
Algorithms for the masses

Robert Sedgewick
Princeton University

This talk is dedicated to the memory of Philippe Flajolet

Philippe Flajolet 1948-2011

Prelude: my first job

1969 Western Electric Engineering Research Center

PDP-9

• 18-bit words

• 16K memory

• switches+lights

• paper tape reader/punch

• display w/ lightpen

Task: Drafting (Illustration)

Workflow

• write cross-assembler in IBM 360/50 assembly

• write Illustrator application in PDP-9 assembly

• load paper tape into PDP-9

• run application

PDP-9

Prelude: my first job

Problem: Cross-assembler too slow

Solution: Binary search!

• M searches, N symbols M >> N

• Improved running time from ~MN to ~MlgN

Lesson 1: Good algorithms matter

Lesson 2: Not many programmers appreciate that fact

IBM 360/50

Brief history of Algorithms

Algorithms (central thesis)

1975: What are the algorithms that everyone should know?

“Everyone” means “everyone”

• scientists

• engineers

• mathematicians

• software/hardware designers

• cryptananalysts

• COBOL programmers

• . . .

Context

• IBM 360/50

• Algol W

• one run per day

TOP 10 Algorithms
FFT
Quicksort
Simplex
Huffman
Dijkstra
Knuth-Morris-Pratt
Ford-Fulkerson

 . . .

edition code validation

1982 1st compiles

1986 2nd runs

1994 3rd

performance
comparisons

within
reasonable

practical
model

2011 [this talk] 4th

Algorithms (brief history)

Four challenges

I. Many algorithms implemented/tested in back rooms, not open literature

II. Need appropriate mathematical models

III. Masses can’t program, don’t know CS

IV. How to disseminate?

I. Scientific method

Important lessons of the past several decades

 1. Efficient algorithms enable solution of problems

 that could not otherwise be addressed.

 2. Scientific method is essential in understanding

 program performance

Fact of life in applied computing

Performance matters in a large number of important applications

Example: quadratic algorithms are
 useless in modern applications

• millions or billions of inputs

• 1012 nanoseconds is 15+ minutes

• 1018 nanoseconds is 31+ years

Important lessons for
• beginners
• engineers
• scientists
• programmers

• indexing and search
• Bose-Einstein model
• N-body
• signal processing
• string matching for genomics
• natural language analysis
• [very long list]

The scientific method

is essential in understanding program performance

Scientific method

• create a model describing natural world

• use model to develop hypotheses

• run experiments to validate hypotheses

• refine model and repeat

Algorithm designer who does not experiment gets lost in abstraction

Software developer who ignores cost risks catastrophic consequences

Scientist/engineer needs to control costs of experiments/simulations

1950s: Uses scientific method. 2010s: Uses scientific method?

model

hypothesis

experiment

Motivating example: maxflow

Ford-Fulkerson maxflow scheme

• find any s-t path in a (residual) graph

• augment flow along path (may create or delete edges)

• iterate until no path exists

Goal: compare performance of two basic implementations

• shortest augmenting path

• maximum capacity augmenting path
Key steps in analysis

• How many augmenting paths?

• What is the cost of finding each path?

research literature

this talk

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters for a reasonable model

 V E C

How many augmenting paths?

How many steps to find each path?

vertices edges max capacity

upper bound

shortest VE/2
VC

max capacity 2E lg C

E (upper bound)

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters for a reasonable model

 V = 177 E = 2000 C = 100

How many augmenting paths?

How many steps to find each path?

vertices edges max capacity

upper bound for example

shortest VE/2
VC

177,000
17,700

max capacity 2E lg C 26,575

2000 (upper bound)

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters for a reasonable model

 V = 177 E = 2000 C = 100

upper bound for example actual

shortest VE/2
VC

177,000
17,700

max capacity 2E lg C 26,575

How many augmenting paths?

How many steps to find each path?

vertices edges max capacity

Prediction of total cost is a factor of 1 million high for thousand-node graphs

 < 20, on average, for randomized search

37

7

Motivating example: max flow

Compare performance of Ford-Fulkerson implementations

• shortest augmenting path

• maximum-capacity augmenting path

Graph parameters for a reasonable model

 V E C

upper bound

shortest VE/2
VC

max capacity 2E lg C

How many augmenting paths?

How many steps to find each path? E (upper bound)

Warning:
Such analyses are

useless
for predicting
performance
or comparing

algorithms

vertices edges max capacity

Goals of algorithm analysis

• predict performance (running time) or

• guarantee that cost is below specified bounds

Common wisdom

• random graph models are unrealistic

• average-case analysis of algorithms is too difficult

• worst-case performance bounds are the standard

Unfortunate truth about worst-case bounds

• often useless for prediction (fictional)

• often useless for guarantee (too high)

• often misused to compare algorithms

Bounds are useful in some applications.

Motivating example: lessons

worst-case bounds

actual costs

which ones??

Open problem: Do better!

O-notation considered harmful

How to predict performance (and to compare algorithms)?

Not the scientific method: O-notation

• not at all useful for predicting performance

Scientific method calls for tilde-notation.

• an effective path to predicting performance (stay tuned)

Hypothesis: Running time is ~aNc

Theorem: Running time is O(Nc) ✘

✓

O-notation is useful for many reasons, BUT

Common error: Thinking that O-notation is useful for predicting performance.

Surely, we can do better

O-notation considered harmful.

Cannot use it to predict performance.
RS (in a talk):

?? O(N log N) surely beats O(N2)Q:

Not by the definition. O expresses upper bound. RS:

So, use Theta.Q:

A typical exchange in Q&A

Still (typically) bounding the worst case.

Is the input a worst case?
RS:

(whispers to colleague) I’d use the Θ(N log N) algorithm,
wouldn’t you?

Q:

Galactic algorithms

R.J. Lipton: A galactic algorithm is one that will never by used in practice

Why? Any effect would never be noticed in this galaxy

Ex. Chazelle’s linear-time triangulation algorithm

• theoretical tour-de-force

• too complicated to implement

• cost of implementing would exceed savings in this galaxy, anyway

One blogger’s conservative estimate: 75% SODA, 95% STOC/FOCS are galactic

OK for basic research to drive agenda, BUT

Common error: Thinking that a galactic algorithm is useful in practice.

Surely, we can do better

Algorithm A is bad.

Google should be interested in my new Algorithm B.
TCS (in a talk):

What’s the matter with Algorithm A?RS:

It is not optimal. It has an extra O(log log N) factor.TCS:

But Algorithm B is very complicated, lg lg N is less than 6 in this
universe, and that is just an upper bound. Algorithm A is
certainly going to run 10 to 100 times faster in any conceivable
real-world situation. Why should Google care about Algorithm B?

RS:

Well, I like Algorithm B. I don’t care about Google.TCS:

An actual exchange with a theoretical computer scientist:

II. Analytic Combinatorics

Analysis of algorithms and analytic combinatorics

Appropriate mathematical models are essential
for scientific studies of program behavior

Pioneering work by Don Knuth

Active AofA community
is building on classical research in

• probability

• combinatorics

• analysis

• information theory

and is developing new models,
methods, and applications

is a modern basis for studying discrete structures

Developed by

 Philippe Flajolet and many coauthors (including RS)

based on
 classical combinatorics and analysis

Generating functions (GFs) encapsulate sequences

Symbolic methods treat GFs as formal objects

• formal definition of combinatorial constructions

• direct association with generating functions

Complex asymptotics treat GFs as functions in the complex plane

• Study them with singularity analysis and other techniques

• Accurately approximate original sequence

Analytic Combinatorics

Cambridge University Press

Cambridge 2009
also available
on the web

Analysis of algorithms: classic example
A binary tree is a node connected to two binary trees.

How many binary trees with N nodes?

Challenge: Efficiently teach basic math skills behind such derivations.

Develop a
recurrence relation.

Multiply both sides
by zN and sum
to get an equation

that we can solve
algebraically

and expand to
get coefficients

that we can
approximate.

Then introduce a
generating function.

Quadratic equation

Stirling’s approximation

Binomial theorem

)5 =
∑

�≤R<5

)R)5−�−R
)� = �

)(a) =
∑

R≥�

aR

)(a) = �+ a)(a)�

)(a) =
�+

√
�− �a
�a

)5 =
�

5+ �

(
�5
5

)

)5 ∼ �5

5
√
�5

Analytic Combinatorics: classic example
A binary tree is a node connected to two binary trees.

How many binary trees with N nodes?

Challenge: Develop an effective calculus for such derivations.

Develop a
combinatorial
construction,

that we can
manipulate algebraically

and treat as a function
in the complex plane
directly approximate
via singularity analysis

which directly maps to
a GF equation)(a) = �+ a)(a)�

)(a) =
�+

√
�− �a
�a

)5 =
�5

5Γ(�/�)
√
5

∼ �5

5
√
�5

< B >= ε + < B > × • × < B >

Assigning complex values to the variable z in a GF gives a

method of analysis to estimate the coefficients.

The singularities of the function determine the method.

Complexification

singularity type method of analysis

meromorphic
(just poles)

Cauchy
(elementary)

fractional powers
logarithmic

Cauchy
(Flajolet-Odlyzko)

none
(entire function) saddle point

First Principle. Exponential growth of a function’s coefficients

is determined by the location of its singularities.

Second Principle. Subexponential factor in a function’s coefficients

is determined by the nature of its singularities.

Analytic combinatorics

Q. Wait, didn’t you say that the masses don’t need to know all that math?

RS. Well, there is one thing...

A general hypothesis from analytic combinatorics

The running time of your program is ~ a bN Nc (lg N)d

• the constant a depends on both complex functions
and properties of machine and implementation

• the exponential growth factor b should be 1

• the exponent c depends on singularities

• the log factor d is reconciled in detailed studies

Why?

• data structures evolve from combinatorial constructions

• universal laws from analytic combinatorics have this form

Plenty of caveats, but provides, in conjunction with the scientific method,

 a basis for studying program performance

Computing the constants (the hard way)

Knuth showed that it is possible in principle to precisely predict running time

• develop a mathematical model for the frequency of execution of each instruction
in the program

• determine the time required to execute each instruction

• multiply and sum

Hypothesis: T(N) ~ aN c

GFs

model
analysis

asymptotics

. . .

. . .

mathematician’s part of the constant
(easier to determine now than in the 1970s)

cycle time

instruction
set code

cache
structure

. . .

. . .

engineer’s part of the constant
(harder to determine now than in the 1970s)

Computing the constants (the easy way)

Run the program!

Hypothesis: T(N) ~ aN c

T(2N0) a (2N0)c

T(N0) aN0c
~

= 2c

2. Compute T(N0) and T(2N0) by running it

3. Calculate c as follows:

1. Implement the program

lg(T(2N0)/T(N0) → c as N0 grows

4. Calculate a as follows:

T(N0)/N0
c → a as N0 grows

Note: log factors are more difficult

Predicting performance (the easy way)

Don’t bother computing the constants!

Hypothesis: T(N) ~ aN c

T(2N0) a (2N0)c

T (N0) aN0c
~

= 2c

2. Run it for N0, 2N0, 4N0, 8N0, . . .

3. Note that ratio of running times approaches 2c

1. Implement the program

4. Multiply by 2c to predict next value

1000 1.1 sec

2000 4.5 sec

4000 18 sec

8000 73 sec

16000

Plenty of caveats, but provides a basis for

teaching the masses about program performance
borders on malpractice not to do so!

295 sec

if log factors exist, estimate improves as N grows

III. Introduction to CS

The masses

Scientists, engineers and modern programmers need

• extensive specialized knowledge in their field

• an understanding of the scientific method.

They also need to know how to

• write programs

• design and analyze algorithms

Do they need to know?

• Detailed analysis

• Galactic algorithms

• Overly simple input models

They do need to know

• Classic algorithms

• Realistic input models and randomization

• How to predict performance and compare algorithms

Unfortunate facts

Many scientists/engineers lack basic knowledge of computer science

Many computer scientists lack back knowledge of science/engineering

1970s: Want to use the computer? Take intro CS.

1990s: Intro CS course relevant only

 to future cubicle-dwellers

One way to address the situation

• identify fundamentals

• teach them to all students
who need to know them

• as early as possible

Intro course model: typical

CS
for

CS majors

CS
for
EE

CS
for

poets

CS
for

civil engineers

CS
for

physicists

CS
for

economists

CS
for

biochemists

CS
for

math majors

CS
for

rocket
scientists

CS
for

idiots

Intro course model: RS view

CS
for

everyone

Original motivation (1992)

Why not?

Works for biology, math, physics, economics.

Responsibility to identify and teach fundamental tenets of discipline.

Current status (2012)

[Joint work with Kevin Wayne since 2000]

Anyone can learn the importance of

• modern programming models

• the scientific method in understanding program behavior

• fundamental precepts of computer science

• computation in a broad variety of applications

• preparing for a lifetime of engaging with computation

introcs.cs.princeton.edu

Textbook and booksite available and widely used [stay tuned]

Messages for first-year students

Reading, writing, and computing

Programming is for everyone, including you

• it is easier than most challenges you’re facing

• you cannot be successful in any field without it

Computer science is intellectually challenging, worth knowing

There is more to computer science than programming

Performance matters

Key ingredient: a modern programming model

StdDraw
StdAudio
Picture

any program you might want to write

assignment statements
primitive types

graphics, sound, and image I/O

conditionals and loops

Math text I/O

arrays

functions and modules

StdIn
StdOut

Basic requirements

• full support of essential components

• freely available, widely used

1990: C/C++, 2010: Java, 2020: ??

data abstractionin support of
encapsulation

CS in scientific context

functions sqrt(), log()

libraries I/O, data analysis

1D arrays sound

2D arrays images

recursion fractal models

strings genomes

I/O streams web resources

OOP Brownian motion

data structures small-world

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• intellectually engaging and appealing

• illustrates modular programming

• is open-ended

Familiar and easy-to-motivate applications

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• intellectually engaging and appealing

• illustrates modular programming

• is open-ended

Bouncing ball

Simulation is easy

Familiar and easy-to-motivate applications

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• appeals to students’ intellectual interest

• illustrates modular programming

• is open-ended

Bouncing balls

OOP is helpful

Familiar and easy-to-motivate applications

Ideal programming example/assignment

• teaches a basic CS concept

• solves an important problem

• appeals to students’ intellectual interest

• illustrates modular programming

• is open-ended

N-body

data-driven programs are useful

Distinctive features of our approach

address some traditional barriers

No room in curriculum?

• appeal to familiar concepts from HS science and math saves room

• broad coverage provides real choice for students choosing major

• modular organization gives flexibility to adapt to legacy courses

• detailed examples useful throughout curriculum

Incorrect perceptions about CS?

• scientific basis gives students the big picture

• students are enthusiastic about addressing real applications

Excessive focus on programming?

• careful introduction of essential constructs

• nonessential constructs left for later CS courses

• library programming restricted to key abstractns

• taught in context with plenty of other material

Distinctive features of our approach

address some traditional barriers

One course fits all?

• few students get adequate CS in high school nowadays

• 90+ percent on level playing field by midterms

• open-ended assignments appeal even to experienced programmers

• not harmful for CS students to learn scientific context
before diving into abstraction

CS is for cubicle-dwellers?

• “learned more in this course than in any other”

• “came here to study physics/math/bio/econ, now I want to do CS”

• “cool”

Progress report (2011)

Stable intro CS course for all students

Goals

• demystify computer systems

• empower students to exploit computation

• build awareness of intellectual underpinnings of CS

• Basic control structures

• Standard input and output streams

• Drawings, images and sound

• Data abstraction

• Use any computer, and the web

• Understanding of the costs

• Fundamental data types

• Computer architecture

• Computability and Intractability

modern programming model

relevant CS concepts

• Scientific method

• Data analysis

• Simulation

• Applications

scienti!c content

0

175

350

525

700

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

COS 126 enrollments

2008: Enrollments are up. Is this another “bubble”?

Progress report

0

175

350

525

700

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

COS 126 enrollments

2009: Maybe.

Progress report

0

175

350

525

700

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

COS 126 enrollments

2012: Enrollments are skyrocketing.

Progress report

seemed like a lot
at the time

enrollments now are
twice what they were at
the height of the bubble

Who are they?

Over half of all Princeton students.

3%

35%

62%

PROGRAMMING EXPERIENCE

none
some
lots

4%8%

18%

70%

CLASS

First-year
Sophomore
Junior
Senior

11%

18%

10%
37%

24%

INTENDED MAJOR

other Science/Math
other Engineering
Humanities
Social sciences
CS

IV. Future of publishing

Seismic changes are afoot

Books?

Libraries?

Textbooks?

Why try to write a new textbook in this environment?

Grafton: Save the libraries

FUTURE READING
Digitization and its discontents.
by Anthony Grafton
The New Yorker
November 5, 2007

. . .Sit in your local coffee shop, and your laptop can tell you a lot. If you want deeper,
more local knowledge, you will have to take the narrower path that leads between
the lions and up the stairs. There—as in great libraries around the world—you’ll use
all the new sources, the library’s and those it buys from others, all the time. You’ll
check musicians’ names and dates at Grove Music Online, read Marlowe’s “Doctor
Faustus” on Early English Books Online, or decipher Civil War documents on Valley
of the Shadow. But these streams of data, rich as they are, will illuminate, rather
than eliminate, books and prints and manuscripts that only the library can put in
front of you. The narrow path still leads, as it must, to crowded public rooms
where the sunlight gleams on varnished tables, and knowledge is embodied in
millions of dusty, crumbling, smelly, irreplaceable documents and books.

RS: Think about the future

While Grafton’s reservations about putting knowledge online are well taken, I would also point
out that there is quite a bit going on now in the academic world that doesn’t have much to do
with old books. Indeed, as the author of many books, I wonder whether perhaps the book is
not quite sacred as a means of disseminating knowledge. What is the most effective way to
produce and disseminate knowledge with today’s technology? How can we best structure
what we know and learn so that students, researchers, and scholars of the future can best
understand the work of today’s researchers and scholars? I think that questions like these
are more important and more difficult to address than whether we can put the contents of
libraries on the Web.

The New Yorker
Letter to the editor

Robert Sedgewick
December 10, 2007

Future of libraries?

1990 Every student spent significant time in the library

2010 Every student spends significant time online

Few faculty members in the sciences use the library at all for research

YET, the library’s budget continues to grow!

2020?

• A few book museums (for Grafton)

• Digital library infrastructure (for everyone else)

Scientific papers?

Alan Kay: “The best way to predict the future is to invent it.”

Scientific papers

When is the last time you visited a library to find a paper?

Did you print the papers to read the last time you refereed a conference?

Question: If it will not be read on paper, why write it as if it will?

Prediction: Someone will soon invent the future (should be easy)

why?

• Color?

• Links to references?

• Links to detailed proofs?

• Simulations?

why not?

“I could read it on my iPad
...if I had an iPad

 D. E. Knuth

Textbooks

A road to ruin

• prices continue to escalate

• students now rent, not own books

• planned obsolescence? walled garden?

Is there room for a good textbook?

Will free web resources prevail?

Sedgewick-Wayne publishing model

Two components

• traditional textbook (priced to own)

• forward-looking booksite (free)

Textbook

• traditional look-and-feel

• builds on 500 years of experience

• for use while learning

Booksite

• supports search

• has code, test data, animations

• links to references

• a living document

• for use while programming, exploring

Textbook

5 A Computing Machine
 Data representations
 TOY machine
 Instruction Set
 Machine Language Coding
 Simulator
6 Building a Computer
 Boolean Logic and Gates
 Combinational Circuits
 Sequential Cricuits
 TOY machine architecture

7 Theory of Computation
 Formal Languages
 Turing Machines
 Universality
 Computability
 Intractability

8 Systems
 Library Programming
 Compilers and Interpreters
 Operating Systems
 Networks
 Applications Systems

9 Scientific Computation
 Precision and Accuracy
 Differential Equations
 Linear Algebra
 Optimization
 Data Analysis
 Simulation

Prolog

1 Elements of Programming
 Your First Program
 Built-in types of Data
 Conditionals and Loops
 Arrays
 Input and Output
 Case Study: Random Surfer

2 Functions and Modules
 Static Methods
 Libraries and Clients
 Recursion
 Case Study: Percolation

3 Data Abstraction
 Data Types
 Creating DataTypes
 Designing Data Types
 Case Study: N-body

4 Algorithms/Data Structures
 Performance
 Sorting and Searching
 Stacks and Queues
 Symbol Tables
 Case Study: Small World

Part I: Programming (2009) Part II: Computer science (in preparation)

Booksite

• Text digests

• Ready-to-use code

• Supplementary exercises/answers

• Links to references and sources

• Modularized lecture slides

• Programming assignments

• Demos for lecture and precept

• Simulators for self-study

• Scientific applications

10000+ !les
2000+ Java programs
50+ animated demos
1.2 million unique visitors in 2011

introcs.cs.princeton.edu

Algorithms for the masses

All science/engineering students need an algorithms course

Algorithms embraces a significant body of knowledge that is

• intellectually challenging

• pervasive in modern life

• critical to modern science and engineering

Barriers

• no room in curriculum

• need to implement all the algorithms (!)

• need to analyze all the algorithms (!)

• need to pick the most important ones

Central thesis for Algorithms (1975)

Current status of “Algorithms” (2012)

[Joint work with Kevin Wayne since 2007]

Any science/engineering student can appreciate

• data abstraction and modular programming

• 50+ classic and important algorithms and data structures

• historical context, applications

• relationships to OR, theory of algorithms

Algorithms (4th edition) and booksite (2011)

back to basics
(one book)

algs4.cs.princeton.edu

Booksite

• Text digests

• Ready-to-use code

• Supplementary exercises/answers

• Links to references and sources

• Modularized lecture slides

• Programming assignments

• Demos for lecture and precept

• Simulators for self-study

• Scientific applications

algs4.cs.princeton.edu

Top 100 algorithms

TOP 10 Algorithms
FFT
Quicksort
Simplex
Huffman
Dijkstra
Knuth-Morris-Pratt
Ford-Fulkerson

 . . .

Modular programming style

• one-click download

• test data

• variants

• robust library versions

• typical clients

Algs4 code (and much more) all available online

Messages for algorithms students

Modern programming models are for you

Algorithms are important and useful in scientific,

engineering, and commercial applications of all sorts

Classic algorithms for sorting, searching, graphs

and strings have enabled the development

of the computational infrastructure that surrounds us

Performance matters

A great many more important and useful algorithms remain to be discovered

Intrinsic limitations exist

Familiar and easy-to-motivate applications

Ideal example/assignment

• teaches a basic CS concept

• solves an important problem

• intellectually engaging

• modular program

• is open-ended

union-!nd

Percolation

Familiar and easy-to-motivate applications

Ideal example/assignment

• teaches a basic CS concept

• solves an important problem

• intellectually engaging

• modular program

• is open-ended

graph search

Prim’s MST algorithm

Familiar and easy-to-motivate applications

Bose-Einstein colliding particle simulation

priority queue

Ideal example/assignment

• teaches a basic CS concept

• solves an important problem

• intellectually engaging

• modular program

• is open-ended

are also skyrocketing

Enrollments in algorithms course

25+% of all Princeton students

0

75

150

225

300

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

“Algorithms” enrollments

seemed like a lot
at the time

enrollments now are
three times what they were
at the height of the bubble

Key factor in increase: All students in “CS for everyone” can take “Algorithms”

Summary

Proof of concept: First-year courses at Princeton

• 50+% of Princeton students in a single intro course

• 25+% of Princeton students in a single algorithms course

The scientific method is an essential ingredient in programming.

Embracing, supporting, and leveraging science in

intro CS and algorithms courses can serve large numbers of students.

ALGORITHMS FOR THE MASSES

Next goals:

• 50+% of all college students in an intro CS course

• 25+% of all college students in an algorithms course

Algorithms for the masses

Robert Sedgewick
Princeton University

