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Figure 1: SEMFIRE perception architecture overview. MoDSeM is introduced in section 2.2.

1 Introduction

Despite many advances in key areas, the development of fully autonomous robotic solutions
for field robotics, in particular for precision forestry is still in a very early stage. This
stems from the huge challenges imposed by rough terrain traversability [23], for example
due to steep slopes, autonomous outdoor navigation and locomotion systems [22], limited
perception capabilities [7], and reasoning and planning under a high-level of uncertainty [21].
Artificial perception for robots operating in outdoor natural environments has been studied
for several decades. For robots operating in forest scenarios, in particular, there is research
dating from the late 80s-early 90s – see, for example, Gougeon et al. [6]. Nevertheless, despite
many years of research, as described in surveys over time [e.g. 24, 12, 15], a substantial
amount of problems have yet to be robustly solved.

In this deliverable, we report on the latest developments of our research concerning
artificial perception algorithms in field robotics. In this text, we put forth the overview of
the perception architecture for the SEMFIRE team of robots (section 2.1), and propose a
core design of the perception pipeline (section 2.2) and decision-making module functionality
(section 2.3). We then present the technical details of the integration of the software and
hardware modules of the Ranger robot in the ROS middleware in Section 3, and provide
in Section 4 an overview of the first internal tests developed to validate and verify the
proposed artificial perception algorithms. Lastly, section 5 presents the main conclusions of
the document and the main lines of future work.

2 Artificial Perception Base System

2.1 Overview of SEMFIRE perception architecture

In Figure 1, an overview of the SEMFIRE perception architecture is presented, including
all perception modules and communication channels that form the framework for individual
and cooperative perception capabilities of the SEMFIRE robotic team, but also the sensing
and actuating backbones, the decision-making modules (to be detailed in section 2.3) and
the Control Station used by the human operator (i.e. the Foreman) to remote-control the
robots if needed.
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Figure 2: An overview of the framework. Sensors produce signals, which are passed to
independent perception modules. Percepts gathered by these modules are aggregated in a
Semantic Map, containing layers for different types of information.

Preliminary details for the subsystems involved will be described in the following sub-
sections.

2.2 Core design of perception pipeline

SEMFIRE implies cooperative perception, in which each of the members of the robot team
contribute to the global knowledge of the system by sharing and cooperatively processing
data and percepts from one another, combining the sensorial abilities, perspectives and
processing power of various agents to achieve better results.

In the scope of the SEMFIRE project, theModular Framework forDistributed Semantic
Mapping (MoDSeM) [18, 17] was designed, which provides a semantic mapping approach
able to represent all spatial information perceived in autonomous missions involving teams of
field robots, aggregating the knowledge of all agents into a unified representation that can be
efficiently shared by the team. It also aims to formalise and normalise the development of new
perception software, promoting the implementation of modular and reusable software that
can be easily swapped in accordance with the sensory abilities of each individual platform.

The framework is split into three blocks, as depicted in Fig. 2:

• The sensors, which provide raw signals;

• The Perception Modules (PMs) which take these signals and produce percepts, i.e.
processed information;

• The Semantic Map (SM), containing a unified view of the state of the workspace/world.

Sensors produce raw signals, which are used by Perception Modules to produce percepts,
in this case information grounded on a spatial reference such as occupancy, presence of
people, etc. These are taken as inputs to build a Semantic Map, which can in turn be used
by any agent in the team to make decisions or coordinate with others. In this case, each
sensor is seen as a mere source of data, which is assumed to be preconfigured and working
as needed at the time of execution.

In software terms, each Perception Module is expected to be decoupled from all other
modules of the system, depending only on sensors and on the Semantic Map itself. Thus, we
can ensure that Perception Modules are interchangeable elements of the system, allowing us
to swap them at will, depending on the computational power and available sensors on each
robot. This allows for great flexibility in the deployment of the framework, enabling modules
to be employed in each system without the need to re-design the global representation.

Perception Modules can use the Semantic Map as input, thus making use of the percepts
from other techniques. Removing modules from the robot should not impact the remainder
of the system. However, this may still result in a cascade reaction, with Perception Modules
depending on each others’ output for further processing; Perception Module selection should
still be a careful process.

2
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(b) MoDSeM aims to implement a non-linear perception pipeline: Perception Modules can access
previous versions of the Semantic Map to execute over previous states.

Figure 3: Linear data flow compared to MoDSeM’s non-linear data flow.

The semantic map works as a global output of the perception system. It is split into the
Layered Voxel Grid (LVG) and the Parametric Percept Models (PPM). The LVG is composed
of a layered volumetric representation of the workspace. Each layer of the LVG is itself a voxel
grid, containing information on one aspect of the world, such as occupancy, traversability,
relevance to current task, etc. The combination of these layers provides an overview of the
state of the world as perceived by the robot team; individually, they provide insight that
may be relevant on a particular aspect of the mission. Different Perception Modules can
contribute to different layers of the LVG, with for instance a people detector contributing
to a people occupancy layer or a mapping technique contributing to a physical occupancy
layer. This information can then be used by decision-making routines (section 2.3).

The PPM contains percepts that are represented as parametric models with a spatial
representation, thus representing entities without volume, e.g. robot poses or human joint
configurations. The PPM complements the LVG’s expressive power, allowing the system to
represent entities without volume, such as robot poses, human joint configurations, naviga-
tion goals, etc.

At a basic level, perception can be seen as a one-way pipeline: signals are fed into
Perception Modules, resulting in percepts. MoDSeM aims to introduce non-linearity in
this flow, allowing Perception Modules to access current and past data, including percepts
obtained by other Perception Modules.

In order to achieve this, two measures are taken:

• Perception Modules are allowed to use the Semantic Map as input;

• Perception Modules are allowed to use previous versions of the Semantic Map as
input.

In the first case, Perception Modules are allowed to depend on the Semantic Map and
use it as a complement to any signal input they require. Indeed, some Perception Modules
are expected to use solely the Semantic Map as input; e.g., a traversability detector could
estimate the traversability of the map using only occupancy, movable object and vegetation
information.

Additionally, as in Fig. 3, allowing perception modules to use previous version of the SM
as input implies that a history of SMs is kept during operation, which would quickly make

3
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the its storage infeasible. This can be mitigated in two ways:

• By storing successive differences between the maps as they are generated, as is done
in video compression algorithms and source control systems;

• By intelligently choosing which snapshots of the map should be saved, using information-
theoretic techniques, avoiding redundant information.

By fine-tuning these two approaches, it should be possible to establish a history in
secondary memory with enough granularity to allow Perception Modules that depend on it
to operate. For instance, the total system memory to be used by this mechanism can be set
as a parameter, guiding the compression and data selection techniques in their optimization
of the amount of information stored, as measured by information-theoretic metrics such as
entropy.

Traditionally, multi-robot perception is achieved in one of two ways (Fig. 4): by prop-
agating raw signals from each robot to a centralised perception server, which then replies
with percepts; or by endowing each team member with perceptive abilities, as well as the
ability to decide when percepts should be propagated among the team.

Centralised perception is preferable when the robots in the team contain little processing
power and when the communication infrastructure is a non-issue, i.e. is always available
and can support the necessary bandwidth. On the other hand, distributed perception is the
appropriate technique when bandwidth is limited, when robots have heterogeneous needs
and capabilities, and when each robot can be endowed with perception abilities that fit its
needs.

A hybrid approach can be used with heterogeneous teams, when for instance one of the
robots is significantly more computationally powerful than other team members, who can
unload part of their perceptual load to this team mate. As can be easily inferred, this is the
case of the SEMFIRE artificial perception architecture (section 2.1)

MoDSeM can be used to implement all of these perceptual modalities:

• the centralised approach is immediately supported, as it involves simply implementing
all modules on a single machine;

• the distributed and hybrid approaches can also be achieved by communicating relevant
layers of the Semantic Map among robots, using appropriate tools for multi-robot
communication1.

1http://wiki.ros.org/multimaster_fkie
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Figure 7: Artificial perception pipeline for the Ranger. Feedback connections are not repre-
sented for readability.

Fig. 5 shows an overview of MoDSeM implemented on the SEMFIRE perception archi-
tecture. In this case, the agent contains its own sensors, processing modules and semantic
map. Its Perception Modules include specialized Perception Modules that are used to fuse
information received from other agents, to achieve consensus. The agent also contains a se-
lection procedure, which must be configured or endowed with some decision-making ability,
which decides which information it should share with other agents, to be sent for inter-robot
communication. Specific Perception Modules in each robot can then fuse these representa-
tions, achieving consensus and allowing all robots to plan with the same information. Other
topologies can also be achieved with the framework, as in Fig. 6. Different topologies are
achieved by mixing-and-matching the necessary components, such as Perception Modules
and sensors and their configurations, to achieve different use cases.

Fig. 7 shows the SEMFIRE perception pipeline for the Ranger (which will be adapted
to produce analogous pipelines for the Scouts) using MoDSeM perception and core modules
as its foundation. Three sub-pipelines are considered in this approach:

2D perception pipeline – this involves all processing performed on images, in which
semantic segmentation using the multispectral camera is of particular importance (see
Fig. 8 for a preliminary example), since it plays the essential role in mid-range scene
understanding that informs the main operational states of the Ranger;

3D perception pipeline – this involves all processing performed on 3D point clouds yielded
by the LIDAR sensors and RGB-D cameras (including 3D-registered images) that sup-
port decision-making based on the perceived world to enact the desired landscaping
tasks for each operational stage and also, in particular, safe 3D navigation (see section
2.3);

Mapping pipeline – this involves the final registration and mapping that takes place to
update the MoDSeM semantic map (see Fig. 9 for a preliminary example).

2.2.1 Processing and Communication

Sensor data collected by the Ranger is processed by a layered perception architecture based
on MoDSeM, allowing it to process data acquired by its own sensors and by the remainder
of the team. The project challenges require a distributed architecture capable of processing

6



Figure 8: Example of semantic segmentation of combustible material using multispectral
camera.

Figure 9: Example of MoDSeM layer mapping visualisation.
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large amounts (up to tens of Gigabytes) of data per minute generated by the vision sys-
tems distributed across the Ranger and Scouts, making it impossible to store such amounts
of data. The Ranger must accommodate the Signal Acquisition, Semantic Representation,
Perception Modules, Perception-Action Coupling and the Decision Making modules. There-
fore, data is processed at the edge with dedicated hardware accelerators that forward only
relevant information to the central processing unit. Having this in mind, the processing and
communication setup implemented in the Ranger includes:

• A Mini-ITX computer equipped with a Geforce RTX 2060, an Intel Core i7–8700 CPU
and 16GB of DDR4 RAM;

• A Tulipp FPGA+ARM platform including a Xilinx XCZU4EV TE0820 FPGA and a
ARM Quad-core Cortex-A53 CPU with a Mali-400 GPU and 3GB of DDR4 RAM;

• 5 AAEON Up Boards2, one for each Intel RealSense device;

• One custom-made CAN bus controller, based on an ATMEGA ARM CPU and two
MCP2551 CAN Bus transceivers3

• Two TP-LINK TL-SG108 Gigabit Ethernet Switches4;

• One ASUS 4G-AC68U WiFi Router5;

The Mini-ITX computer is the central processing unit of the Ranger, gathering relevant
information from all components and running high-level algorithms such as planning and
decision, using the ROS framework. It is equipped with a powerful Geforce RTX 2060 GPU,
which provides the needed power to run heavy computational approaches.

The Xilinx XCZU4EV TE0820 FPGA is responsible for running the low-level drivers
and low-level operational behaviors of the platform. It runs ROS and allows for transparent
communication with sensors, and the higher-level CPU.

The five AAEON Up Boards are paired with each of the Intel Realsense D415 cameras,
and are used to acquire and pre-process RGBD data in ROS as well, forwarding relevant
data from these sensors to the main CPU.

The custom-made CAN bus controller allows to inject velocity commands to the under-
lying CAN system of the Bobcat platform, allowing to control the robot’s locomotion, the
hydraulic arm, and the operation of the mulcher, which will be later attached to the hydraulic
arm. It consists of a custom board that integrates two MCP2551 CAN bus transceivers,
which is installed between the machine’s manual controls and the actuators, defining two
independent CAN buses. This way, it becomes possible to make use of the CAN bus to
control the machine.

The TP-LINK TL-SG108 Gigabit Ethernet Switches interconnects the CPU, with the
FPGA, the five AAEON UP Boards, the C16 lasers and the WiFi router, allowing for fast
data acquisition and communication between components, enabling distribution of compu-
tation and remote access and control.

2.3 Core design of decision-making pipelines

The decision-making modules represented in Fig. 1 use the outputs from the perception
and perception-action coupling modules to produce the behaviours needed to enact the
operational modes described in [10]. Of particular importance are the resulting Ranger’s
processing pipelines for overall decision-making pipeline for safe 3D navigation shown in
Figs. 11 and 12, respectively. Analogous processing pipelines will be designed for the Scouts
in follow-up work.

2https://up-board.org/
3https://www.microchip.com/wwwproducts/en/MCP2551
4https://www.tp-link.com/pt/business-networking/unmanaged-switch/tl-sg108/
5https://www.asus.com/Networking/4G-AC68U/
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(a) Main sensory hub.

(b) Rear sensory hub.

(c) Processing hardware within main sensory hub.

Figure 10: Ranger sensor hardware framework.
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Figure 11: SEMFIRE decision-making pipeline for Ranger.

Figure 12: SEMFIRE safe 3D navigation pipeline for Ranger.
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(a) Bobcat T190 base model. (b) Main sensing kit and sensor frames.

Figure 13: Integration of the URDF models in rviz.

3 ROS Integration

System development and integration comprises the design, implementation and integration
of hardware and software components, which in turn depend on the specifications and re-
quirements arising from the first prototyping phase. In this section, we turn our attention
to the integration of hardware and software component of the robotic platform using the
Robot Operating System (ROS)6.

ROS is a software framework that aims to ease the development of modular code targeting
robots, and a very widespread tool in the field of robotics. ROS establishes a communication
layer running on top of an ordinary host operating system, which allows for the exchange of
messages between multiple ROS nodes. ROS nodes are programs which use the facilities pro-
vided by ROS to communicate and perform their tasks. ROS nodes operate independently
and concurrently, and need not even be running on the same computer.

Communication is achieved through two main mechanisms: topics for asynchronous com-
munication, and services for synchronous communication, both of which carry messages.
ROS nodes can be implementations of all kinds of functions: data management, mathemat-
ical functions, or anything else that can be programmed in any of the languages supported
by ROS. Hardware drivers are a prime example of just how powerful ROS’s modularity is:
for a given robot, it is possible to develop ROS nodes which subscribe to a set of standard
topics to receive commands, and that implement the low-level code needed to relay those
commands to the robot. ROS allows us to abstract away the hardware intricacies of the
robot and to develop as if we were writing code that targeted a standardized robot. As such,
ROS promotes code reutilization and has become a de facto standard in Robotics.

All software integration will be designed for Ubuntu 18.04 and ROS Melodic Morenia,
with nodes written in C++ and Python. Software integration in environments incompatible
with Ubuntu, such as microncontrollers, are designed using specific frameworks able to be
integrated in ROS, using, for instance rosserial7.

3.1 Robot Structure and Sensor Positioning

We have included a properly scaled Bobcat T190 3D model (see Figure 13a) through a
Unified Robot Description Format (URDF) in the ROS visualization tool, rviz, to serve
as a starting point for the definition of transformation frames (tf) of all the meaningful
parts of our robot. After this, we integrated a URDF model of the main sensing kit, which
was 3D printed previously to support the cameras and 3D LIDAR sensor on top of the

6http://www.ros.org
7http://wiki.ros.org/rosserial
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Figure 14: Ranger URDF model in rviz. Note the tf frames of the platform, and the
revolute joint in the robot’s hydraulic arm, which is raised in this illustration.

cabine of the robot, at the front. This allowed us to manually measure and define the
relationship between the four distinct sensors in relationship to a common frame, i.e. the
base sensing kit frame, as shown in Figure 13b.

Finally, we included in the overall Ranger model the missing parts: namely the processing
unit case, the sensors and the rear sensory hub; and defined the robot’s arm as a revolute
joint, allowing us to raise and lower the arm as needed. This is shown in Figure 14.

3.2 Acquisition of Sensor Data

Sensor manufacturers make use of documented communication protocols for acquiring sensor
data, and provide their own software frameworks for displaying the real-time results of that
same acquisition. Fortunately, the Robotics community provides ready-to-use drivers for
popular sensors in ROS, due to its widespread use and the need to access all data in a
common framework. In the particular case of the Ranger UGV, we have benefited from
the ROS drivers available for the Intel Realsense cameras8, the Emlid Reach RS GPS-RTK
device9, the UM7 Inertial Measurement Unit10, and the Leishen C16 LIDARs11. The latter
was ported into ROS Melodic and Ubuntu 18.04 by us, and support was added for multiple
LIDARs with different frame IDs. Moreover, the UWB system is an in-house developed
solution provided by Ingeniarius, Ltd., coordinator of the SEMFIRE R&D project12.

On the other hand, we could not find any readily available for the FLIR AX8 Thermal
camera nor the Teledyne Dalsa Genie Nano C2420 Multispectral Camera. Therefore, we
developed our own ROS drivers for these two cameras.

3.2.1 FLIR AX8

The FLIR AX8 Thermal camera connects to the remaining system via an Ethernet interface,
having a fixed IP address configured in the same network as the main Ranger’s CPU. The

8https://github.com/IntelRealSense/realsense-ros
9https://github.com/enwaytech/reach_rs_ros_driver

10https://github.com/ros-drivers/um7
11https://github.com/tongsky723/lslidar_C16
12The UWB system ROS driver is currently not publicly available.
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manufacturer provides a streaming service using the Real Time Streaming Protocol (RTSP)
on the camera’s local IP address and port 554. Therefore, we developed a simple ROS
driver, which establishes a connection to the RTSP server to acquire the 640× 480 camera
feed, and publish the retrieved images to the ROS network in a sensor msgs/Image topic
at a rate of 9 Hz.

The above simple driver provides a lightweight and stable solution for integration of the
FLIR AX8 camera in ROS. However, we noticed that the streaming service provided by
the manufacturer displays thermal images with an acquisition delay of around 2 seconds.
Therefore, we developed an alternative ROS driver to provide images with a diminished
delay. For this, we log in into the web server interface of the thermal camera via HTTP and
the camera’s IP. Then, we extract the consecutive JPG thermal camera images provided,
which have a more reduced acquisition delay of around 0.25 seconds.

This is possible by starting the Mozilla Firefox browser in the background with a ded-
icated thread and extract the consecutive screenshots provided by the camera web server
interface through web scraping tools, publishing them in ROS in a similar way to the simple
ROS driver initially developed.

This solution, which is more complex, has the evident advantage of reducing the acqui-
sition delay of the camera, which comes closer to a real-time acquisition at the cost of more
CPU time, since it requires executing a browser instance.

We also make a sensor msgs/CameraInfo topic available with the camera intrinsic pa-
rameters loaded from a yaml file, as well as launch files, which also publish sensor msgs/

CompressedImage topics, and provide customization via parameters, e.g. the IP address of
the camera, the frame ID and the camera topic name. Both ROS drivers are distributed as
open source13.

3.2.2 Dalsa Genie Nano C2420

The Dalsa Genie Nano C2420 Multispectral camera is not a common sensor found in robots.
In the SEMFIRE project, we make use of multispectral imagery to characterize, segment
and classify relevant entities (e.g. vegetation) in the forestry environment.

Similarly as above, this multispectral camera connects to the remaining system via an
Ethernet interface, with a fixed IP address configured in the same network as the main
Ranger’s CPU. The manufacturer instructs users to acquire images using the GigE Vision
SDK for Gigabit Ethernet cameras14. Therefore, we have developed a ROS driver, which
makes use of the GevAPI library from the GigE Vision SDK, as well as the Generic Interface
for Cameras – GenICam15, allowing us to retrieve the camera feed into a ROS node, which
links these libraries with catkin and OpenCV libraries.

The ROS driver starts by finding the camera IP on the network automatically, connect
to it, retrieve its working parameters, receiving then the stream of images. Afterwards, the
images are consecutively converted into a sensor msgs/Image message which is published
into a dedicated topic.

The camera is configured to stream with a 2464 × 2056 image resolution at 10 Hz, and
the ROS driver publishes the image feed into the ROS network with the same specifications,
as well as a downscaled 720p version of the image and an optional monochromatic version
of both resolutions. The image published has the following three channels: NIR16,G,R.

We have developed an additional node, which allows to publish useful alternative single-
channel images from the manipulation of the original image. These include the Normalized
Difference Vegetation Index (NDVI) image, the Chlorophyll Vegetation Index (CVI) image,
the Triangular Vegetation Index (TVI) image, the Normalized Near infrared image, the

13https://github.com/davidbsp/flir_ax8_simple_driver
14http://www.ab-soft.com/activegige.php
15https://www.emva.org/standards-technology/genicam/
16NIR stands for the Near Infrared channel, commonly used in multispectral imaging.
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(a) FLIR AX8 Thermal image. (b) Dalsa C2420 NIR,G,R Image.

Figure 15: Thermal and Multispectral ROS images of the same scene.

Normalized Green image, and finally the Normalized Red image. In Figure 16, we illustrate
some of the obtained single-channel images, using a winter colormap for better visualization.

We also make the sensor msgs/CameraInfo topic available with the camera intrinsic
parameters loaded from a yaml file for both resolutions available, as well as a launch file,
which publishes sensor msgs/CompressedImage topics, and provide customization via pa-
rameters, e.g. the frame ID, the camera topic name, whether to publish the monochromatic
topic, etc. We also provide an additional yaml parameter file to choose the alternative single-
channel images to be published. The Dalsa Genie Nano C2420 ROS driver is distributed as
open source17.

3.3 Low-Level Control

The low-level controller of the Ranger intends to be a standard in leading the research
into existing heavy-duty autonomous machines, with the integrated Society of Automotive
Engineers (SAE) J1939 Controller Area Network (CAN) protocol. Even though this might
seem like a hard constraint, the SAE J1939 has become the accepted industry standard
for heavy-duty machines in agriculture, forestry and construction. The SEMFIRE team
successfully conceived a microcontroller bridge, capable of interpreting and generating J1939
messages, thus allowing to seamlessly exchange messages with the central controller of the
compact track loader. A low-level PID controller has been developed to continuously adjust
the Ranger’s locomotion based on the difference between the desired velocity, provided by
the navigation layer, and the measured velocity, estimated by the visual odometry and the
higher-level localization approach. This allows us to use standard teleoperation procedures
to remotely control the Ranger, and develop autonomous outdoor navigation approaches
in ROS, which output desired velocity commands to the Ranger’s skid steering system via
standard geometry msgs/Twist messages.

The Ranger will be additionally endowed with a lift arm, with high level of rigidity, hose
protection, and durability. The lift arm provides 2 DoF: lift (base rotation) and tilt (gripper
rotation), with both breakout forces above 2 tons, capable of tearing out a tree root. Taking
advantage of the CAN protocol, we are currently working towards the process of integration
of the hydraulic arm of the UGV for motion planning and control using the MoveIt! motion
planning framework for ROS18.

17https://github.com/davidbsp/dalsa_genie_nano_c2420
18http://moveit.ros.org
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Figure 16: Dalsa Vegetation Index single-channel images illustrated in rviz using a winter
color map (blue pixels at 0, green pixels at 255). NDVI image (top left), CVI image (top
right), TVI image (bottom left) and original NIR,G,R three-channel image (bottom right).

.

3.4 Overall ROS System

The integration of the distinct components of the system in ROS allows for a decoupled and
modular robot architecture, adhering to the black box approach, where the implementation
of each software component is opaque, and only its inputs and outputs are important for
the rest of the system.

One of the most important aspects about the integration in ROS is the definition of the
coordinate frames and transforms19 using the ROS tf API. Figure 17 illustrates the tf tree
with the relationship of the several coordinate frames of the Ranger robot. We have defined
a parent reference frame bobcat base attached to the Ranger’s mobile base, placed at the
rotational center of the robot, and all other relevant frames (i.e. sensors and parts of the
robot) have been defined with respect to this reference. Frame transforms are defined in
the URDF description file of the platform (see Section 3.1), allowing for example to know the
relationship of sensor msgs/PointCloud2 sensor data published by the front LSLIDAR in
respect to the robot’s bobcat base frame. Furthermore, all of these transforms are static,
meaning that the relationship between the sensors and robot parts does not change relatively
to the base reference. The noteworthy exception is the bobcat base to arms link transform,
which tracks the tilting arm up and down motion.

Another key aspect about the ROS integration is system bring up, i.e. the reliable
initialization of all modules of the ROS system. This is done via a dedicated package for
our robot, which includes a bring up roslaunch XML file. This launch file envelopes the
launch files of all drivers, including sensors and low-level control; the robot URDF model, and
tracks the Ranger’s internal transforms via a robot state publisher node. Moreover, due
to its 360° FOV and positioning on the Ranger, the Back LSLIDAR retrieves points from the
robot’s own body, which should be filtered out for most high-level perception algorithms in
order not to be mistaken as obstacles. Therefore, we make use of a pcl ros filter nodelet20

to remove the robot’s body data from the point cloud, by defining three intervals (in x, in y,

19http://wiki.ros.org/tf/Overview/Transformations.
20http://docs.ros.org/melodic/api/pcl_ros/html/classpcl__ros_1_1CropBox.html
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Figure 18: Ranger’s remotely controlled experiment in the field. Full video available at:
https://www.youtube.com/watch?v=Jo99beTU2J8.

and in z) in 3D space, which correspond to a 3D box around the robot. This filtered point
cloud is then published in a designated topic.

During the development and testing of robotic algorithms with the Ranger, e.g. lo-
calization, teleoperation, navigation, multi-sensor registration, semantic segmentation and
mapping; dedicated launch files are created for each approach, and started along with the
bring up launch file, enabling the separation of the common ROS platform base system and
the higher level robotic behaviors.

4 System Tests

In this section, we briefly overview some internal tests and work in progress towards endowing
the Ranger heady-duty UGV with the capability of correctly perceiving and operating in
the forestry environment.

4.1 Basic Perception Capabilities

Initial tests focused on remotely controlling the machine to test the teleoperation ability
and to collect early rosbag21 datasets with the sensing equipment included in the Ranger,
for analysis and offline development of artificial perception algorithms. Figure 18 illustrates
these successful tests, and a video of the robot operation is provided in the caption.

Besides extracting the intrinsic calibration parameters22 of the thermal and mutispectral
cameras (see Section 3.2), we have been conducting work on multi-sensor registration to
augment the perception of the robot by joining complementary data given by different sensor
modalities, and improve the original transforms between sensors obtained through manual
measurements and prior information on sensor positioning (see Section 3.1). In Figure 19,
we illustrate initial registration results between the multispectral camera and the front 3D
LIDAR, which lets the camera image be augmented with depth information, and we are
currently investigating depth completion methods.

21http://wiki.ros.org/rosbag
22http://wiki.ros.org/camera_calibration
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Figure 19: Work in progress on the registration between the Teledyne Dalsa Genie Nano
C2420 multispectral camera and the front Leishen C16 3D LIDAR. Top left image: artificial
depth image within the camera’s FOV built from 3D LIDAR data. Bottom left image:
Original multispectral camera image. Center: Point cloud extracted from the front 3D
LIDAR (and Intel Realsense colored point cloud on the floor in front of the robot). Right
image: Overlaid LIDAR depth data on top of the multispectral image. The ranger was
safely teleoperated during this test, thus the proximity of a person on the left side of the
UGV.

Multimodal 6D localization (x, y, z, φ, θ, ψ) and mapping are another key feature of
the robot for supporting operations in forestry environments. In Figure 20, we illustrate
tests on generating pose estimates from a sensor fusion hierarchical localization approach,
which combines LIDARs, IMU, Depth Cameras and GPS data. The localization estimation
is then passed on to the Octomap library23 to build a detailed 3D map of the environment.
Accurate localization is a mandatory requirement for field operations, including robotic
navigation or large-scale mapping and perception, which should be robust to highly dynamic
and unstructured outdoor environments, encompassing hard challenges for perception such
as GPS dropouts, undistinctive visual features in forestry scenes and high perturbation in
motion due to rough terrain traversability. This is a work in progress that we are constantly
aiming to improve. For instance, we intend to make the approach robust to missing inputs
over time, and we also plan to intensively test more parametric combinations of inputs, as
well as additional inputs, e.g. the integration of Ultra Wideband (UWB) technology as a
source for global localization in situations where GPS dropouts do not allow the system to
maintain a georeferenced system.

The decision-making modules use the outputs from the perception and perception-
action coupling modules to produce the behaviours needed to enact the Ranger’s operational
modes. Of particular importance are the resulting Ranger’s processing pipelines for overall
decision-making for safe 3D navigation shown in Figures 11 and 12, respectively. Analogous
processing pipelines will be designed for the Scouts in follow-up work.

The Ranger platform has a high degree of mobility, being based on one of the most pow-
erful, comfortable, versatile and recognised compact track loaders available in the market.
The Ranger is tuned for soft, sandy, wet and muddy conditions. It presents a climb capacity
and traversal capacity of approximately 35°, which covers a wide range of slopes available in

23http://wiki.ros.org/octomap_mapping
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Figure 20: 6D localization and 3D map in a challenging outdoor environment. Full video
available at: https://www.youtube.com/watch?v=Gucs9otr2Ns.

forestry scenarios. Efforts are currently being made for the implementation of the Ranger
navigation architecture, which is heavily based on [16] (cf. Figure 12). We are extending
the 2D navigation and path planning approach to 3D, by testing and improving the baseline
approach in the SEMFIRE simulator, as illustrated in Figure 21.

Regarding 3D path planning, we have been working on extracting the 3D gradient
of obstacles in relation to the robot, so as to distinguish ramps and slopes from obstacles,
such as trees. We plan to incorporate the gradient of the local occupancy points around
the robot as an observation source to the navigation framework, and we are then able to
threshold along the gradient (we take into account that the robot does not climb slopes with
more than 45 degrees of inclination) to understand whether we have an obstacle ahead of
the robot or a ramp or slope [14]. This allows for the local costmap around the robot to
distinguish between obstacles and pathways. The higher-level software, which inspects the
costmaps to reach a navigation goal, and sends adequate velocity commands to the mobile
robot base24 is currently being adapted. When the work in simulation is stable, we intend
to test the 3D planning approach in the Ranger with the existing low-level track actuation
controller (see Section 3.3).

In parallel, we have also been exploring traversability mapping25 for mobile rough
terrain navigation. We have generated a probabilistic robot-centric traversability map
that estimates the terrain features for mobile robots in the form of a grid-based elevation
map26 including upper and lower confidence bounds. The data in the map is updated
based on the uncertainty of the incremental motion as the robot moves, incorporating the
state estimation and a noise model of the distance sensor [5], i.e. the 3D LIDAR sensors.
Figure 22, on the right side, illustrates the local traversability map acquired by the Ranger
robot during an outdoor experimental trial [20].

24http://wiki.ros.org/move_base
25https://github.com/leggedrobotics/traversability_estimation
26https://github.com/ANYbotics/elevation_mapping
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Figure 21: Ranger Navigation simulation tests.

Figure 22: Combined Traversability Analysis and Image Segmentation.

4.2 Semantic Segmentation

Extensive work has also been conducted on semantic segmentation for the identification
of undesired vegetation that represent flammable material that exponentially increases the
potential spread of wildfires, as a solution for the perception problem for forestry robots [1].
The approach consists of a preexisting deep learning-based semantic scene understanding
method adapted for the use of multispectral imaging. Preliminary results of applying our
approach in real-world conditions in an outdoor scenario are presented in Figure 8 and 22, on
the left side. We then conducted a benchmarking of different CNN architectures in forestry
environments.

4.2.1 Benchmarking CNN Architectures for Semantic Segmentation for Land-
scaping with Forestry Robotics

For our purposes, we are interested in segmenting the image pixel-wise according to the 6
classes listed in Table 1 (see also Fig. 23). The image inputs for our solution currently consist
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Table 1: Semantic classes and respective color coding.

Classes Colors

Background Black
Live flammable material (aka Fuel) Red
Canopies Green
Trunks Brown
Humans Yellow
Animal Purple

Figure 23: Two examples of ground truth labeling of multispectral images using the classes
listed in Table 1.

of three image streams conveyed by the multispectral camera, namely NIR (Near Infrared),
Red and Green (NGR) at a rate of 10 frames per second (fps), a frame-rate which imposes
a requirement on the execution times for inference to be under 100ms. Another particularly
important requirement for our application is to minimize false positive classifications in the
Fuel class, a conservative approach which ensures the preservation and safety of local flora
and fauna, respectively. To this end, we evaluated the performance of a set of state-of-
the-art neural network based-solutions together with a custom-made solution based on an
adaptation of an alternative decoder-encoder architecture.

The set of state-of-the-art, off-the-shelf architectures that we tested was comprised by
MobileNetV2 [9] and ResNet50 [8]). These were chosen because MobilenetV2 is reportedly
a fast and accurate network while ResNet50 is slower but more robust.

In addition to these two architectures, the encoder-decoder architecture proposed by
[25], consisting of the Adapnet++ encoder and the eASPP (efficient Atrous Spatial Pyra-
mid Pooling) decoder, was adapted and implemented. More specifically, Adapnet++ is a
modification of current ResNet50 with the addition of 2 residual units to the architecture,
while eASPP is an adaptation of ASPP (Atrous Spatial Pyramid Pooling) developed by
DeepLab [3], and was created to reduce the amount of parameters while maintaining the
accuracy in the results. A simplified representation of this architecture can seen in the Fig-
ure 24. Since Adapnet++ is based on ResNet, it was important to compare how they both
performed for our application.

Very importantly for real-time operation, the three architectures meet our 10 fps (100ms)
requirement (see Table 5). To achieve the greatest flexibility in model selection and/or
implementation and the best possible performance in training, deployment and inference,
we used an off-the-shelf, stable, easy to use, robotics-friendly tool with a modular codebase
called Bonnetal [19], which implements semantic segmentation using CNNs designed to be
easily integrated with the ROS (Robotics Operating System) framework while still taking
full advantage of available computational resources via user-friendly configuration. This
tool allows developers to easily develop new research approaches while avoiding the effort of
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Figure 24: Simplified representation of the Adapnet++ – eASPP architecture where the
green blocks all go through a convolution, ReLU and Batch Normalization and the yellow
blocks are 3x3 convolutions with 3, 6, and 12 dilation rate [25].

re-implementing them from scratch or modifying the available code until it becomes at least
marginally usable for the research purpose. Fundamentally, Bonnetal mixes and matches
any encoder and decoder sets (including backbones such as MobileNet and ResNet) using
any of a set of backends (e.g. the PyTorch framework) for the build. Furthermore, it allows
changes to hyper-parameters, dataset and architectures effortlessly due to its configuration
file and structure.

To complement Bonnetal, for evaluation/benchmarking of the possible solutions we used
a specialized tool named Weights and Biases [2]. This tool logs each desired metric to
identify the ideal backbone. In our approach, considering our requirements, the metrics
used were Jaccard Index (or IoU ), Recall and the F1 score:

JI/IoU =
TP

TP + FN + FP
,

Recall =
TP

TP + FN
,

F1 Score =
2TP

2TP + FN + FP
,

where:

• TP = True Positive, correspond to correctly classified pixels,

• FP = False Positive, correspond to pixels wrongly classified,

• FN = False Negative, correspond to pixels that wrongly indicate that the class is
absent.
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Table 2: Jaccard Index comparison between different architectures using transfer learning
techniques.

Test # Encoder Decoder Pre-Weights Class Weights mIoU

#1a MobileNetv2 ASPP None None 0.314
#1b MobileNetv2 ASPP None 0.405
#2a ResNet50 ASPP None None 0.419
#2b ResNet50 ASPP None 0.544
#2c ResNet50 ASPP Decoder only None 0.562
#2d ResNet50 ASPP 0.729
#3a Adaptnet++ eASPP None None 0.388
#3b Adaptnet++ eASPP None 0.425
#3c Adaptnet++ eASPP 0.660

Figure 25: Example output for model consisting of MobileNetv2 backbone, ASPP progres-
sive decoder and fine tuning trained on Bonnetal with no pre-weights. Ground truth image
is shown on the left and corresponding prediction on the right.

These metrics were selected because each provide insightful information on an encoder’s
quality. Specifically, IoU provides the most comprehensive test as it calculates the positive
result in comparison to all the possible values, while Recall analyzes the quality of the
positive values. For example, if the value for People is near 1, it means it rarely misidentifies
people with any other class. This would be ideal as we would like to avoid humans to be
identified as fuel. Lastly, the F1 score calculates as the Jaccard Index but it attributes a
larger weight to true positives therefore potentially providing a more coherent outcome.

In the description that follows, training was performed using a GeForce RTX 2070 GPU
and Core i7 8th Gen CPU on the SEMFIRE dataset, which is composed by 500 labeled
NGR images (NIR, Green and Red Channels) according to the classes listed in Table 1.

The first set of tests conducted were to identify if any kind of transfer learning would
be advantageous for an image that it is not RGB. Since our dataset contains NGR images,
it was not known if the pre-trained models would transfer features well. Therefore, a few
tests were conducted utilizing the same hyper-parameters – architecture configurations and
quantitative results for all tests are summarized in Table 2.

In Test #1, the MobileNetv2 backbone was used with the ASPP progressive decoder
and no frozen layers, both with and without pre-weights (Figs. 26 and 25, respectively).
The ImageNet pre-trained model, a dense dataset with 1.2 million RGB images and 60
different classes [4], was used. As can be observed, using no pre-weights results in substantial
misidentifications, most likely due to the dataset’s size.

Empirical testing shown on Table 2 shows transfer learning techniques do indeed improve
the IoU value in all neural networks analyzed. Even though the pre weights image are based
on the usual RGB channels (i.e. a different modality from NRG), it did improve the quality
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Figure 26: Example output for model consisting of MobileNetv2 backbone, ASPP progres-
sive decoder and fine tuning trained on Bonnetal using Imagenet pre-weights. Ground truth
image is shown on the left and corresponding prediction on the right.

Figure 27: Example output for model consisting of ResNet50 backbone, ASPP progressive
decoder and fine tuning trained on Bonnetal using Imagenet pre-weights with frozen encoder
layers. Ground truth image is shown on the left and corresponding prediction on the right.

of training. Moreover, both Adapnet++ and Resnet50 improve classification using special
label weighting for each class instead of the default value 1, a technique used to help with
class imbalance when there are classes with few instances [26].

Therefore, we assumed that transfer learning was beneficial in all cases, and proceeded to
test the effect of freezing layers on transfer learning for ResNet. For Test #2, ResNet50 was
used as a decoder while keeping the same encoder (ASPP progressive). Fig. 27 shows the
outcome for this architecture using ImageNet pre-weights, 500 epochs and frozen encoder
layers. Conversely, Fig. 28 shows results for the same architecture using 700 epochs and
special label weighting for each class instead of the default value 1, a technique used to
help with class imbalance when there are classes with few instances [26]. Using this setup
resulted in improved results for ResNet50 in rarely occurring cases such as Animals. It
also showed that false positives were minimized when comparing to MobileNetv2, possibly
because ResNet50 is a more robust encoder.

In conclusion, Test #2 shows that traditional transfer learning (i.e. freezing encoder
layers when the features are similar) does not produce optimal quality. This can be due
the different modalities used for transfer learning and training the final model (i.e. RGB
vs NGR), but more tests are needed to confirm this hypothesis. Overall, transfer learning
techniques such as weight initialization with class imbalance and pre-trained weights have
shown to improve the overall quality of the semantic segmentation classification.

Finally, Test #3 served to compare with the Adapnet++–eASPP architecture if encoder
layers are not frozen (i.e. best-case scenario), showing slightly lower but still similar perfor-
mance to Resnet50, which is understandable as the backbone of the former is an adaptation
of the latter.
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Figure 28: Example output for model consisting of ResNet50 backbone, ASPP progressive
decoder and fine tuning trained on Bonnetal using Imagenet pre-weights for the whole model.
Ground truth image is shown on the left and corresponding prediction on the right.

Figure 29: Example output for model consisting of Adapnett++ backbone, eASPP progres-
sive decoder and fine tuning trained on Bonnetal using Imagenet pre-weights for the whole
model. Ground truth image is shown on the left and corresponding prediction on the right.

4.2.2 Hyper-parameter optimization

The second set of experiments was designed to determine the optimal set of hyper-parameter
values for each architecture. Given that the first set of experiments showed that transfer
learning does indeed improve results, the next set of tests already included pre-trained mod-
els and weight initialization for class imbalance. The hyper-parameters were modified using
the Weights and Biases tool [2], which uniformly changes each input between a fixed range
to find the optimal validation loss, which was chosen because it is inversely proportional to
the evaluation metrics – in other words, a lower loss yields higher IoU, Recall and F-1 Score
values. Each configuration was trained for 500 epochs and for each backbone, tests were
conducted at least 20 times. The hyperparameters in question are listed and explained in
Table 3.

Fig. 30 and 31 show the results from the sweep made by Weights and Biases for Adap-
net++, ResNet50 and MobileNetv2. . These show that a specific configuration may yield
a negligible IoU value for Fuel using the MobileNetv2 backbone while its maximum is near
the values found for ResNet50 and Adapnet++. This same effect can be better seen in IoU
for Humans, where ResNet50 has a lower variance between best and worst results due to
the robustness of the system holding up regardless of the hyperparameters.

Fig. 30 shows comparison results using the IoU metric, demonstrating that changes in
hyper-parameters significantly affect the performance of each architecture. For instance,
when considering the IoU for the Fuel class, MobileNetV2 produces results close to 0 or
near the best results of ResNet50. The same phenomenon happens for Adapnet++ in the
segmentation of humans and animals. This demonstrates the importance of choosing the
right hyper-parameters and finding which has the greatest influence on segmentation quality.
As can be seen in the plot, segmentation quality does not differ much in a class with a great
number of samples such as Fuel. The highest values for each architecture are similar, with
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Table 3: Configurable training parameters and their purposes.

Parameters Purpose

Max LR
Stochastic Gradient Descent (SGD) maximum learning
rate. It is an adjustment in the weights of our network
with respect to the loss gradient descent

Min LR Warmup initial learning rate

Up Epochs Decides the number of epochs used for warmup

Down Epochs Decides number of epochs used for warmdown

Max/Min Momentum
SGD momentum max/min when LR is max/min respec-
tively

Final Decay Learning rate decay per epoch from Min LR

W Decay Weight decay value for L2 regularization

Batch Size Number of training examples utilized in one iteration

Backbone/Decoder Dropout
Number of layers dropped out while training for back-
bone/decoder

Backbone/Decoder Batch
Normalization Decay

Decay on batch normalization to reduce noise on the back-
bone/decoder

ResNet50 achieving the best results and MobileNetV2 the worst performance. However,
in classes with smaller number of samples, such as Humans and Animals, results differ
significantly. The Humans class has similar values between all three, but ResNet50 widens
the gap to the other two architectures after 200 epochs, reaching a 0.1 gap between itself
and Adapnet++. Conversely, the Animals class exhibits a more unpredictable outcome. In
fact, by 400 epochs, only Adapnet++ is able to detect animals at all in every experiment.
This effect can be due to the other networks needing more epochs to start recognizing that
particular class more effectively. It also shows that the new residual units from Adapnet++
have a positive effect when identifying classes with low number of instances.

In summary, even though ResNet50 performs best on Humans and Fuel, Adapnet++
achieves a better overall performance, since it is able recognize a specific class for which all
others fail.

The Recall metric, as mentioned previously, is the most appropriate metric for evaluating
the performance of all three architectures in what concerns our requirement of avoiding as
many false positives for Fuel as possible. For parameter optimization, it follows the same
pattern as IoU regarding the range of detection between the worst and best models trained
for each architecture. This aligns with our expectations as both depend on the same values
of true positives and false negatives.

Fig. 31 shows impressive Recall values for Fuel, with Adapnet++ and ResNet50 achieving
the same results at 0.9 while MobileNetV2 obtaining 0.85. This means that Fuel is rarely
misclassified. However, to ensure the best performance, it is necessary to obtain high Recall
values for Humans and Animals so they are not misidentified as fuel. Recall for Humans
shows great promise as it is above 0.9 for all architectures. MobileNetV2 marginally attained
the best values at 0.995, while ResNet50 and Adapnet++ achieve slightly lower results at
0.979 and 0.934 respectively. However, as with the IoU metric, only Adapnet++ is able to
recognize animals up to 400 epochs at 0.865.

Fig. 32 shows qualitative results for all architectures for a representative example in-
cluding instantiations of all classes except Animals. As seen in the figure, all three results
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Figure 30: Comparison plots of IoU vs Epoch for the Adapnet++, ResNet50 and MobileNet
encoders, for the Fuel, Animals and Humans classes resulting from the sweep made using
Weights and Biases (respectively, from top to bottom; green for Adapnet++, yellow for
ResNet50 and blue for MobileNetv2 ). Lighter, faded colors represent all values depending
on the chosen hyperparameters, while darker, contrasting colors correspond to the best
results.

visually seem to be near the expected ground truth with Adapnet++ probably being the
best match from visual inspection.

Lastly, Table 4 shows the overall result for each encoder with all metrics, including the
F1score. As shown previously, while ResNet50 has a slight advantage over Adapnet++ for
specific Classes such as Fuel and Humans, the latter achieves the best mean results as it is
the only architecture that recognizes animals at all.

Even though Recall values are high for Humans, Fig. 32 shows the architectures tend
to overestimate the size of humans and fuel – in fact, most categorized the post in the
background as fuel, which would clearly represent a safety hazard if the high-level modules
of the mulching robot were to take that classification as accurate.

Moreover, the architectures many times mislabel, in a non-cluster-like fashion, most
background features as either Human, Animal or Fuel, as can be seen in Fig. 33. Most
likely, this happens because that section of the image is the side of a truck with a logo and
there are no similar scenarios in the dataset. A possible solution for these issues is to include
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Figure 31: Comparison plots of Recall vs Epoch for the Adapnet++, ResNet50 and Mo-
bileNet encoders, for the Fuel, Animals and Humans classes resulting from the sweep made
using Weights and Biases (respectively, from top to bottom). Coloring scheme follows same
convention as with Fig. 30.

other modalities such as depth. In fact, it could also improve accuracy and lower amount of
false positives.

4.2.3 Complexity and inference execution time analysis

Finally, all architectures were compared in terms of number of parameters used and inference
execution times – results are summarized in Table 5. As expected, MobileNetv2 is by far
the fastest running architecture matched by the considerably lower number of parameters it
uses, while the other two architectures exhibit much closer figures, with Adapnet++–eASPP
being lighter and faster than ResNet50.

Following the work on semantic segmentation for the identification of relevant entities
categories in the forestry environment, we have focused on Depth Completion to fulfill the
goal of localizing flammable material in 3D to support the decision-making components of
the Ranger and plan for potential actuation, i.e., mulching forestry debris to consolidate
landscape maintenance.

28



Figure 32: Qualitative Results for MobileNetv2 (left), ResNet50 (middle) and Adapnet++
(right) in comparison to the ground truth (top).

Table 4: Results for best mean for evaluation metrics.

Encoder Decoder mIoU mRecall mF1-Score

MobileNetv2 ASPP 0.5352 0.7672 0.6328
ResNet50 ASPP 0.5326 0.7283 0.6339
Adaptnet++ eASPP 0.6475 0.8967 0.7677

Figure 33: Example of ground truth (left) and respective prediction (right) made by Mo-
bileNetv2 backbone and ASPP progressive decoder with fine tuning showing mislabeling of
features on the lettering on the side of the truck as being member of other than the expected
Background class.
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Table 5: Complexity and inference execution time for 640× 480 input images.

Encoder Decoder # Parameters Inf. Time (ms)

MobileNetv2 ASPP 2,154,862 11.6
ResNet50 ASPP 49, 652, 118 53
Adapnet++ eASPP 32, 345, 870 40.9

4.2.4 Depth Completion and 3D Fuel Localization

Depth map acquisition follows specific steps to ensure proper appraisal from the camera’s
perspective:

1. Intrinsic Calibration of the Multispectral Camera and the 3D LiDAR;

2. Acquisition of world coordinate poses of the sensors;

3. Extrinsic Calibration of the Multispectral Camera and the 3D LiDAR to find relative
poses, i.e. translation and rotation transforms;

4. Projection of LiDAR point cloud into camera image space;

5. Sparse depth map registration.

The camera and LiDAR were calibrated to extract the intrinsic and extrinsic values.
For calibration, a checkboard provided the information for the camera’s intrinsic and aruco
markers transformed it into 3D, providing the camera’s world coordinate. Together with the
aruco marker, these were necessary to find correspondence between both sensors and find
the extrinsic values using Kabsch algorithm [11].

We use the calibrated LiDAR and camera static transformation matrices to project the
LiDAR point clouds into pixel coordinates. To minimize computational costs, we employ
a filtered LiDAR point cloud which has roughly the same dimensions as the convex hull
formed by the camera field-of-view. An example image is illustrated in Figure 34.

As mentioned above, projecting a LiDAR point cloud onto the image plane results in
a sparse depth map. In fact, while 720p images have 620k pixels, in that same frame, the
LiDAR projection only covers around 15k of these pixels (roughly 3%). Therefore, depth
completion is needed to obtain a dense depth map, which is necessary to provide enough
coverage of the operational scene in order to properly assist decision making for forestry
landscaping.

Methods based on multi modal neural networks have shown promising results, by utilizing
the sparse depth image and the equivalent RGB image to extrapolate the remaining pixels
according to objects and its boundaries. These methods have shown to be robust since
they fuse different sensor modalities. However, it is a computationally costly option and
we require lighter options guaranteeing real-time performance. Therefore, we have chosen
IP-Basic [13], which uses traditional computer vision techniques to estimate missing points.
While it does not achieve the best results in the current KITTI benchmark, with a score of
1288.46 Root Mean Squared Error (RMSE), it has the fastest runtime. An example of it is
illustrated in Figure 34. As can be observed, it does improve the depth density greatly by
filling gaps without information. Albeit, due to the LiDAR’s specific tilt causing large gaps
in the image’s top half, the resulting extrapolation lacks precision where no point cloud is
found and it repeats the last known values nearby.

Being able to identify live flammable material and localize it in 3D is of utmost impor-
tance to the landscape maintenance task. We developed a technique in which the pipeline
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Figure 34: Example of depth map and its completion. Top image is the NGR sample;
Middle image is the colored depth map extracted from the LiDAR (pixels artificially dilated
for easier visualization); and bottom image is the depth completion output using the IP
Basic technique.

receives each semantic segmented image and computes the centroid for each fuel cluster.
Each centroid is then projected from pixel coordinate (u,v), into world coordinates (x,y,z).
However, to avoid any outlier depth points and improve the estimation, we also take into
account all non zero neighbor values, calculate the mean and only consider the bottom two-
thirds of the image where the depth completion has the most information for extrapolation.
Both can be seen in Figure 35. Each cluster has its own pose with respect to the center of
the Ranger. This information is then crucially taken as input by the higher-level decision
modules, which are beyond the scope of the work reported in this paper.

4.2.5 First Pilot Testing Results

Experiments occurred for a 2-hour duration on the Ranger platform. Due to the complex
logistics of operating the heavy-duty machine in a forestry scenario, the location chosen was
a parking lot with some elements of natural woodland in Coimbra, Portugal. While it was
not ideal for our project, this demonstration allowed to examine our perception pipeline and
realize the future improvements we require for further testing.

A set of 500 images were extracted from the acquired dataset and labeled to evaluate the
semantic segmentation performance by applying the evaluation metrics IoU and F-1 score.
In contrast, the fuel localization and depth map were analyzed qualitatively since there were
no means to determine ground truth to be compared to the LiDAR point clouds.

Both LiDAR and camera sensors acquire data at a frequency of 10Hz in the Ranger and
all perception modules in this framework are able to generate output at the same frequency,
i.e 10Hz, with the onboard computer which has an Intel Core i7-8000 CPU and a RTX 2060
Super GPU.

Semantic Segmentation The semantic segmentation results can be seen in Table 6. It
shows the targeted values (Key Performance Indicators) for the project and what we were
able to achieve at this stage. Even though the performance has not reached the targeted
values for both fuel (i.e live flammable material) and the other classes, the fuel classification
attained is less than 15% away from the goal values and therefore, we believe that these are
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Figure 35: Results of center of mass projected to world coordinates on a colored point
cloud. Top image shows each red ’fuel’ cluster contour in green and its center of mass, in its
pixel coordinate, as a white dot. The bottom image is the equivalent position in the world
coordinate represented by a ROS TF on a colored point cloud.

promising results. These scores are also justified by our current conservative design which
aims at lowering false positives on fuel. Indeed, Figure 36 indicate how the fuel is sometimes
mislabeled as canopies on the top right part of the image. Ideally, it is better to overestimate
trunks and canopies while also underestimating fuel to ensure the flora’s and robot’s safety.

The chosen environment does not contain enough elements that sufficiently relate to a
natural woodland scenario and the neural network had a harder time identifying the differ-
ences between canopies and fuel. A scenario that is similar to the expected in a Portuguese
forest would inform us more precisely of the results’ quality.

Moreover, the training dataset also suffers from lack of diversity in its class instances.
This can be seen in Figure 36 as the semantic segmentation prediction has issues identifying
trunks and humans. Hence, increasing dataset diversity should also improve performance.
For instance, canopies that have a large amount of examples in our current dataset had an
F-1 score of 0.757 while trunks, which are only present in 1/30th of the dataset, scored
0.018.

Lastly, luminosity also contributed to lower scores. Cameras are sensitive to light vari-
ance, which affect the number of quality features a system can obtain. This demonstrates
the need for the diversification of sources of sensory information.

Fuel Localization As mentioned previously, depth map generation and fuel localization
was assessed at a purely qualitative level, due to the current lack of ground truth for a
quantitative study.

Visual inspection of the results shown in Figure 35 show that the centroid for each fuel
cluster is created correctly. Its position on the world coordinates match the pixel coordinate
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Table 6: Measure Performance Evaluation Metrics

Metrics Targeted Achieved

F-1 Score [Fuel] 0.850 0.706
F-1 Score [Others] 0.750 0.493

IoU [ Fuel]) 0.546
mIoU [Others] 0.419

in x,y position. However, its z position depends on the depth map completion estimation,
which may have Euclidean distance errors of up to 3 meters. While it seems to estimate
correctly where there are LiDAR points, its extrapolation in the occluded parts are not often
well estimated. Figure 34 shows an example of this phenomenon which happens because the
current depth estimation has no other information to derive from and it only extrapolates
from the available points which all lie at the bottom of the frame. In the following section,
we report on our exploration of new methods that include other sensory information, namely
NGR/RGB images and LiDAR points as inputs for depth completion, thus taking advantage
of all known information from each modality over the whole span of the image.

Lastly, the semantic segmentation detection reshapes between frames due to camera mo-
tion resulting for example in the separation of one bush into two, making the fuel localization
module detect two centroids instead of one. Accordingly, the fuel positioning was not smooth
and it oscillates with each frame27, which should be corrected by the 3D metric-semantic
mapping process.

4.2.6 Depth Completion Using LiDAR- and Vision-Based Data Fusion

As we move on towards the final trials, we are working on an improved version of depth
completion that fuses information from LiDAR and cameras using convolutional neural
network.

This solution is being trained using synthetic images generated from photo-realistic
forestry environment simulations and preliminary results are already demonstrating the
significantly improved performance of this approach as compared to IP Basic presented in
the previous sections – see Fig. 37.

5 Conclusion

In this deliverable, we put forth an overview of the perception architecture for the SEM-
FIRE team of robots (section 2.1), and proposed a core design of the perception pipeline
(section 2.2) and decision-making module functionality (section 2.3).

Additionally, we built on these foundations, improving and further developing the Ranger’s
perception and decision-making architecture, also investigating and studying deployment
strategies to efficiently use the computational resources available. We have described the
sensory extensions made to the base platform, its integration in the Robot Operating System
(ROS) middleware, and reported on internal system tests concerning the diverse capabilities
provided by the Artificial Perception system (section 4).

Following the extension of the project granted due to the worldwide COVID-19 pan-
demic, work up to the final trials will focus on the base-arm coordination for effective and
swift clearing of forestry debris, increasing the maturity of the high-level algorithms for 6D
localization, 3D semantic-metric mapping, 3D navigation in rough terrains, multi-sensor reg-
istration, and semantic segmentation (e.g. using more accurate depth completion techniques

27An illustrative video of the results is available on https://youtu.be/VnxUgL_WHQs
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Figure 36: Semantic segmentation results in our experimental setup. Original multispectral
image on top; Ground truth on the bottom left, prediction on the bottom right. Colors are
yellow for humans, red for fuel, green for canopies, brown for trunks and purple for animals.

to also include a second input to the system such as RGB to increase extrapolation’s preci-
sion) with the Ranger, and implementing the analogous Scout architectures, and putting in
place the robot team communication and collaboration infrastructures.
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