What do we know about Quicksort?e

a brief summary of tacts learned since the 1960s

Robert Sedgewick
Princeton University

What do we know about Quicksort?

C.A.R. Hoare invented it in 1959 and wrote a definitive paper introducing it in 1962.

"There's one good thesis left in Quicksort" [Knuth, 1973]

"I hope this is the last paper we see about Quicksort' [Anonymous, 1975]

This talk: Some important facts learned since the 1960s

e Students should read Hoare's paper (still).

e Randomization is critical (and must be done carefully).

e Attention must be paid to equal keys.
e Quicksort is optimal.

e Substantial improvents are possible for a common key type.

e The limiting distribution is not normal

e Multiway partitioning is effective on modern machines.

e Quicksort remains the method of choice.

next talk

Quicksort

By C. A. R. Hoare

A description is given of a new method of sorting in the random-access store of a computer. The
method compares very favourably with other known methods in speed, in economy of storage, and
in ease of programming. Certain refinements of the method, which may be useful in the optimiz-
ation of inner loops, are described in the second part of the paper.

Part One: Theory

The sorting method described in this paper is based on
the principle of resolving a problem into two simpler
subproblems. FEach of these subproblems may be
resolved to produce yet simpler problems. The process
is repeated until all the resulting problems are found to
be trivial. These trivial problems may then be solved
by known methods, thus obtaining a solution of the
original more complex problem.

Partition

The problem of sorting a mass of items, occupying
consecutive locations in the store of a computer. may be
reduced to that of sorting two lesser segments of data.
provided that it is known that the keys of cach of the
items held in locations lower than a certain dividing line
are less than the keys of all the items held in locations
above this dividing line. 1In this case the two segments
may be sorted separately, and as a result the whole mass
of data will be sorted.

In practice, the existence of such a dividing line will
be rare. and even if it did exist its position would be
unknown. It is, however, quite easy to rearrange the
items in such a way that a dividing line is brought into

existence, and its position is known. The method of

doing this has been given the name partition. The
description given below is adapted for a computer
which has an exchange instruction: a mecthod more
suited for computers without such an mnstruction will be
given in the second part of this paper.

The first step of the partition process is to choose a
particular key value which is known to be within the
range of the keys of the items in the segment which is
to be sorted. A simple method of ensuring this is to
choose the actual key value of one of the items in the
segment. The chosen key value will be called the
hound. The aim is now to produce a situation in which
the keys of all items below a certain dividing line are
equal to or less than the bound, while the keys of all
items above the dividing line are equal to or greater
than the bound. Fortunately, we do not need to know
the position of the dividing line in advance: its position
is determined only at the end of the partition process.

The items to be sorted are scanned by two pointers:
one of them, the lower pointer, starts at the item with
lowest address, and moves upward in the store, while
the other, the upper pointer, starts at the item with the

10

highest address and moves downward. The lower
pointer starts first. If the item to which it refers has a
key which is equal to or less than the bound, it moves
up to point to the item in the next higher group of
locations. It continues to move up until it finds an
item with key value greater than the bound. In this
case the lower pointer stops, and the upper pointer
starts its scan. If the item to which it refers has a key
which is equal to or greater than the bound, it moves
down to point to the item in the next lower locations.
It continues to move down until it finds an item with
key value less than the bound. Now the two items to
which the pointers refer are obviously in the wrong
positions, and they must be exchanged. After the
exchange, cach pointer is stepped one item in its appro-
priate direction, and the lower pointer resumes its
upward scan of the data. The process continues until
the pointers cross each other, so that the lower pointer
refers to an item in higher-addressed locations than the
item referred to by the upper pointer. In this case the
exchange of items is suppressed. the dividing line is
drawn between the two pointers, and the partition
process is at an end.

An awkward situation is liable to arise if the value of

the bound is the greatest or the least of all the key values
in the segment, or if all the key values are equal. The
danger is that the dividing line, according to the rule
given above, will have to be placed outside the segment
which was supposed to be partitioned. and therefore the
whole segment has to be partitioned again. An infinite
cycle may result unless special measures are taken.
This may be prevented by the use of a method which
ensures that at least one item is placed in its correct
position as a result of each application of the partitioning
process. If the item from which the value of the bound
has been taken turns out to be in the lower of the two
resulting segments, it is known to have a key value which

is equal to or greater than that of all the other items of

this segment. It may therefore be exchanged with the
item which occupies the highest-addressed locations in
the segment. and the size of the lower resulting segment
may be reduced by one. The same applies. nmutatis
mutandis, in the case where the item which gave the
bound is in the upper segment. Thus the sum of the
numbers of items in the two segments, resulting from
the partitioning process, is always one less than the
number of items in the original segment, so that it is

R e/ju fwoo/wo 'dno oiwepede)/ :SdRY Woy pepeojumoq

J

LIS

6

o

C

£e

laquaaoN £z uoisenbB Aq g

0zoz

Students should read Hoare's paper (still)

Why? It is a quintessential example of algorithm science.

The Art of
Computer
Programming

Algorithm science

The application of the scientific method to the design
and analysis of algorithms
e Create a mathematical model.
e Develop hypotheses about real-world performance.
e Run experiments to validate the hypotheses.

e Iterate on the basis of facts learned.

The theory of algorithms is typically not algorithm science

llllllllllllllll

TofA: "Running time is ON logN)" X RS

AS: "Running time is ~ cN In N for some constant ¢ ‘/

Students should read Hoare's paper (still)

Why? It is a quintessential example of algorithm science.

Theorem. Hoare (1961): Quicksort running time for N random inputs is

where c is a machine-dependent constant.

Hypothesis. Doubling N will increase the running time by a factor of about 2 + (21n2)/In V.

2¢cN In(2N) 2In?2
Proof: cNInN =2 In N
N Ty NN 24+ (2In2)/InN
500 81
Validation. 1000 188 2.32 2.12
2000 407 2.16 2.18

Results can be (and have been) validated in countless real-world applications ever since.

Randomization is critical (and must be done carefully).

Analysis assumes

e Partitioning element is chosen at random.

e Keys are distinct.

e Subfiles after partitioning are randomly ordered.

Early (problematic) examples
e Too-clever partitioning on the median of three.
e Partition on the value of a random element.

Developer: Can't randomize—too difficult to test and maintain.

Response: Randomly permute input before the sort.

Bigger problem: Keys are not necessarily distinct in real applications.

Attention must be paid to equal keys

Initial goal: avoid quadratic performance (happens in typical implementations if all keys are equal)

Two easy fixes (RS, 1977)
e Stop pointers on equal keys (trivial to implement).

e Three-way partitioning (worth the expense?).

Elegant fix (Bentley-Mcllroy, 1993) <« in response to a user complaint
e Swap equal keys to ends, then swap into place.

e Uses just N-1 (three-way) compares.
e Only one "extra"” exchange per equal key.

® Stl” |n use tOday_ void quicksort(Item a[], int I'L,'int r)

{ int i =1-1, j=r, p=1-1, q =r; Item v = a[r];
if (r <= 1) return;
for (;;)
{
while (a[++i] < Vv) ;
while (v < a[--j]) if (j == 1) break;
if (1 >= j) break;
exch(a[i], a[]j]):
if (a[i] == v) { p++; exch(a[p], a[il); }
if (v == a[j]) { g—-; exch(a[j], alq]); }
}

exch(a[i], a[r]); jJj = 1i-1; i = 1i+1;
for (k = 1; k < p; k++, j--) exch(al[k]l, al[jl):
for (k = r-1; k > q; k--, i++) exch(a[i], alk]);

quicksort(a, 1, j);
quicksort(a, i, r);

Quicksort is optimal

Starting point: IV keys having n different values with multiplicities x;, X,, ..., X .

Assume keys are randomly ordered and that three-way partitioning is used.
Let C be the average number of compares.

Lower bound (information theory): C > NH — N where H = — Z D; lgpi with p; = x./N
1<i<n

PiPj
Exact value (Sedgewick, 1975): C=N-—-n+20N where Q = Z
1§k<j§npk+ o TP

Theorem. [Bentley-Sedgewick] Average number of compares is within a constant factor of optimal.

Proof: O < HIn?2

Conjecture (proven true by Wild in 2015): With sampling, constant approaches 1.

Substantial improvents are possible for a common key type.

Suppose that keys are strings (sequences of characters)

3-way string Quicksort (Bentley-Sedgewick, 1997)
e 3-way partition on first character of each key.
e Recursively sort 3 subfiles.
e Use substring excluding first char in the middle.
e Sorts random strings with 2N In N character compares
e Optimal

Ternary search trees
e Apply same idea to binary search trees.
e Simple algorithm, writes itself
e Faster than hashing.

<L L LKL

The limiting distribution is not normal (and is a challenge to characterize)

What is the limiting distribution of the number of compares?

If it exists, it is not normal (Henniquin, 1987).
It exists (Regnier, 1989).

Is a unique fixed point of an explicit

distributional identity (Rosler, 1991).

Has extremely small tails

(several authors, 1991-2015)

1

eXp(_eyx+lnlnx+O(l)> <PrZ< —x) < exp(B e;/x+0(l)> y = -
Explicit tail bounds (Janson, 2015): BTV

exp(—xlnx —xInln x + O(X)) <Pr(Z>x) < exp(—xlnx + O(X))

What do we know about Quicksort?

C.A.R. Hoare invented it in 1959 and wrote a definitive paper introducing it in 1962.

Some important facts learned since the 1960s

e Students should read Hoare's paper (still).

e Randomization is critical (and must be done carefully).

e Attention must be paid to equal keys.
e Quicksort is optimal.

e Substantial improvents are possible for a common key type.

e The limiting distribution is not normal

e Multiway partitioning is effective on modern machines.

e Quicksort remains the method of choice.

next talk

Quicksort

By C. A. R. Hoare

A description is given of a new method of sorting in the random-access store of a computer. The
method compares very favourably with other known methods in speed, in economy of storage, and
in ease of programming. Certain refinements of the method, which may be useful in the optimiz-
ation of inner loops, are described in the second part of the paper.

Part One: Theory

The sorting method described in this paper is based on
the principle of resolving a problem into two simpler
subproblems. FEach of these subproblems may be
resolved to produce yet simpler problems. The process
is repeated until all the resulting problems are found to
be trivial. These trivial problems may then be solved
by known methods, thus obtaining a solution of the
original more complex problem.

Partition

The problem of sorting a mass of items, occupying
consecutive locations in the store of a computer. may be
reduced to that of sorting two lesser segments of data.
provided that it is known that the keys of cach of the
items held in locations lower than a certain dividing line
are less than the keys of all the items held in locations
above this dividing line. 1In this case the two segments
may be sorted separately, and as a result the whole mass
of data will be sorted.

In practice, the existence of such a dividing line will
be rare. and even if it did exist its position would be
unknown. It is, however, quite easy to rearrange the
items in such a way that a dividing line is brought into

existence, and its position is known. The method of

doing this has been given the name partition. The
description given below is adapted for a computer
which has an exchange instruction: a mecthod more
suited for computers without such an mnstruction will be
given in the second part of this paper.

The first step of the partition process is to choose a
particular key value which is known to be within the
range of the keys of the items in the segment which is
to be sorted. A simple method of ensuring this is to
choose the actual key value of one of the items in the
segment. The chosen key value will be called the
hound. The aim is now to produce a situation in which
the keys of all items below a certain dividing line are
equal to or less than the bound, while the keys of all
items above the dividing line are equal to or greater
than the bound. Fortunately, we do not need to know
the position of the dividing line in advance: its position
is determined only at the end of the partition process.

The items to be sorted are scanned by two pointers:
one of them, the lower pointer, starts at the item with
lowest address, and moves upward in the store, while
the other, the upper pointer, starts at the item with the

10

highest address and moves downward. The lower
pointer starts first. If the item to which it refers has a
key which is equal to or less than the bound, it moves
up to point to the item in the next higher group of
locations. It continues to move up until it finds an
item with key value greater than the bound. In this
case the lower pointer stops, and the upper pointer
starts its scan. If the item to which it refers has a key
which is equal to or greater than the bound, it moves
down to point to the item in the next lower locations.
It continues to move down until it finds an item with
key value less than the bound. Now the two items to
which the pointers refer are obviously in the wrong
positions, and they must be exchanged. After the
exchange. each pointer is stepped one item in its appro-
priate direction, and the lower pointer resumes its
upward scan of the data. The process continues until
the pointers cross each other, so that the lower pointer
refers to an item in higher-addressed locations than the
item referred to by the upper pointer. In this case the
exchange of items is suppressed. the dividing line is
drawn between the two pointers, and the partition
process is at an end.

An awkward situation is hable to arise if the value of

the bound is the greatest or the least of all the key values
in the segment, or if all the key values are equal. The
danger is that the dividing line, according to the rule
given above, will have to be placed outside the segment
which was supposed to be partitioned. and therefore the
whole segment has to be partitioned again. An infinite
cycle may result unless special measures are taken.
This may be prevented by the use of a method which
ensures that at least one item is placed in its correct
position as a result of each application of the partitioning
process. If the item from which the value of the bound
has been taken turns out to be in the lower of the two
resulting segments, it is known to have a key value which

is equal to or greater than that of all the other items of

this segment. It may therefore be exchanged with the
item which occupies the highest-addressed locations in
the segment. and the size of the lower resulting segment
may be reduced by one. The same applies. nuetatis
mutandis, in the case where the item which gave the
bound is in the upper segment. Thus the sum of the
numbers of items in the two segments, resulting from
the partitioning process, is always one less than the
number of items in the original segment, so that it is

dnoolwapede); sdyy Woy pepeojumoeq

Jod

L
|

/

L L/Siep e/ u oo

o
o

£e

JaqusaoN gz uoisenB Aq g

>
<

020¢

10

What do we know about Quicksort?e

a brief summary of tacts learned since the 1960s

Robert Sedgewick
Princeton University

