Algorithms for the masses

Robert Sedgewick
Princeton University

This talk is dedicated to the memory of Philippe Flajolet

<N

Philippe Flajolet 1948-2011

4

Prelude: my first job

1969 Western Electric Engineering Research Center

PDP-9
e 18-bit words
e 16K memory
e switches+lights
e paper tape reader/punch
e display w/ lightpen

Task: Drafting (lllustration)

Workflow
e write cross-assembler in IBM 360/50 assembly
e write lllustrator application in PDP-9 assembly
e |oad paper tape into PDP-9
e run application

Prelude: my first job

Problem: Cross-assembler too slow
Solution: Binary search!
e M searches, N symbols M >> N
e |Improved running time from ~MN to ~MIgN

IBM 360/50

Lesson 1: Good algorithms matter
Lesson 2: Not many programmers appreciate that fact

Brief history of Algorithms

Algorithms (central thesis)

1975: What are the algorithms that everyone should know?

“Everyone” means “everyone”

scientists TOP 1o Algorithms
engineers FET
mathematicians Quicksort
. inpl
software/hardware designers CHA
Huffman
cryptananalysts Dijiestra

COBOL programmers Knuth-Morris-Prakt
Ford-Fulkerson

Context

IBM 360/50

e Algol W

one run per day

Algorithms (brief history)

edition code validation
Al (v()Rl IH MS
1982 1st compiles
 Algorithms i ‘}l'i"\';‘&‘)"‘ Algorithms
1986 “\y{é\ G ny 2nd runs
performance
comparisons
within
1994 _— : : 3rd
Algorithms Sl Algorithms ll Algorithms reasona b | e
INJava .
practical
model
2011 [this talk] 4th

Four challenges

I. Many algorithms implemented/tested in back rooms, not open literature

[I. Need appropriate mathematical models

[ll. Masses can’t program, don’t know CS

IV. How to disseminate?

|. Scientific method

Fact of life in applied computing

Performance matters in a large number of important applications

Example: quadratic algorithms are

useless in modern applications * indexing and search
o o . * Bose-Einstein model
e millions or billions of inputs - N-body
e 10'2 nanoseconds is 15+ minutes * signal processing
_ * string matching for genomics
e 10'8 nanoseconds is 31+ years « natural language analysis

* [verylonglist]

Important lessons of the past several decades

1. Efficient algorithms enable solution of problems .I'ZZ;:;Z'ZSIQSSO”S'C‘”
that could not otherwise be addressed. <+ engineers
* scientists

2. Scientific method is essential in understanding
¢ programmers

program performance

The scientific method

is essential in understanding program performance

hypothesis
Scientific method
e create a model describing natural world
e use model to develop hypotheses
* run experiments to validate hypotheses
e refine model and repeat model experiment
"

1950s: Uses scientific method. 2010s: Uses scientific method?

Algorithm designer who does not experiment gets lost in abstraction
Software developer who ignores cost risks catastrophic consequences

Scientist/engineer needs to control costs of experiments/simulations

Motivating example: maxflow

Ford-Fulkerson maxflow scheme
e find any s-t path in a (residual) graph
e augment flow along path (may create or delete edges)
e iterate until no path exists

= e
@@% R0y

Goal: compare performance of two basic implementations
e shortest augmenting path
* maximum capacity augmenting path
Key steps in analysis research literature

e How many augmenting paths? 44

e What is the cost of finding each path?
g P ——— this talk

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations
e shortest augmenting path

e maximum-capacity augmenting path

Graph parameters for a reasonable model

4 E C
vertices edges max capacity

How many augmenting paths?
upper bound

VE/2
vVC

shortest

max capacity 2E1g C

How many steps to find each path?
E (upper bound)

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

e shortest augmenting path

e maximum-capacity augmenting path
Graph parameters for a reasonable model

V=177 E=2000 C=100

vertices edges max capacity

How many augmenting paths?

shortest

max capacity

How many steps to find each path?
2000

upper bound for example
VE/?2 177,000
VC 17,700
2F1g C 26,575

(upper bound)

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations
e shortest augmenting path

* maximum-capacity augmenting path }4‘&;{5;‘%\: 4~

N

Graph parameters for a reasonable model

V=177 E=2000 C=100

vertices edges max capacity

How many augmenting paths?

upper bound for example actual
VE/?2 177,000
shortest Ve 17.700 37
max capacity 2E1g C 26,575 7

How many steps to find each path? < 20, on average, for randomized search

Prediction of total cost is a factor of 1 million high for thousand-node graphs

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

e shortest augmenting path

e maximum-capacity augmenting path
Graph parameters for a reasonable model

4 E C
vertices edges max capacity

How many augmenting paths?

shortest

max capacity

How many steps to find each path?

upper bound Zil

Warning:
VE/?2 <« Such analyses are
vVC — useless
for predicting
2Elg € ey performance
/ or comparing
E (upper bound) algorithms

Motivating example: lessons

Goals of algorithm analysis
e predict performance (running time) or
e guarantee that cost is below specified bounds

Common wisdom
e random graph models are unrealistic
e average-case analysis of algorithms is too difficult
e worst-case performance bounds are the standard

Unfortunate truth about worst-case bounds
e often useless for prediction (fictional)
e often useless for guarantee (too high)

e often misused to compare algorithms

Bounds are useful in some applications.

Open problem: Do better!

worst-case bounds /

- —

which ones??

actual costs

N

O-notation considered harmful

How to predict performance (and to compare algorithms)?

Not the scientific method: O-notation

Theorem: Running time is O(N¢) ’ X

e not at all useful for predicting performance

Scientific method calls for tilde-notation.
Hypothesis: Running time is ~aN¢

4

e an effective path to predicting performance (stay tuned)

O-notation is useful for many reasons, BUT

Common error: Thinking that O-notation is useful for predicting performance.

Surely, we can do better

A typical exchange in Q&A

RS (in a talk): O-notation considered harmful.
Cannot use it to predict performance.

Q: ??0(Nlog N) surely beats O(N?)
RS: Not by the definition. O expresses upper bound.
Q: So, use Theta.

RS: Still (typically) bounding the worst case.
Is the input a worst case?

Q: (whispers to colleague) I'd use the O(N log N) algorithm,
wouldn’t you?

Galactic algorithms

R.J. Lipton: A galactic algorithm is one that will never by used in practice

Why? Any effect would never be noticed in this galaxy

Ex. Chazelle’s linear-time triangulation algorithm

e theoretical tour-de-force /
e too complicated to implement

e cost of implementing would exceed savings in this galaxy, anyway

One blogger’s conservative estimate: 75% SODA, 95% STOC/FOCS are galactic

OK for basic research to drive agenda, BUT

Common error: Thinking that a galactic algorithm is useful in practice

Surely, we can do better

An actual exchange with a theoretical computer scientist:

TCS (in a talk): Algorithm Ais bad.
Google should be interested in my new Algorithm B.

RS: What’s the matter with Algorithm A?

TCS: Itis not optimal. It has an extra O(log log N) factor.

RS: But Algorithm B is very complicated, Ig Ig N is less than 6 in this
universe, and that is just an upper bound. Algorithm A is
certainly going to run 10 to 100 times faster in any conceivable
real-world situation. Why should Google care about Algorithm B?

TCS: Well, I like Algorithm B. | don’t care about Google.

ll. Analytic Combinatorics

Analysis of algorithms and analytic combinatorics

Appropriate mathematical models are essential
for scientific studies of program behavior

Pioneering work by Don Knuth

L‘!I Vernetzt denken, vernetzt handeln

The Art of The Art of The Art of
Computer Computer Computer
Programming Programming Programming
“\“;l“'”“ ntal Algorithms S x;u:nin‘n- rical Algorithms

DONALD E. KNUTH DONALD E, KNUTH

DONALD E. KNUTH

Active AofA community = o
is building on classical research in AofAO9

e probability

20th International Conference on Probabilistic, Combinatorial, and

. . A totic Methods in the Analysis of Algorithms
e combinatorics symptotic Methods in lysis of Alg

Fréjus, France - June 14-19 2009

e analysis

e information theory

AofA’'l0

215t International Meeting on
bilistic. Comk I and A

and is developing new models,
methods, and applications

Pr

Methods for the Analysis of Algorithms

Vienna, Austria
June 28 - july 2, 2010

! o v 1
O .4 b XS

Analytic Combinatorics

is @ modern basis for studying discrete structures

Developed by
Philippe Flajolet and many coauthors (including RS)

based on
classical combinatorics and analysis

Generating functions (GFs) encapsulate sequences

Symbolic methods treat GFs as formal objects
e formal definition of combinatorial constructions
e direct association with generating functions

Complex asymptotics treat GFs as functions in the complex plane
e Study them with singularity analysis and other techniques
e Accurately approximate original sequence

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

!

Cambridge 2009
also available
on the web

Analysis of algorithms: classic example

A binary tree is a node connected to two binary trees.
How many binary trees with N nodes?

Develop a BN = g BiBn—1—k
recurrence relation. 0<k<N By =0
Then introduce a B(z) = g z

generating function. >0

Multiply both sides)
by zN and sum B(z) =1+ zB(z)
to get an equation

that we can solve B(z) = 1T++/1—4z

) Quadratic equation
algebraically

and expand to 1 2N . .
get coefficients Bn = /\/——|—1 N Binomial theorem
N
;hatr\c/)v)ir(r:\aar;e Bn ~ 4 Stirling’s approximation
°P | NVZN

Challenge: Efficiently teach basic math skills behind such derivations.

Analytic Combinatorics: classic example

A binary tree is a node connected to two binary trees.
How many binary trees with N nodes?

Develop a

combinatorial e¢e+xex
construction,

which directly maps to

_ 2

a GF equation B(z) =1+ zB(z2)
that we can 1++v1 -4z

. . B(z) =
manipulate algebraically 27
and treat as a function 4/\/ 4/\/
in the complex plane B/\/ — ~
directly approximate 1 / /
via singularity analysis NF(/2> N NvVaN

Challenge: Develop an effective calculus for such derivations.

Complexification

Assigning complex values to the variable z in a GF gives a
method of analysis to estimate the coefficients.

The singularities of the function determine the method.

singularity type method of analysis
meromorphic Cauchy
(just poles) (elementary)
fractional powers Cauchy
logarithmic (Flajolet-Odlyzko)
none saddle point

(entire function)

First Principle. Exponential growth of a function’s coefficients
is determined by the location of its singularities.

Second Principle. Subexponential factor in a function’s coefficients
is determined by the nature of its singularities.

Analytic combinatorics

Q. Wait, didn’t you say that the masses don’t need to know all that math?

RS. Well, there is one thing...

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep,.. THE RUNNING TIME IS O(P¥*m)
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND...

WTF, MAN. I JUST
WANTED TO LEARN
How TO PROGRAM
VIDEO GAMES,

A general hypothesis from analytic combinatorics

The running time of your program is ~a = N¢

e the constant a depends on both complex functions
and properties of machine and implementation

e the exponent ¢ depends on singularities

Why?
e data structures evolve from combinatorial constructions

e universal laws from analytic combinatorics have this form

Plenty of caveats, but provides, in conjunction with the scientific method,
a basis for studying program performance

Computing the constants (the hard way)

Knuth showed that it is possible in principle to precisely predict running time

e develop a mathematical model for the frequency of execution of each instruction

in the program
e determine the time required to execute each instruction

e multiply and sum

Hypothesis: T(N) ~ aN¢

N

cycle time cache
structure

asymptotics

instruction

set analysis

code

mathematician’s part of the constant

engineer’s part of the constant
(easier to determine now than in the 1970s)

(harder to determine now than in the 1970s)

Computing the constants (the easy way)

Run the program!

Hypothesis: T(N) ~aNc¢ Note: log factors are more difficult

1. Implement the program
2. Compute T(No) and T(2 No) by running it

3. Calculate c as follows:

T(2No) a(2No)c
T(No) aNoc¢

=2¢C

lg(T(2No)/T(No) = ¢ as No grows

4. Calculate a as follows:

T(No)/No ¢ — a as No grows

Predicting performance (the easy way)

Don’t bother computing the constants!

Hypothesis: T(N) ~ aN¢
1. Implement the program

2. Run it for No, 2 No, 4No, 8 No, . ..

3. Note that ratio of running times approaches 2¢

T(2 No)N a(2 No)¢
T(No) aNoc

= Q¢

4. Multiply by 2¢ to predict next value

Plenty of caveats, but provides a basis for
teaching the masses about program performance

1000

2000

4000

8000

16000

1.1 sec

4.5 sec

18 sec

73 sec

295 sec

<«——— borders on malpractice not to do so!

Ill. Introduction to CS

The masses

Scientists, engineers and modern programmers need
e extensive specialized knowledge in their field
e an understanding of the scientific method.

They also need to know how to
e write programs

e design and analyze algorithms

Do they need to know?
e Detailed analysis
e (Galactic algorithms
e Overly simple input models

They do need to know
e (lassic algorithms
e Realistic input models and randomization

e How to predict performance and compare algorithms

Unfortunate facts

Many scientists/engineers lack basic knowledge of computer science
Many computer scientists lack back knowledge of science/engineering
1970s: Want to use the computer? Take intro CS.

1990s: Intro CS course relevant only
to future cubicle-dwellers

AW "
One way to address the situation N y pt
* identify fundamentals \ o s Y
- teach them to all students ‘ ,“ v ,,)’

who need to know trm/‘/r -
« as early as possible

Intro course model: typical

CcS
cs ! for
S for math majors
for physicists
CS majors
) CS
for
biochemists
CcsS
cs for >
poets for
for ‘ rocket
EE ‘ CcS o
scientists
R for
economists
CcsS
. for cs
civil engineers for

idiots

Intro course model: RS view

CS
for
everyone

Original motivation (1992)
Why not?
Works for biology, math, physics, economics.
Responsibility to identify and teach fundamental tenets of discipline.

Current status (2012)

[Joint work with Kevin Wayne since 2000]

Anyone can learn the importance of
e modern programming models
e the scientific method in understanding program behavior
e fundamental precepts of computer science
e computation in a broad variety of applications
e preparing for a lifetime of engaging with computation

Textbook and booksite available and widely used [stay tuned]

introcs.cs.princeton.edu

C D emiimmo pren e Q

“““““

mEEE .
2 Te:

Programming

in Java

Robert Sedgewick Kevin Wayne

Messages for first-year students

Reading, writing, and computing

Programming is for everyone, including you
e it is easier than most challenges you’re facing
e you cannot be successful in any field without it

Performance matters

There is more to computer science than programming

Computer science is intellectually challenging, worth knowing

Key ingredient: a modern programming model

any program you might want to write

in support of
encapsulation

A 4

data abstraction

functions and modules

StdDraw

i i <«—— StdAudio
graphics, sound, and image I/0 D3 cture

arrays

conditionals and loops

assignment statements
primitive types

Basic requirements
e full support of essential components

e freely available, widely used

1990: C/C++, 2010: Java, 2020:7?

CS in scientific context

Ideal programming example/assignment

teaches a basic CS concept

solves an important problem
intellectually engaging and appealing
illustrates modular programming

is open-ended

functions

libraries

1D arrays

2D arrays

recursion

strings

I/O streams

OOP

data structures

sqrt(, 1logQ

I/0, data analysis

sound

images

fractal models

genomes

web resources

Brownian motion

small-world

Familiar and easy-to-motivate applications

Ideal programming example/assignment

Bouncing ball

teaches a basic CS concept

solves an important problem
intellectually engaging and appealing
illustrates modular programming

is open-ended

public class BouncingBall

{

public static void main(String[] args)
{ Simulate the movement of a bouncing ball.

double rx = .480, ry
double vx = .015, vy

® double radius = .05;
int dt = 20;
while(true)

i Update ball po

if (Math.abs(rx +
if (Math.abs(ry +
rx = rx + vx;

ry = ry + vy;
StdDraw.clear();

StdDraw.setXscale(-1.
StdDraw.setYscale(-1.

0, 1.0);
0, 1.0);

= .860;

= .023;

sition and draw 1t there.

vx) + radius > 1.0) vx = -vx;
vy) + radius > 1.0) vy = -vy;

StdDraw.filledCGircle(rx, ry, radius);

StdDraw.show(dt) ;

Simulation is easy }

Familiar and easy-to-motivate applications

Ideal programming example/assignment

teaches a basic CS concept

solves an important problem

appeals to students’ intellectual interest
illustrates modular programming

is open-ended

Bouncing balls

o

OOP is helpful

Familiar and easy-to-motivate applications

Ideal programming example/assignment
e teaches a basic CS concept
e solves an important problem
e appeals to students’ intellectual interest
e jllustrates modular programming
* s open-ended

N-body

data-driven programs are useful

Distinctive features of our approach

address some traditional barriers

No room in curriculum?
e appeal to familiar concepts from HS science and math saves room
e broad coverage provides real choice for students choosing major
e modular organization gives flexibility to adapt to legacy courses
e detailed examples useful throughout curriculum

Incorrect perceptions about CS?
e scientific basis gives students the big picture
e students are enthusiastic about addressing real applications

Excessive focus on programming?
e careful introduction of essential constructs
e nonessential constructs left for later CS courses
e library programming restricted to key abstractns
e taught in context with plenty of other material

Distinctive features of our approach

address some traditional barriers

One course fits all?
e few students get adequate CS in high school nowadays
* 90+ percent on level playing field by midterms
e open-ended assignments appeal even to experienced programmers

e not harmful for CS students to learn scientific context
before diving into abstraction

CS is for cubicle-dwellers?
e “learned more in this course than in any other”
e “came here to study physics/math/bio/econ, now | want to do CS”
° “COOIH

Progress report (2011)

Stable intro CS course for all students

modern programming model

* Basic control structures

« Standard input and output streams
* Drawings, images and sound

* Data abstraction

* Use any computer, and the web

relevant CS concepts

* Understanding of the costs
* Fundamental data types
* Computer architecture

* Computability and Intractability

Goals

e demystify computer systems

e empower students to exploit computation
e build awareness of intellectual underpinnings

Course Catalog

All Courses | unseraasace Cuucss | Grasas Caues

This & the ket of Courses T3t (he DowtIes may

Wote: L sergrad coorem ruramce g6 16 4
WL AR Steets o

COS109 - Computers in Our World (7al)
w coes thic ar:\ the world we tve In? This

have Brought the workd 1o o
ald and new -underlying thi
ntfc knowlecge (and tex

rips. We wil try to understand, at
Computatonal Universe. Cur o
oicgies they enabie)
anks (sileon ¢

QUrsENRS-Our QENOME; NGUIgE; MUSK; “knonledge™; and above all,the mystary of our

COS126 - General umwmsmm (Fav, Spring) \

time praparng e
=cience, physcs, biokigy, chemist
hardware and software systems; n
funéamental prirciples of computation; and scientific computing, includng simulation,
aptimizetion, and data anslysis. No prior programming experience required, Two lectores, bao

cazsos _~

€OS217 - Introduction to »mw-mmmg smem. (Fal, Sarng)

(8): 126 o instructor's permission
€0S226 - Algorithms and Data Structures (Fall, Soring)
The study of fundemental deta structures such as Ists, gueves, stacks, trees, heaps, hash
tables, and thelr variations. The mplemantaticn and analyss of important algarthms for
ring processing, geometric appications, and graoh manoulation
cec aporithms and techques. Two lectures, one praceptonl,
26 or Ingtructor's permission

COS231/COS232 - An to the Natural Scences

scientific content

* Scientific method
* Data analysis
* Simulation

* Applications

of CS

Progress report

2008: Enrollments are up. Is this another “bubble™?

COS 126 enroliments
700

525

350

175

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Progress report

2009: Maybe.

COS 126 enroliments

700

525

350

175

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Progress report

2012: Enrollments are skyrocketing.

COS 126 enrollments

700
enrollments now are /
twice what they were at
22 the height of the bubble
350 seemeﬂ like a lot
at the time \
175

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Who are they?

Over half of all Princeton students.

PROGRAMMING EXPERIENCE

%

CLASS

INTENDED MAJOR

® none
some

@ lots

@ First-year
Sophomore

@ Junior

@ Senior

@ other Science/Math
other Engineering

@ Humanities

@ Social sciences

@® CS

IV. Future of publishing

Seismic changes are afoot

Books?

Libraries?

Textbooks?

Why try to write a new textbook in this environment?

Grafton: Save the libraries

FUTURE READING
Digitization and its discontents.
by Anthony Grafton

The New Yorker
November 5, 2007

...Sitin your local coffee shop, and your laptop can tell you a lot. If you want deeper,
more local knowledge, you will have to take the narrower path that leads between
the lions and up the stairs. There—as in great libraries around the world—you’ll use
all the new sources, the library’s and those it buys from others, all the time. You'll
check musicians’ names and dates at Grove Music Online, read Marlowe’s “Doctor
Faustus” on Early English Books Online, or decipher Civil War documents on Valley
of the Shadow. But these streams of data, rich as they are, will illuminate, rather
than eliminate, books and prints and manuscripts that only the library can put in
front of you. The narrow path still leads, as it must, to crowded public rooms
where the sunlight gleams on varnished tables, and knowledge is embodied in
millions of dusty, crumbling, smelly, irreplaceable documents and books.

RS: Think about the future

The New Yorker
Letter to the editor

While Grafton’s reservations about putting knowledge online are well taken, | would also point
out that there is quite a bit going on now in the academic world that doesn’t have much to do
with old books. Indeed, as the author of many books, | wonder whether perhaps the book is
not quite sacred as a means of disseminating knowledge. What is the most effective way to
produce and disseminate knowledge with today’s technology? How can we best structure
what we know and learn so that students, researchers, and scholars of the future can best
understand the work of today’s researchers and scholars? | think that questions like these
are more important and more difficult to address than whether we can put the contents of

libraries on the Web.

Robert Sedgewick
December 10, 2007

Future of libraries®

1990 Every student spent significant time in the library
2010 Every student spends significant time online

Few faculty members in the sciences use the library at all for research
YET, the library’s budget continues to grow!
20207?

e A few book museums (for Grafton)

e Digital library infrastructure (for everyone else)

Scientific papers?

Alan Kay: “The best way to predict the future is to invent it.”

Scientific papers

When is the last time you visited a library to find a paper?

Did you print the papers to read the last time you refereed a conference?

‘ann

€ C

New Tab

we algo,inria. fri flajolet/Public

D algo.inriafr/flajolet/Publications/FiPeSoll.pdf

In ACM-SIAM Symp. on Discrete Algorithms (SODA), 2011

On Buffon Machines and Numbers

Philippe Flajolet*

Marvse Pelletier’

Michéle Soriaf

philippe.flajoletdinria.fr, maryse.pelletierdlipf.fr, michele.soria®lipf. fr

Abstract

I'he well-know needle experiment of Buffon can be regarded
as an analog (i.e., continuous) device that stochastically
“computes” the number 2/7 = (.63661, which is the exper-
lment's probability of success. Generalizing the experiment
and simplifving the comput amework, we consider
probability be produced perfectly,
1 coin flips. We describe

from a diwsc
Buffon machines that generate ge-

ometric, Poisson. and distributions. We

provide human-acees:
dozen coin flips or less, on
whose prob es of success are expr e in terms of
numbers as m, exp(—1), log2, /3. cos(1). {(5). Gener-
ally, we develop a collection of constructions hased on sim-
ple probabilistic mechanisms that enable one to design Buf-

equire a

IXperiments

Lav supp. distribution gen.
Bernoulli Ber(p) |{0.1} P(X=1)=p I'B(p)
geometric Geo(A) :5, PX=r)=X(1=2)|I'G(N)
Poisson, Poi(A) | Zyo | P(X =r)=¢" é; I'P(A)
logarithmie. Log(A) | Z> PX=r)= [l A I'L{A)

Figure 1: Main disc
sion of the proba
tors (L := log(1

to the simulation of distributions, such as Gaussian,

ete probability laws: support. expres-
s, and naming convention for genera-

t

why?

Color?
Links to references?
Links to detailed proofs?

Simulations?

t

why not?

“I could read it on my iPad
...if had an iPad
D. E. Knuth

Question: If it will not be read on paper, why write it as if it will?

Prediction: Someone will soon invent the future (should be easy)

Textbooks

A road to ruin
e prices continue to escalate
e students now rent, not own books
e planned obsolescence? walled garden?

Sign In| \=J Rental Cart (0)

[Che S I T —

Enter ISBN, Title or Author's FIND BOOKS -2k

Z1-vay Anyg Reason” GIMARANTEE ™ Lumitae

Search Results for ‘saogawick

Showing 125 of 20 resulls Vol t puge
l Bundie of Algorithms in C++, Parts 1-5
Algorithms
" ISEN: 020172684X @ BUYNEW $92.49
EDITION: 3 [Revisad)
AUTHOR(S): Sedgewick, Robert, van Wyck, Christopber J. LIST FRICE §112560
BUY IT (<)
] Algorithms in C++, Parts 14 © surusep $43.49
Algorithms g
0 ISBN: 0201350862 © suy NEW £53.49
EDITION: 3 [Revisag, liustrated)
AUTHOR(S): Sedgewick, Robart LIST PRICE $69.99

Is there room for a good textbook?
Will free web resources prevail?

Sedgewick-Wayne publishing model

Two components
e traditional textbook (priced to own)
e forward-looking booksite (free)

Textbook
e traditional look-and-feel

e builds on 500 years of experience Programming

in Java

e for use while learning ﬂ

Robért Sedgewick Kevin Wayne

Booksite

* supports search

* has code, test data, animations T
e links to references BEEE -
e a living document

e for use while programming, exploring

Textbook

Part I: Programming (2009)

INTRODUCTION YO

Programming

in Java

nary Approach

Robert Sedgewick Kevin Wayne

Prolog

1 Elements of Programming
Your First Program
Built-in types of Data
Conditionals and Loops
Arrays
Input and Output
Case Study: Random Surfer

2 Functions and Modules
Static Methods
Libraries and Clients
Recursion
Case Study: Percolation

3 Data Abstraction
Data Types
Creating DataTypes
Designing Data Types
Case Study: N-body

4 Algorithms/Data Structures

Performance

Sorting and Searching
Stacks and Queues
Symbol Tables

Case Study: Small World

Part Il: Computer science (in preparation)

5 A Computing Machine
Data representations
TOY machine
Instruction Set
Machine Language Coding
Simulator

6 Building a Computer
Boolean Logic and Gates

Combinational Circuits
Sequential Cricuits
TOY machine architecture
7 Theory of Computation
Formal Languages
Turing Machines
Universality
Computability
Intractability
8 Systems
Library Programming
Compilers and Interpreters
Operating Systems
Networks
Applications Systems
9 Scientific Computation
Precision and Accuracy
Differential Equations
Linear Algebra
Optimization
Data Analysis
Simulation

Booksite

introcs.cs.princeton.edu

800

Introduction to Programming in java: An Interdisciplinary Approach

¢ Q- Google

[< > | + € hup:/fintrocs.cs.princeton.edu/java/home/

m

- Wiki

PIC)

! INTRO TO PROGRAMMING

. 1. Elements of Programming
2. Functions

3. OOP

4. Data Structures

0. Prologue

5. A Computing Machine

6. Building a Computer

a textbook for a first course in computer science
for the next generation
of scientists and engineers

Textbook. Our textbook Introduction to Programming in Java [Amazon - Addison-Wesley] is an
interdiscipiinary approach to the traditional CS1 curriculum. We teach all of the classic elements of
programming, using an "objects-in-the-middle" approach that emphasizes data abstraction. A key feature
of the book is the manner in which we motivate each programming concept by examining its impact on
specific applications, taken from fields ranging from materials science to genomics to astrophysics to
internet commerce. The book is organized around four stages of learning to program:

e Chapter 1: Elements of Programming introduces variables; assignment statements; buiit-in types of
data; conditionals and loops; arrays; and input/output, including graphics and sound.

* Chapter 2: Functions introduces modular programming. We stress the fundamental idea of dividing a
program into components that can be independently debugged, maintained, and reused.

e Chapter 3: Object-Oriented Programming introduces data abstraction. We emphasize the concept of a
data type and its implementation using Java's class mechanism.

e Chapter 4: Algorithms and Data Structures introduces classical algorithms for sorting and searching,
and fundamental data structures, including stacks, queues, and symbol tables.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for

7. Theory of Computation
8. Systems
9. Scientific Computation

AvcoriThms, 4mH Eomon

Algorithms

FAQ
Data
Code
Errata

your use while online (for example, while programming and while browsing the web); the textbook is for
your use when initially learning new material and when reinforcing your understanding of that material (for
example, when reviewing for an exam). The booksite consists of the following elements:

e Excerpts. A condensed version of the text narrative for reference while online.
e Exercises. Hundreds of exercises and some solutions.
e Java code. Hundreds of easily downloadable Java programs and real-world data sets.

To get started. Here are instructions for installing a Java programming environment [Mac 0S X -
Windows - Linux]. We also provide 1/O libraries for reading and writing text and binary data, drawing
graphics, and producing sound.

To adopt. Here are some of the distinctive features of our textbook and a marketing flyer. To preview our
material, you can download the preface and Chapter 1. If you wish to consider adoption, please fill out this
form to request a copy of the textbook or ask for more information.

Last modified on February 05, 2012.

Copyright ® 2002-2012 Robert Sedgewick and Kevin Wayne. Al rights reserved.

« Text digests

» Ready-to-use code

» Supplementary exercises/answers
« Links to references and sources

» Modularized lecture slides

« Programming assignments

« Demos for lecture and precept

« Simulators for self-study

« Scientific applications

10000+ files

2000+ Java programs

50+ animated demos

1.2 million unique visitors in 2011

Algorithms for the masses

Central thesis for Algorithms (1975)

All science/engineering students need an algorithms course

Algorithms embraces a significant body of knowledge that is
e intellectually challenging
e pervasive in modern life

e critical to modern science and engineering

Barriers
®* no room in curriculum
e need to implement all the algorithms (!)
* need to analyze all the algorithms (1)
* need to pick the most important ones

Current status of “Algorithms” (2012)

[Joint work with Kevin Wayne since 2007]

Any science/engineering student can appreciate
e data abstraction and modular programming
e 50+ classic and important algorithms and data structures
e historical context, applications
e relationships to OR, theory of algorithms

Algorithms (4th edition) and booksite (2011)

algs4.cs.princeton.edu

800 Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
<5 | [+ @hupijalgss.cs princeton.edu/home/ 3 ¢ Q- Google %[0
&3 (O BE homev Princeton~ reference (1412)v rsrchv savev shopv travelv teachv Yahoo! YouTube Wikiedia

ALGoRITHMS, 4TH EpITION

essential information that

algorithms and data structures

Algorithms

‘Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [Ama;
Pearson - InformIT] surveys the most Important &gorithms and data structures In use today. The textbook
Is organized into six chapters:

back to basics
(one book)

* Crapoar 1 undamentateIntrodus o scentifc nd rinering bass for comparing sigorithas and
making predictions. It also includes our programming m

« Chapter 2: Sorting considers several classic sorting a\gnnmms including insertion sort, mergesort,
and qmcksnm It also includes a binary heap implementation of a priority queve.

« Chapter 3: Searching describes several classic symbol table implementations, including binary search
rees, rec.black tress, and hash tables

« Chapter 4: Graphs surveys the most important graph processing problems, including depth-first
Search, breadth-first search, minimum spanning trees, and shortest paths.
« Chapter 5: Strings investigates specialized algorithms for string processing, including radix sorting,
substring search, tries, regular expressions, and data compression.
— « Chapter 6: Context highlights connections to systems programming, scientific computing, commercial
applications, operations research, and intractability.

Applications to science, engineering, and industry are a key feature of the text. We motivate each
algorithm that we address by examining its impact on specific applications.

Booksite. Reading a book and surfing the web are two different activities: This booksite s intended for
your use while online (for example, while programming and while browsing the web); the textbook is for
your use when Initially learning new material and when reinforcing your understanding of that material (for
example, when reviewing for an exam). The booksite consists of the following elements

« Bxcerpts. A condensed version of the text narrative, for reference while online.

« Java code. The algorithms and clients in this textbook.

RONERT SE0GEWICEK | £EVIN WAaYNS

« Exercise solutions. Solutions to selected exercises.

Here are instructions for setting up our recommended Java programming environment [
Mac 0S X - Windows -

To adopt. Here is a marketing flyer. Here is the preface. If you are considering adoption, you can ask the
authors for more information or request an examination copy.

Last modiod on Segtember 16 2011

Booksite

algs4.cs.princeton.edu

800

Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne

> | + € hup://algsé.cs.princeton.edu/home/ &3 ¢ | Q- Google Q)

Algorithm

ALGORITHMS, 4TH EDITION

1. Fundamentals

2. Sorting

3. Searching

4. Graphs
5. Strings
6. Context
ﬁzmmo&omnﬁs

ANRSIS 06 ALGORITHS

Wes Resources

FAQ

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [Amazon -
Pearson - InformIT] surveys the most important algorithms and data structures in use today. The textbook
is organized into six chapters:

* Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and
making predictions. It also includes our programming model.

* Chapter 2: Sorting considers several classic sorting algorithms, including insertion sort, mergesort,
and quicksort. It also includes a binary heap implementation of a priority queue.

Chapter 3: Searching describes several classic symbol table implementations, including binary search
trees, red-black trees, and hash tables.

* Chapter 4: Graphs surveys the most important graph processing problems, including depth-first
search, breadth-first search, minimum spanning trees, and shortest paths.

Chapter 5: Strings investigates specialized algorithms for string processing, including radix sorting,
substring search, tries, regular expressions, and data compression.

Chapter 6: Context highlights connections to systems programming, scientific computing, commercial
applications, operations research, and intractability.

Applications to science, engineering, and industry are a key feature of the text. We motivate each
algorithm that we address by examining its impact on specific applications.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for
your use while online (for example, while programming and while browsing the web); the textbook is for
your use when initially learning new material and when reinforcing your understanding of that material (for
example, when reviewing for an exam). The booksite consists of the following elements:

* Excerpts. A condensed version of the text narrative, for reference while online.
e Java code. The algorithms and clients in this textbook.
* Exercise solutions. Solutions to selected exercises.

To get started. Here are instructions for setting up our recommended Java programming environment [
Mac OS X - Windows - Linux].

To adopt. Here is a marketing flyer. Here is the preface. If you are considering adoption, you can ask the
authors for more information or request an examination copy.

Last modified on September 16, 2011.

Copyright © 2002-2012 Robert Sedgewick and Kevin Wayne. Al rights reserved.

Text digests

Ready-to-use code

Supplementary exercises/answers
Links to references and sources
Modularized lecture slides
Programming assignments
Demos for lecture and precept
Simulators for self-study

Scientific applications

Top 100 algorithms

Algs4 code (and much more) all available online

P00

|« |» || + V‘Vr;np://alés{irsr.rpnrnge'tt')rrl.eaxl(odre'l"
&3 [IJ #¥ homev Princetonv reference (1,412)v rsrchv savev shopv travelv teachv Yahoo!

Java Algorithms and Clients

©)

YouTube Wikipedia

P

]

Algorith

RORIAY BEseumire [avin wATHE

ALGORITHMS, 4TH EDITION
1. Fundamentals

FAQ
Data

Code
Errata

References
Lecture Siides

Programming Assignments

JAavA ALGORITHMS AND CLIENTS

Our original goal for this book was to cover the 50 algorithms that every programmer should know. We
use the word programmer to refer to anyone engaged in trying to accomplish something with the help of a
computer, including scientists, engineers, and applications developers, not to mention college students in
science, engineering, and computer science.

Algorithms and clients in the textbook. The list below includes a few more than 100 Java programs
(some are clients, some others are basic infrastructure). Click on the program name to access the Java
code; click on the description to access the javadoc; click on the data file names to access the data. You

can download all of the programs as algs4.jar and the data as algs4-data.zip.

s ronomaas T

1.1

1.2

1.3

14

BinarySearch.java

RandomSeq.java

Average.java

Cat.java
Shuffle.java
Counter.java
StaticSETofInts.java
Whitelist.java
Vector.java
Date.java
Transaction.java
Point2D.java
IntervallD.java

Interval2D.java
ResizingArrayStack.java
Stack.java
ResizingArrayQueue.java

Queue.java
Bag.java
Stopwatch.java

ThreeSum.java

binary search

random numbers in a
given range

average of a sequence of
numbers

concatenate files
Knuth shuffle
counter
set of integers
whitelist client
mathematical vector
date
transaction
point
1-d interval
2-d interval

LIFO stack (resizing
array)

LIFO stack (linked list)

FIFO queue (resizing
array)

FIFO queue (linked list)
multiset
timer

brute-force three sum

tinyW.txt tinyT.txt largeW.txt largeT.txt

in1.txt in2.txt
cards.txt

tinyW.txt tinyT.txt largeW.txt largeT.txt

tobe.txt

tobe.txt

tobe.txt

tobe.txt

1Kints.txt 2Kints.txt 4Kints.txt 8Kints.txt

TO? 10 Algorithms

FFT
Quicksort

Si.mpl.ax
Huffman
Dijkestra

Knuth-pMorris-Pratt
Ford-Fulkerson

Modular programming style

e one-click download

e test data

e variants

e robust library versions

e typical clients

Messages for algorithms students

Modern programming models are for you

Algorithms are important and useful in scientific,
engineering, and commercial applications of all sorts

Performance matters

Classic algorithms for sorting, searching, graphs
and strings have enabled the development
of the computational infrastructure that surrounds us

A great many more important and useful algorithms remain to be discovered

Intrinsic limitations exist

Familiar and easy-to-motivate applications

Percolation

Ideal example/assignment

e teaches a basic CS concept

e solves an important problem
e intellectually engaging

e modular program

* s open-ended

Sites = 135

union-find

Familiar and easy-to-motivate applications

Prim’s MST algorithm

Ideal example/assignment

e teaches a basic CS concept

e solves an important problem
e intellectually engaging

e modular program

* s open-ended

graph search

Familiar and easy-to-motivate applications

Bose-Einstein colliding particle simulation

L & . @ s ® | Ideal example/assignment
@ .
P L » %e » e teaches a basic CS concept
® o © e @ ® e solves an important problem
& S o ¢ & * intellectually engaging
" @ ® e modular program
- ® o ° & * is open-ended
e, o ® @ ®
® ® 90 , o ‘o
@ ® ®
® oo * @®
® ® ° o
® @
@ ® ®
L e ° ..
® ® o *
® ® %o
o ® @ ®
®] ‘. ® o ® &
® o PY ° ®

priority queue

Enrollments in algorithms course

are also skyrocketing

“Algorithms” enrollments

300

P

enrollments now are
three times what they were
at the height of the bubble

225

150
seemeg like a lot
at the time \

75

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

25+% of all Princeton students

Key factor in increase: All students in “CS for everyone” can take “Algorithms”

Summary

The scientific method is an essential ingredient in programming.

Embracing, supporting, and leveraging science in
intro CS and algorithms courses can serve large numbers of students.

Proof of concept: First-year courses at Princeton
e 50+% of Princeton students in a single intro course
e 25+4% of Princeton students in a single algorithms course

Next goals:

e 50+% of all college students in an intro CS course

o 25+% of all college students in an algorithms course

t

ALGORITHMS FOR THE MASSES

Algorithms for the masses

Robert Sedgewick
Princeton University

