2 – Melanoma Dic. Jac. Sen. Spe. Acc. 
DT - - 54.04 95.97 66.15 

MSCA 65.77 54.13 56.25 92.49 68.31 
SSLS 53.00 38.73 40.74 98.67 57.16 
FCN 89.81 82.72 91.39 88.16 88.25 
Our 90.25 83.35 91.88 89.42 88.78 

 
Tables 4 to 6 and Figure 5 demonstrate that our method 

significantly improved the existing methods on segmenting 
skin lesions for PH2 dataset. When compared with the recently 
published work, it shows an increase of ~8% in Jaccard 
measure compared with SCDRR, an increase of ~4.5% in 
Accuracy measure compared with DT, and an increase of 
~7.8% in Dice measure compared with JCLMM. 

IV. DISCUSSIONS 
Our findings show that our method achieved higher accuracy 

than all other methods on two well-established public datasets. 
We attribute these benefits to the use of multi-stage FCN with 
parallel integration and this can be explained as follows: (1) 
multi-stage FCN enables us to iteratively learn the challenging 
skin lesion boundaries; (2) the parallel integration approach 
enables the fusion of the segmentation results to further 
enhance the detection ability. 

We analyzed the main components of our algorithm 
individually to quantify their contributions to the final 
segmentation results. Figure 3 shows that the segmentation 
results at a later stage, e.g., stage 4, can outperform the results 
at an earlier stage e.g., stage 1. This result underlines the 
importance of our multi-stage approach to reduce segmentation 
errors. Figure 3 also shows the advantages from our parallel 
integration which combines complementary segmentation 
results produced at individual stages. We attributed the 
relatively small improvement after stage 2 due to the small 
training dataset, which limits our method to learn more subtle 
variations. Nevertheless, our experiments found that the 
segmentation results after stage 2 still contributed towards a 
more precise definition of the skin lesion boundary while the 
early stage results were mainly useful for localizing the skin 
lesions. 

Our experiments indicate that our proposed method has 
higher overall performance in skin lesion segmentation when 
compared with the existing methods. In general, while MSCA, 
SSLS, SCDRR, DT and JCLMM were not able to separate the 
skin lesions from artifacts e.g., color band (Figure 6a) and 
performed poorly on challenging skin lesions that have 
inhomogeneous variations (Figure 6(b, c)) as they are not able 
to understand image-wide pixel variations and texture 
differences between the artifacts and the skin lesions. This 
resulted in ~10% (Table 1) and ~5% (Table 4) lower in 
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Accuracy measure when compared with the best performing 
algorithm. These methods had a slightly improved performance 
on the PH2 dataset, which has less complex variations in lesion 
locations, illumination and black frame variations. In addition, 
it would be difficult to adapt these methods for other datasets 
because their performance is heavily reliant on tuning a large 
number of parameters and selecting appropriate pre-processing 
procedures, which will vary widely depending upon the 
characteristics of the data. 

The improvement of FCN over the traditional methods is due 
to the ability of FCN to combine deep semantic information 
(upper layers) and shallow appearance information (lower 
layers) in a hierarchical manner that enables it to encode 
image-wide location information and semantic characteristics. 
However, FCN usually generates poor boundary definitions for 
skin lesions that have fuzzy boundaries and/or low difference in 
the textures between the foreground and the background 
(Figure 6b) due to the lack of label refinement and consistency 
constraints. For these reasons, FCN achieved much lower 
performance when compared to our method. Evidence for this 
in Tables 1 and 4, shows that our method had 3.27% (ISBI 
2016) and 1.84% (PH2) higher in Jaccard measure when 
compared with FCN. Figure 6b shows the segmentation results 
of an example melanoma study, where FCN over-segmented 
the skin lesion while our proposed method was able to discard 
the corner regions that had similar visual characteristics to the 
skin lesions. These results indicate that our method can reduce 
the segmentation errors by constraining the boundary 
definitions via integrating different segmentation results. 

A comparison with the best ISBI 2016 Skin Lesion 
Challenge results (Tables 1 to 3) shows that our method had the 
best overall performance. The methods proposed by ExB and 
CUMED achieved the most competitive results for overall 
studies (Table 1) and for non-melanoma studies (Table 2), 
where in Table 1, ExB was 0.34% lower and CUMED was 
1.74% lower while in Table 2, ExB was 0.21% higher and 
CUMED was 1.39% lower to our method in Jaccard measure. 
A slightly higher result of ExB method (0.21%) for 

 
 
Figure 6. Segmentation results from four example studies. (i) input images, where the first two columns (a, b) are from the ISBI Skin Lesion Challenge dataset and 
the last two columns (c, d) are from the PH2 dataset; (ii - iv) segmentation results of different comparison methods including MSCA, SSLS and FCN; and (v) 
segmentation results of our method. The colors represent true positive (red), true negative (black), false positive (green) and false negative (yellow) pixels. 
  

 

 
Figure 7. Segmentation results from challenging melanoma studies. (i) input 
images; (ii) segmentation results of our method; and (iii) comparison of the 
Jaccard measures of our method with other top methods from ISBI 2016 Skin 
Lesion Challenge dataset. 
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non-melanoma studies (Table 2) to our method was likely due 
to the imbalanced number of melanoma and non-melanoma 
studies, which causing ExB method overfit to the 
non-melanoma studies. Furthermore, these methods performed 
notably poorly for melanoma studies (Table 3), where our 
method was 2.90% higher than ExB and 2.94% higher than 
CUMED in Jaccard measure. In general, melanoma studies are 
more difficult to segment, due to severe inhomogeneity and/or 
non-uniform boundary patterns. Figure 7 shows the 
segmentation results of 3 challenging melanoma studies, where 
the segmentation of the lesions are hindered by hairs, 
inhomogeneous distributions, and irregular boundaries. In these 
studies, only our method was able to consistently segment the 
skin lesions; it had an average of 20% higher in Jaccard 
measure than ExB and CUMED methods. Furthermore, Tables 
1 to 3 also suggest that our method achieved the highest 
Sensitivity of 92.17%, 91.63% and 94.34%, regardless of skin 
lesion types (non-melanoma or melanoma studies). Higher 
Sensitivity means the ability to detect true skin lesions area, 
which illustrates the robustness of our method on detecting 
challenging skin lesions. Overall, we attributed the robustness 
to the use of multi-stage FCN to iteratively learn and infer the 
visual characteristics of the challenging skin lesions, which 
ensured that the segmentation errors were always minimized 
during both training and testing time. In addition, the additional 
use of parallel integration to integrate the complementary 
information derived from different stages of mFCN ensured 
that the challenging skin lesion boundaries were always 
detected. 

V. CONCLUSIONS 
In this paper, we proposed a new FCN-based method to 

automatically segment the skin lesions on dermoscopic images. 
Our method achieved accurate segmentation by combining the 
important visual characteristics of the skin lesions, which were 
learned and inferred from multiple embedded FCN stages. Our 
proposed method leverages the capacity of FCN to segment the 
skin lesions without using any pre-processing techniques e.g., 
hair removal or illumination correction. Our experiments on 
two well-established public datasets demonstrated that our 
method achieved higher segmentation accuracy compared to 
the state-of-the-art methods. In the future, we will investigate 
adaptions of our method to other datasets and as well as 
potential clinical applications.  
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