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Original version: Data structures seminar at Dagstuhl (Feb 2008)
• red-black trees made simpler (!)
• full delete() implementation

Next version: Analysis of Algorithms meeting at Maresias (Apr 2008)
• back to balanced 4-nodes
• back to 2-3 trees (!)
• scientific analysis

Addendum: observations developed after talk at Maresias

This version: Combinatorics and Probability seminar at University of Pennsylvania (Oct 2008)
• added focus on analytic combinatorics

Java code at www.cs.princeton.edu/~rs/talks/LLRB/Java

Movies at www.cs.princeton.edu/~rs/talks/LLRB/movies
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Red-black trees

are now found throughout our computational infrastructure

Textbooks on algorithms

Library search function in many programming environments

Popular culture (stay tuned)

Worth revisiting?

Introduction

.  .  .

.  .  .
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Red-black trees

are now found throughout our computational infrastructure

Typical:
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Digression:

Red-black trees are found in popular culture??
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Mystery: black door?
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Mystery: red door?
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An explanation ?
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Primary goals

Red-black trees (Guibas-Sedgewick, 1978)

• reduce code complexity

• minimize or eliminate space overhead

• unify balanced tree algorithms

• single top-down pass (for concurrent algorithms)

• find version amenable to average-case analysis

Current implementations

• maintenance

• migration

• space not so important (??)

• guaranteed performance

• support full suite of operations

Worth revisiting ?
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Primary goals

Red-black trees (Guibas-Sedgewick, 1978)

• reduce code complexity

• minimize or eliminate space overhead

• unify balanced tree algorithms

• single top-down pass (for concurrent algorithms)

• find version amenable to average-case analysis

Current implementations

• maintenance

• migration

• space not so important (??)

• guaranteed performance

• support full suite of operations

Worth revisiting ?   YES. Code complexity is out of hand.
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2-3-4 Tree

Generalize BST node to allow multiple keys.
Keep tree in perfect balance.

Perfect balance.  Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

• 2-node:  one key, two children.

• 3-node:  two keys, three children.

• 4-node:  three keys, four children.

W

smaller than K larger than R

between
K and R

K  R

C  E M  O

A D L N Q S  V Y  ZF  G  J
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Search in a 2-3-4 Tree

Compare node keys against search key to guide search.

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

W
smaller than M

found L

between
K and R

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  REx: Search for L
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Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

W

smaller than K

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  REx: Insert B

smaller than C

B not found
14
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Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to a 3-node.

W

smaller than K

C  E M  O

D L N Q S  V Y  ZF  G  J

K  REx: Insert B

smaller than C

B fits here

A  B
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Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

W

larger than R

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  REx: Insert X

larger
than W

X not found
16
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Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

• 3-node at bottom: convert to a 4-node.

W

larger than R

C  E M  O

A D L N Q S  VF  G  J

K  REx: Insert X

larger
than W

X fits here

X  Y  Z
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Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

W

smaller than K

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  REx: Insert H

larger than E

H not found
18
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Insertion in a 2-3-4 Tree

Add new keys at the bottom of the tree.

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to a 3-node. 

• 3-node at bottom: convert to a 4-node.

• 4-node at bottom: no room for new key.

W

smaller than K

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  REx: Insert H

larger than E

no room for H
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Splitting 4-nodes in a 2-3-4 tree

is an effective way to make room for insertions

C  E

D F  G  JA  B

H does not fit here

D

C  E  G

A  B

H does fit here !

F J

move middle
key to parent

split remainder
into two 2-nodes

D

C  E  G

A  B F H  J

Problem: Doesn’t work if parent is a 4-node

Bottom-up solution (Bayer, 1972)

• Use same method to split parent

• Continue up the tree while necessary

Top-down solution (Guibas-Sedgewick, 1978)

• Split 4-nodes on the way down

• Insert at bottom

20



Introduction
2-3-4 Trees
LLRB Trees
Deletion
Analysis

Splitting 4-nodes on the way down

ensures that the “current” node is not a 4-node

Transformations to split 4-nodes:

local transformations
that work anywhere in the tree

Invariant: “Current” node is not a 4-node

Consequences:

• 4-node below a 4-node case never happens 

• Bottom node reached is always a 2-node or a 3-node
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Splitting a 4-node below a 2-node

is a local transformation that works anywhere in the tree

could be huge  unchanged

D  Q

K  Q  W

D

K W
A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z
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Splitting a 4-node below a 3-node

is a local transformation that works anywhere in the tree

could be huge  unchanged

K  Q  W K W
A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

E-G

D H

A-C E-G

D  H  Q
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Growth of a 2-3-4 tree

happens upwards from the bottom

insert A

insert S

insert E

insert R
split 4-node to

and then insert

insert C

insert D

tree grows
up one level

insert I

A

A  S

A  E  S

E

A R  S

E

A S

E

R  SA  C

E

R  SA  C  D

E

A  C  D I  R  S
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Growth of a 2-3-4 tree (continued)

happens upwards from the bottom

split 4-node to

and then insert

tree grows
up one level

split 4-node to

and then insert

split 4-node to

and then insert

E

C R

E  R

I S

A D

C  E  R

E

A  C  D I  R  S

E  R

A  C  D I  N

insert N

insert B

insert X

C  E  R

S

SD I  N

D I  NA  B S  X

C R

E

A  B
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Balance in 2-3-4 trees

Key property: All paths from root to leaf are the same length

Tree height.

• Worst case:  lg N    [all 2-nodes]

• Best case: log4 N = 1/2 lg N    [all 4-nodes]

• Between 10 and 20 for 1 million nodes.

• Between 15 and 30 for 1 billion nodes.

Guaranteed logarithmic performance for both search and insert.
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Direct implementation of 2-3-4 trees

is complicated because of code complexity.

Maintaining multiple node types is cumbersome.

• Representation?

• Need multiple compares to move down in tree.

• Large number of cases for splitting.

• Need to convert 2-node to 3-node and 3-node to 4-node.

Bottom line: Could do it, but stay tuned for an easier way.

private void insert(Key key, Val val)
{
   Node x = root;
   while (x.getTheCorrectChild(key) != null)
   {
      x = x.getTheCorrectChild(key);
      if (x.is4Node()) x.split();
   }
   if      (x.is2Node()) x.make3Node(key, val);
   else if (x.is3Node()) x.make4Node(key, val);
   return x;
}

fantasy
code
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Red-black trees (Guibas-Sedgewick, 1978)

1. Represent 2-3-4 tree as a BST.

2. Use "internal" red edges for 3- and 4- nodes.

Key Properties

• elementary BST search works

• easy to maintain a correspondence with 2-3-4 trees
(and several other types of balanced trees)

C  E

D F  G  JA  B

3-node 4-node

or

B

C

D

E

FG

J

A

Note: correspondence is not 1-1.
(3-nodes can lean either way) A

C

D

E

FG

J

B

B

C

D

E

FG

JA

C

D

E

FG

J

A

B

Many variants studied ( details omitted. )

NEW VARIANT (this talk): Left-leaning red-black trees
29
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Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" red edges for 3- and 4- nodes.

3. Require that 3-nodes be left-leaning.

Key Properties

• elementary BST search works

• easy-to-maintain 1-1 correspondence with 2-3-4 trees

• trees therefore have perfect black-link balance

3-node

C  E

D F  G  JA  B
B

C

D

E

F J

G

A

4-node
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Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" red edges for 3- and 4- nodes.

3. Require that 3-nodes be left-leaning.

Disallowed

• right-leaning 3-node representation

• two reds in a row

standard red-black trees
allow this one

single-rotation trees
allow all of these

original version of left-leaning trees
 used this 4-node representation

3-node 4-node
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Java data structure for red-black trees

public class BST<Key extends Comparable<Key>, Value>
{
    private static final boolean RED   = true;
    private static final boolean BLACK = false;
    private Node root;

    private class Node
    {
        Key key;
        Value val;
        Node left, right;
        boolean color;
        Node(Key key, Value val, boolean color)
        {
            this.key   = key;
            this.val = val;
            this.color = color;
        }
    }
 
   public Value get(Key key)
   // Search method.
 
   public void put(Key key, Value val)
   // Insert method.
}

color of incoming link

private boolean isRed(Node x)
{  
   if (x == null) return false;
   return (x.color == RED);
}

helper method to test node color

constants

adds one bit for color to elementary BST data structure

B

C

D

E

F J

G

A
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Search implementation for red-black trees

is the same as for elementary BSTs

( but typically runs faster because of better balance in the tree).

Important note: Other BST methods also work

• order statistics

• iteration

public Value get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if (cmp == 0)     return x.val;
      else if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
   }
   return null;
}

public Key min()
{
   Node x = root;
   while (x != null) x = x.left;
   if (x == null) return null;
   else           return x.key;
}

BST (and LLRB tree) search implementation

Ex: Find the minimum key

B

C

D

E

F J

G

A
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Insert implementation for LLRB trees

is best expressed in a recursive implementation

Note: effectively travels down the tree and then up the tree.

• simplifies correctness proof

• simplifies code for balanced BST implementations

• could remove recursion to get stack-based single-pass algorithm

private Node insert(Node h, Key key, Value val)
{ 
   if (h == null) 
      return new Node(key, val);

   int cmp = key.compareTo(h.key);
   if (cmp == 0) h.val = val;
   else if (cmp < 0) 
      h.left = insert(h.left, key, val); 
   else 
      h.right = insert(h.right, key, val); 

   return h;
}

associative model
(no duplicate keys)

Recursive insert() implementation for elementary BSTs

Nonrecursive

Recursive

.  .  .
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Balanced tree code

is based on local transformations known as rotations

In red-black trees, we only rotate red links
(to maintain perfect black-link balance)

private Node rotateLeft(Node h)
{  
   Node x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = x.left.color;
   x.left.color = RED;
   return x;
}

h F

Q

x

F

Q

private Node rotateRight(Node h)
{  
   Node x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = x.right.color;
   x.right.color = RED;
   return x;
}

A-E

G-P R-Z

R-Z

A-E G-P
x F

Q

h

F

Q

A-E

G-P R-Z

R-Z

A-E G-P
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Insert a new node at the bottom in a LLRB tree

follows directly from 1-1 correspondence with 2-3-4 trees

1. Add new node as usual, with red link to glue it to node above

2. Rotate if necessary to get correct 3-node or 4-node representation

rotate
right

rotate
left

rotate
left
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Splitting a 4-node

is accomplished with a color flip

Flip the colors of the three nodes

Key points:

• preserves prefect black-lin balance

• passes a RED link up the tree

• reduces problem to inserting (that link) into parent

private Node colorFlip(Node h)
{  
   x.color       = !x.color;
   x.left.color  = !x.left.color;
   x.right.color = !x.right.color;
   return x;
}

h

M

Q

N-P R-Z

E

F-LA-D

h

M

Q

N-P R-Z

E

F-LA-D
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Splitting a 4-node in a LLRB tree

follows directly from 1-1 correspondence with 2-3-4 trees

1. Flip colors, which passes red link up one level

2. Rotate if necessary to get correct representation in parent
    (using precisely the same transformations as for insert at bottom) 

Parent is a 2-node:  two cases

rotate
left

color
flip

color
flip
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rotate
right

Splitting a 4-node in a LLRB tree

Parent is a 3-node:  three cases

rotate
left

rotate
right

color
flip

color
flip

color
flip

follows directly from 1-1 correspondence with 2-3-4 trees

1. Flip colors, which passes red link up one level

2. Rotate if necessary to get correct representation in parent
    (using precisely the same transformations as for insert at bottom) 
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NEW TRICK: Do rotates on the way UP the tree.

• left-rotate any right-leaning link on search path

• right-rotate top link if two reds in a row found

• trivial with recursion (do it after recursive calls)

• no corrections needed elsewhere

Inserting and splitting nodes in LLRB trees

are easier when rotates are done on the way up the tree.

Search as usual

• if key found reset value, as usual

• if key not found  insert new red node at the bottom

• might leave right-leaning red or two reds in a row 
higher up in the tree

Split 4-nodes on the way down the tree.

• flip color

• might leave right-leaning red or two reds in a row 
higher up in the tree

or
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Insert code for LLRB trees

is based on four simple operations.

or
if (h == null) 
      return new Node(key, value, RED);

1. Insert a new node at the bottom.

if (isRed(h.left) && isRed(h.right))
      colorFlip(h);

2. Split a 4-node.

if (isRed(h.right))
      h = rotateLeft(h);

3. Enforce left-leaning condition.

could be
right or left

if (isRed(h.left) && isRed(h.left.left))
      h = rotateRight(h);

4. Balance a 4-node.
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Insert implementation for LLRB trees

is a few lines of code added to elementary BST insert

   private Node insert(Node h, Key key, Value val)
   { 
      if (h == null) 
         return new Node(key, val, RED);

      if (isRed(h.left) && isRed(h.right))
         colorFlip(h);

      int cmp = key.compareTo(h.key);
      if (cmp == 0) h.val = val;
      else if (cmp < 0) 
         h.left = insert(h.left, key, val); 
      else 
         h.right = insert(h.right, key, val); 

      if (isRed(h.right))
         h = rotateLeft(h);
      
      if (isRed(h.left) && isRed(h.left.left))
         h = rotateRight(h);

      return h;
   }

split 4-nodes on the way down

insert at the bottom

standard BST insert code

fix right-leaning reds on the way up

fix two reds in a row on the way up
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LLRB (top-down 2-3-4) insert movie
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A surprise

Q. What happens if we move color flip to the end?

   private Node insert(Node h, Key key, Value val)
   { 
      if (h == null) 
         return new Node(key, val, RED);

      if (isRed(h.left) && isRed(h.right))
         colorFlip(h);

      int cmp = key.compareTo(h.key);
      if (cmp == 0) h.val = val;
      else if (cmp < 0) 
         h.left = insert(h.left, key, val); 
      else 
         h.right = insert(h.right, key, val); 

      if (isRed(h.right))
         h = rotateLeft(h);
      
      if (isRed(h.left) && isRed(h.left.left))
         h = rotateRight(h);

      return h;
   }
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A surprise

Q. What happens if we move color flip to the end?

   private Node insert(Node h, Key key, Value val)
   { 
      if (h == null) 
         return new Node(key, val, RED);

      int cmp = key.compareTo(h.key);
      if (cmp == 0) h.val = val;
      else if (cmp < 0) 
         h.left = insert(h.left, key, val); 
      else 
         h.right = insert(h.right, key, val); 

      if (isRed(h.right))
         h = rotateLeft(h);
      
      if (isRed(h.left) && isRed(h.left.left))
         h = rotateRight(h);

      if (isRed(h.left) && isRed(h.right))
         colorFlip(h);

      return h;
   }
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A surprise

Q. What happens if we move color flip to the end?

A. It becomes an implementation of 2-3 trees (!)

   private Node insert(Node h, Key key, Value val)
   { 
      if (h == null) 
         return new Node(key, val, RED);

      int cmp = key.compareTo(h.key);
      if (cmp == 0) h.val = val;
      else if (cmp < 0) 
         h.left = insert(h.left, key, val); 
      else 
         h.right = insert(h.right, key, val); 

      if (isRed(h.right))
         h = rotateLeft(h);
      
      if (isRed(h.left) && isRed(h.left.left))
         h = rotateRight(h);

      if (isRed(h.left) && isRed(h.right))
         colorFlip(h);

      return h;
   }

Insert in 2-3 tree:

attach new node 
with red link

2-node → 3-node
3-node → 4-node

split 4-node

pass red link up to 
parent and repeat

no 4-nodes left!
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Insert implementation for 2-3 trees (!)

is a few lines of code added to elementary BST insert

   private Node insert(Node h, Key key, Value val)
   { 
      if (h == null) 
         return new Node(key, val, RED);

      int cmp = key.compareTo(h.key);
      if (cmp == 0) h.val = val;
      else if (cmp < 0) 
         h.left = insert(h.left, key, val); 
      else 
         h.right = insert(h.right, key, val); 

      if (isRed(h.right))
         h = rotateLeft(h);
      
      if (isRed(h.left) && isRed(h.left.left))
         h = rotateRight(h);

      if (isRed(h.left) && isRed(h.right))
         colorFlip(h);

      return h;
   }

insert at the bottom

standard BST insert code

fix right-leaning reds on the way up

fix two reds in a row on the way up

split 4-nodes on the way up

47



Introduction
2-3-4 Trees
LLRB Trees
Deletion
Analysis

LLRB (bottom-up 2-3) insert movie
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Why revisit red-black trees?

Which do you prefer?

private Node insert(Node x, Key key, Value val, boolean sw)
{ 
   if (x == null)
      return new Node(key, value, RED);
   int cmp = key.compareTo(x.key);

   if (isRed(x.left) && isRed(x.right))
   { 
      x.color = RED;
      x.left.color  = BLACK;
      x.right.color = BLACK;
   }
   if (cmp == 0) x.val = val;
   else if (cmp < 0))
   { 
     x.left = insert(x.left, key, val, false); 
     if (isRed(x) && isRed(x.left) && sw)
        x = rotR(x);
     if (isRed(x.left) && isRed(x.left.left))         
      {
         x = rotR(x);
         x.color = BLACK; x.right.color = RED;  
      }
   }
   else // if (cmp > 0)
   { 
      x.right = insert(x.right, key, val, true);
      if (isRed(h) && isRed(x.right) && !sw)
         x = rotL(x);
      if (isRed(h.right) && isRed(h.right.right)) 
      {
         x = rotL(x);
         x.color = BLACK; x.left.color = RED;   
      }
   }
   return x;
}

private Node insert(Node h, Key key, Value val)
{ 
   if (h == null) 
      return new Node(key, val, RED);

   int cmp = key.compareTo(h.key);
   if (cmp == 0) h.val = val;
   else if (cmp < 0) 
      h.left = insert(h.left, key, val); 
   else 
      h.right = insert(h.right, key, val); 

   if (isRed(h.right))
      h = rotateLeft(h);  
   if (isRed(h.left) && isRed(h.left.left))
      h = rotateRight(h);
   if (isRed(h.left) && isRed(h.right))
      colorFlip(h);

   return h;
}

very
tricky

straightforward

Left-Leaning
Red-Black Trees

Robert Sedgewick
Princeton University
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Why revisit red-black trees?

Take your pick:

46 33150 lines of code for insert
(lower is better!)

TreeMap.java

Adapted from
CLR by

experienced 
professional

programmers
(2004)

wrong scale!
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Why revisit red-black trees?

1972

1978

2008

LLRB implementation is far simpler than previous attempts.

• left-leaning restriction reduces number of cases 

• recursion gives two (easy) chances to fix each node

• take your pick: top-down 2-3-4 or bottom-up 2-3

Improves widely used implementations

• AVL, 2-3, and 2-3-4 trees

• red-black trees

Same ideas simplify implementation of other operations

• delete min, max

• arbitrary delete
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Why revisit red-black trees?

1972

1978

2008

LLRB implementation is far simpler than previous attempts.

• left-leaning restriction reduces number of cases 

• recursion gives two (easy) chances to fix each node

• take your pick: top-down 2-3-4 or bottom-up 2-3

Improves widely used implementations

• AVL, 2-3, and 2-3-4 trees

• red-black trees

Same ideas simplify implementation of other operations

• delete min, max

• arbitrary delete
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Worst-case analysis

follows immediately from 2-3-4 tree correspondence

1. All trees have perfect black balance.

2. No two red links in a row on any path.

Shortest path: lg N (all black)

Longest path: 2 lg N (alternating red-black)

Theorem: With red-black BSTs as the underlying data structure, we 
can implement an ordered symbol-table API that supports insert, 
delete, delete the minimum, delete the maximum, find the minimum, 
find the maximum, rank, select the kth largest, and range count in 
guaranteed logarithmic time.

Red-black trees are the method of choice for many applications.

Analysis
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One remaining question

that is of interest in typical applications

The number of searches far exceeds the number of inserts.

Q. What is the cost of a typical search?

A. If each tree node is equally likely to be sought, compute the 
internal path length of the tree and divide by N.

Q. What is the expected internal path length of a tree built with 
randomly ordered keys (average cost of a search)?

N: 8

internal path length: 0 + 1 + 1 + 2 + 2 + 2 + 2 + 3  =  13 

average search cost: 13/8 = 1.625

0

1 1

2 2 2 2

3

Analysis
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is a modern basis for studying discrete structures

Developed by

     Philippe Flajolet  and many coauthors

based on
     classical combinatorics and analysis

Generating functions (GFs) encapsulate sequences

Symbolic methods treat GFs as formal objects

• formal definition of combinatorial constructions

• direct association with generating functions

Complex asymptotics treat GFs as functions in the complex plane

• Study them with singularity analysis and other techniques

• Accurately approximate original sequence

Analytic Combinatorics

Cambridge University Press

Coming in 2008,
now available

on the web

Analysis
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Analysis of algorithms: classic example

Quadratic equation

A binary tree is a node connected to two binary trees.

How many binary trees with N nodes?

B(z) = 1 -   1 - 4z

2z

Stirling’s approximation

Given a recurrence 
relation

multiply both sides by 
zN and sum to get

an equation

that we can solve
algebraically

and expand to
get coefficients

that we can 
approximate BN ∼ 

πN
4N

N

Binomial theorem

Basic challenge: need a new derivation for each problem

BN = B0 BN-1 +...+ Bk BN-1-k +...+ BN-1 B0

B(z) ≡ B0z0 + B1z1 + B2z2 + B3z3 + ...introduce a generating
function

B(z) = 1 + z B(z)2

BN =     
1

N+1 (  )2N
N

Analysis
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Analytic combinatorics: classic example

by quadratic equation

since                                 ,

so  G(z)2 - G(z) + z = 0

G(z) = 
1

1 - G(z)

A tree is a node connected to a sequence of trees

How many trees with N nodes?

G(z) = 1 -   1 - 4z

2

N
GN ∼ 

4N

NΓ(½) πN
4N

= 

First principle: location of singularity
determines exponential growth

Second principle: nature of singularity
determines subexponential factor

 <G> = ε + <G> + <G>×<G> + <G>×<G>×<G> + ...

G(z) = 1 + G(z) +  G(z)2   +   G(z)3    + ...

Combinatorial
constructions

directly map to GFs

that we can 
manipulate

algebraically

and treat as a 
complex function to 
approximate growth 2N2N

NOTE: exact formula  not needed!

Analysis
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Analytic combinatorics: singularity analysis

is a key to extracting coefficient asymptotics

Exponential growth factor

• depends on location of dominant singularity

• is easily extracted

Polynomial growth factor

• depends on nature of dominant singularity

• can often be computed via contour integration

[zN](1 - bz)c = bN [zN](1 - z)cEx:

[zN](1 - z)c =                  dz

            ~                  dz

            ~  

2πi
1 ⌠
⌡ zN+1

(1 - z)c

C

2πi
1 ⌠
⌡ zN+1

(1 - z)c

H

Γ(c)Nc+1
1

Ex:

C H

Cauchy coefficient
formula

Hankel contour

many details
omitted!

Analysis
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Warmup: tree enumeration

is classic analytic combinatorics

binary trees 2-3 trees (Odlyzko, 1982)

combinatorial
construction

generating
function

domain of
analyticity

radius of
convergence

asymptotic
growth

asymptotic
approximation

<B> = u + <B> × <B> E<u> = u +E<u∞suu + uuud>

B(z) = z + B(z)2 E(z) = z + E(z 2 + z 3)

1/4 1/ w

BN  xv  4N EN  xv  wN

BN , 4N / EN , wN p(log N) / N

periodic function

πNN

Analysis
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Exercises in tree enumeration

Left-leaning 2-3 trees

2-3-4 trees

top-down 2-3-4 trees

path length in 2-3 trees (all trees equally likely)

Analysis
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Path length in search trees

is a property of permutations, not trees

Confronting this fact is the essential challenge in the analysis

random binary tree

random binary search tree

Analysis
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Average-case analysis of balanced search trees

is a longstanding open problem

Main questions: 

     Is average path length in tree built from random keys ~ c lg N ?
     If so, is c = 1 ?

Analysis
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Average-case analysis of balanced search trees

is a longstanding open problem

Main questions: 

     Is average path length in tree built from random keys ~ c lg N ?
     If so, is c = 1 ?

Experimental evidence

Ex: Tufte plot of average path length in 2-3 trees

• N = 100, 200, . . . , 50,000

• 100 trees each size

Tufte plot

sample σ
sample
mean

50,000100

5

14

lg N − 1.5
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Average-case analysis of balanced search trees

is a longstanding open problem

Main questions: 

     Is average path length in tree built from random keys ~ c lg N ?
     If so, is c = 1 ?

Experimental evidence strongly suggests YES!

Ex: Tufte plot of average path length in 2-3 trees

• N = 100, 200, . . . , 50,000

• 100 trees each size

Tufte plot

sample σ
sample
mean

50,000100

5

14

lg N − 1.5
Average path length in 2-3 tree built from random keys

Analysis
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Experimental evidence

can suggest and confirm hypotheses

50,000100

5

14

lg N − 1.5

50,000100

5

14

lg N − 1.5

Average path length in 2-3 tree built from random keys

Average path length in (top-down) 2-3-4 tree built from random keys

Ex: Does one of the algorithms lead to significantly faster search?

Hypothesis: No.

Analysis
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Average-case analysis of balanced search trees

is a longstanding open problem

Main questions: 

     Is average path length in tree built from random keys ~ c lg N ?
     If so, is c = 1 ?

Some known facts:

• worst case gives easy 2 lg N upper bound

• fringe analysis of gives upper bound of ck lgN with ck > 1

• analytic combinatorics gives path length in random trees

Are simpler implementations simpler to analyze?

Is the better experimental evidence that is now available helpful?

A starting point: study balance at the root (left subtree size)

Analysis
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Left subtree size in left-leaning 2-3 trees 

6

12 12

72 48

288 144 288

2160 864 1152 864

4

5

6

7

Exact distributions
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Left subtree size in left-leaning 2-3 trees 

Limiting distribution?

64

7

smoothed version (32-64)

Analysis
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Left subtree size in left-leaning 2-3 trees 

Tufte plot 

64

7

Analysis
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Left subtree size in left-leaning 2-3 trees 

Tufte plot 

500

100

view of highway for bus driver who 
has had one Caipirinha too many ?
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Left subtree size in left-leaning 2-3 trees 

Limiting distribution?

400

350

10,000 trees for each size

smooth factor 10

Analysis
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An exercise in the analysis of algorithms

Find a proof !

50,000100

5

14

lg N − 1.5

Average path length in 2-3 tree built from random keys
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Observation 1

The percentage of red nodes in a 2-3 tree is

between 25 and 25.5% 

50,000100

0

25

Percentage of red nodes in 2-3 tree built from random keys

25.38168
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Observation 2

The height of a 2-3 tree is ~2 ln N (!!!)

50,000100

Height of a 2-3 tree built from random keys

lg N - 1.5

Very surprising because the average path length in an elementary BST is also ~2 ln N ≈ 1.386 lg N 

5

14

2 ln N

22
21.66990
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Observation 3

The percentage of red nodes on each path in a 2-3 tree

rises to about 25%, then halves when the root splits
Analysis
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Observation 4

In aggregate, the observed number of red links per path

log-alternates between periods of steady growth and

not-so-steady decrease (because root-split times vary widely)

500

0

Analysis
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