NEW RESEARCH
on
THEORY and PRACTICE
of
SORTING and SEARCHING

R. Sedgewick
Princeton University

J. Bentley
Bell Laboratories

(Contex+t

Layers of abstraction in modern computing
e Applications
e Programming Environment
* Algorithm Implementations
 Operating System

 Hardware
Ongoing research and development at all levels

Sorting and secarching
 fundamental algorithms
e still the bottleneck in modern applications
o primitive in modern programming environments
e methods in use based on 1970s research

BASIC RESEARCH on algorithm analysis

(Motivation)

MOORE'S LAW: Processing Power Doubles every 18 months
similar maxims:

e memory capacity doubles every 18 months

e problem size expands to fill memory

Sedgewick’s Corollary: Need Faster Sorts every 18 months!
e sorts take longer to complete on new processors

old: N Ig N
s 0 ED

new: (2N Ig 2N)/2
Other compelling reasons to study sorting

o cope with new languages and machines
e rebuild obsolete libraries

« address new applications

e intellectual challenge of basic research

Simple fundamental algorithms: the ultimate portable software

(Quicksort)

Recursive procedure based on PARTITIONING

to PARTITION an array, divide it so that
o« some eclement a[il is in its final position
* no larger clement left of i
* no smaller element right of i
After partitioning, sort the left and right parts recursively

PARTITIONING METHOD:
o pick a partitioning element
e scan from right for smaller clement
e scan from left for larger eclement

exchange

repeat until pointers cross

Quicksort example

T I NGEXAMPLE

T I NGOXSMP LR

L MNOPRSTX

A A EEGI

i les

ioning examp

Parti

ASORTINGEXAMPLE

A S

A MPL

S MP L E

O X SMPLE

A

N G

ERT

AAEETINGOXSMPLR

(Partitioning implementation

Use Item to embody records-with-keys abstraction
e less: compare two keys
o exch: exchange two records

int partition(ltemal[], int |, int r)
{int i =1-1, j =7r1; Itemv = a[r];
for (5;)
{

while (less(a[++i], V))
while (less(v, a[--j]))
if (j ==1) break;
if (i >=j) break;
exch(alil, a[jl);

}
exch(a[i], a[r]):
return i;
}
Detail (?)

e how to handle equal keys [stay tuned]

(Quicksort implementation)

qui cksort(ltemal[], int I, int r)
{ int i;
if (r > 1)
{
| = partition(a, |, r);
qui cksort(a, |, 1-1);
qui cksort(a, 1+1, r);
}
}
Issues
e overhead for recursion?
e small files

running time depends on input
worst-case time cost (quadratic, a problem)
worst-case space cost (linear, a serious problem)

(Quicksort analysis (distinct keys))

BEST case: split in the middle, O(N Ig N) compares
e C(N) = N + 2 C(N/2)

WORST case: split at one end, O(N~2) compares
e C(N) = C(N-1)) + N

AVERAGE case: split at random position, ~2 N In N compares
eC(N) =N + 2 (C(o) + ... + C(N-1) /N

Defense agqainst worst case:
 choose random partitioning eclement
N log N randomized algorithm (Hoare, 1960)

Mathematical analysis

e predicts performance /
* gquides performance tuning ’//‘
e nontrivial 4/;%%‘\\“\“\

ex: limit distribution? /

(Quicksort with equal keys)

N keys, n distinct key values, N)) n
How to handle keys equal to PE?
DANGER: quadratic performance pitfalls

Method A: Put equal keys all on one
4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4
NO: quadratic for n =1 (all keys equal)

Method B. scan over equal keys?
1 4 1 4 1 4 1 4 4
1 4 1 4 1 4 1 4 4
1 1 1 4 1 4 4
NO: quadratic for n = 2 (linear for n =)
recursion GUARANTEES that above cases WILL occur for small n
randomization provides NO protection (!)

(Quicksort with equal keys (continued))

Method C. special case for small n?
e guaranteed O(N) for small n
e« O(N) overhead even if no equal keys

Method D. stop both pointers on equal keys?
4 9 4 1 4 4 9 1 4
1 4 4 1 4 9 9 4 4
e guaranteed O(N Ig N) for small n
e no overhead if no equal keys
* state of the art for library qsorts (through 1990s)

Not all library qsorts use Method D

Run gsort on huge file with two different keys
e doesn’t finish: A or B
e quick: C
e immediate: D

Can be inhibiting factor in library utility

(Three-way partitioning

PROBLEM: Sort files with 3 distinct key values

Natural and appealing problem
* Hoare, 1960
* Dijkstra, "Dutch National Flag Problem”

Immediate application to quicksort
e put ALL keys equal to the PE into position

less than v equal to v greater than v

Early solutions cumbersome and/or expensive
* not used in practical sorts before mid-i99os

(Bentley-Mcliroy three-way partitioning (1993)

FOUR-part partition
e some clements between i and j equal to v
* no larger clement left of i
* no smaller element right of j
e more clements between i and j equal to v
Swap equal keys into center

equal less greater equal Y

All the right properties
e ecasy to implement
e linear if keys all equal
e no extra compares if no equal keys (always N-i)

Expands utility of system qsort
e old: N Ig N (or quadratic!) for small n
e new: LINEAR for small n

(

Three-way partitioning implementation

for (k =1
for (k = r-1,;

voi d qui cksort(ltema[], int I, int r)
{
int i, j, k, p, q; ltemyv;
if (r <=1) return;
v=alr]; i =1-13 j =r; p=1-1;, g =r,;
for (;;)
{
while (less(a[++i], Vv)) ;
while (less(v, a[--j])) if (j ==1) break;
1 f (i >=j) break;
exch(ali], a[]]);

i1t (ea(ali],v)) { p++; exch(a[p],a[i]); }
It (eq(v,a[j])) { q--; exch(a[q].,a[j]); }
}

exch(al[i], a[r]); | =i-1; i =i+1;

|
. k++, j--) exch(a[k], a[j]);
, k--, 1++) exch(a[k], a[i]);

N XN
VA
o T

guir ckRsort (e, 1, T,
qui cksort(a, i, r);

}

(Analysis of 3-way partitioning)

Average running time of Quicksort with 3-way partitioning?

Empirical studies (Bentley, 1993)
e LINEAR number of compares for small n

ONE key value
N -1 compares

TWO key values: x1 instances of first, x2 instances of second
e with probability xi/N: (N-1) + (x2-1) compares
e with probability x2/N: (N-1) + (x1-1) compares
e total avg:
N-2 + 2 xix2/N
max at x1 = x2: 1.g N - 2

THREE key values
e [analysis looks complicated]

(Detailed analysis of 3-way partitioning)

Burge (1975): analysis of search trees with equal keys
Sedgewick (1975): lower bound on Quicksort with equal keys
e n distinct key values
e Xi instances of key i, for i from 1 to n
eXl + X2 + ... + xn = N

THM: Average number of compares is
C=N-n+2QN
Q is "Quicksort entropy’
o pi = xi/N (convert to probabilities)
o qlij} = pi pj/(pi + ... pj)
o riij} = qfij} + ... + qijj}
e Q@ = rim} + rizn} + ... + rinn}

Ex: xi all equal (to N/n)
e pi = 1/n
e q{ij} = (/n)(/(i-j+1))
eriijl = (W/n)O + /2 + ... + 1/(i-j+H1))
Q@ =Inn + 00)
eC =2 NInn + O(N)

(Information-theoretic sorting lower bound)

DECISION TREE describes all possible sequences of compares

1<3<2] [8<1<2 2<3<1] [3<2<1
number of leaves > N!//(xi! x2! x3! ... xn!) [multinomial coefficient]
take Ig for bound on compares
«C)Ig N! - Ig xi! = ... = Ig xn!
cC)I»NIgN-=-N=-xlg % = .. = xnlg xn

(Stirling’'s approximation)

ENTROPY:
o H = (xi/N)Ig(N/x1) + ... + (xn/N)Ig(N/xn)
*NH=NIgN-=-xlg x1 = .. = xnlg xn

THM: C) NH - N

(Entropy comparison)

Relationship between Q and H??

S5tandard entropy H
» equal to Ig n if all freqs equal
 maximized when all freqs equal (H never exceeds Ig n)

“"Quicksort entropy Q
e approaches In n if all freqs equal
e NOT maximized when all freqs equal

Ex: %

x2 = x3 = N/3
e Q = .4444...

Ex: %1 = x3 = .34N, x2 = .32N
°Q = .4443...

(Entropy comparison (continued))

Ex: x2 through xn all equal
horizontal axis: x1 (ranges from o to N)
N = 512, curve for each n from 2 to 30

“Quicksort entropy Q

S5tandard entropy H .

General result relating Q and H?
e answer found in basic research by Melhorn (1978)

(Quicksort is optimal)

“"Quicksort entropy’ function arises in analysis
of "self-organizing” binary search trees
o Allen and Munro, 1978

THM (Melhorn, 1978): Q € (In 2) H

THM (1999): Quicksort is optimal (!)
Proof:
NH-NCC <(2In2) NH + N
[C grows asymptotically with NH]

conjecture: with sampling, Cx/NH =)

NO sorting method can use fewer compares (asymptotically)
for ANY distribution of key values

(Extensions and applications)

Optimality of Quicksort
» underscores intrinsic value of algorithm
* resolves basic theoretical question
* analysis shows qsort to be sorting method of choice for
randomly ordered keys, abstract compare
small number of key values

Real-world applications
e nonuniform key values?
e varying key length?
e arbitrary distribution?

Extension 11 Adapt for varying key length
e Multikey Quicksort
e SORTING method of choice

Extension 2: Adapt algorithm to searching
e Ternary search trees
o« SEARCHING method of choice

(MSD radix sort)

Sort files where keys are sequences of BYTES
e ecach byte has value less than M
o typical: group of bits

METHOD:
e Partition file into M buckets

all keys with first byte o
all keys with first byte |
all keys with first byte 2

all keys with first byte M-
e Sort M pieces recursively

Tradeoff
e large M: space for buckets (too many empty buckets)

e small M: too many passes (too many keys per bucket)

(M5D radix sort potential fatal flaw)

each pass ALWAYS takes time proportional to N+M
e initialize the buckets
e scan the keys

Ex: (ASCIl bytes) M = 256

e 100 times slower than insertion sort for N = 2
Ex: (UNICODE) M = 65536

e 30,000 times slower than insertion sort for N = 2

TOO SLOW FOR SMALL FILES
recursive structure GUARANTEES sort is used for small files
Solution: cut to insertion sort for small files

Practical problems for library sort
e choice of radix
e cutoff point
e nonuniformity in keys

(Three-way radix Quicksort)

PROBLEM:
* long keys that differ slightly can be costly to compare
e this is the common case!

absol uti sm
absol utely

SOLUTION:
Do three-way partitioning on key characters
e Sort three parts recursively
(increment char ptr on middle subfile)

Ex: N records with huge (w-byte) keys
e Byte comparisons for pointer sort
MSD radix sort: Nw
3-way radix quicksort: 2 N In N
o SUBLINEAR sor+

Multikey Quicksort
e same algorithm, keys are VECTORS
e Unicode (16-bit chars) blurs distinction

String sort example

actini an
jeffrey
coenobite
conel r ad
secur eness
cum n
chari ness
br act eal

di spl ease
repertoire
dour ness
cent esi nal
di | atedly
I nkbl ot
sout heast
canker ous
circunfl ex

coenobite
conel r ad
actini an
br act eal
secur eness
dil atedly
| nkbl ot
jeffrey

di spl ease
repertoire
dour ness
sout heast
cum n
chari ness
cent esi nal
canker ous
circunfl ex

\glspleasg)

actini an
br act eal

dour ness

sout heast
secur eness
dil atedly
I nkbl ot
jeffrey

(Perspective on radix sorting

Three-way radix quicksort
e blends quicksort and M5D radix sort

quicksort
* leading part of keys used in all compares
e short inner loop otherwise

MSD radix sort
e empty bins on small files
 adapts poorly to variable-length keys
* long inner loop

Three-way radix quicksort

» compares characters, not strings

e short inner loop

e adapts to multikey

e METHOD of CHOICE for sorting long keys
easy to implement
works well on nonuniform keys
fastest in practice

(M-way trie)

SEARCH data structure corresponding to M5D radix sort

Nodes contain characters/links to implement M-way branching

(M-way trie analysis)

Assumptions
e N keys, total of C characters in keys
e approx. N trie nodes (or more, details omitted)
* M links per node
Space: NxM + C
Time: IgN/IgM CHARACTER comparisons (constant in practice)

Ex: M=26, N=20000

520,000 links, tree height 3-4
Ex: M=1§, N=IM

1M links, tree height 5

Faster than hashing
e successful search: no arithmetic
e unsuccessful search: don’'t need to examine whole key

DRAWBACKS
» good implementation nontrivial
e too much space for null links

(Ternary search trees (T5Ts))

Search algorithm corresponding to 3-way radix Quicksort

Nodes contain characters and links for three-way branching
e left: key character less
e middle: key character equal
* right: key character greater

Equivalent to TRIE with BST implementation of trie nodes

(TST implementation)

Search algorithm writes itself

| nt RSTsear chR(RSTptr x, char *v)
{
I f (x == NULL) return O;
1 f ((*v ==" ") && (x->ch ==" ")) return 1;
if (*v < x->ch)
return RSTsearchR(x->l, v);
I f (*v == x->ch)
return RSTsearchR(x->m v+1);
1 f (*v > x->ch)
return RSTsearchR(x->r, Vv);

}

Optimal (fully balanced) tree
e SUCCESSFUL secarch: Ig N + [key length]l character compares
o UNSUCCESSFUL search: Ig N character compares

Idea dates at least to 1962
o practical impact unnoticed until late 1990s
e casualty of compare abstraction

(Perspective on radix searching)

TSTs blend binary search trees (B5Ts) and tries

BSTs (correspond to Quicksort)
* leading part of keys always used in compares
e short inner loop otherwise

tries
* Yoo many null links for large radix
* long inner loop for small radix

TSTs
» compares characters, not strings
* equivalent to using B5Ts for trie nodes
e automatically adapts radix to keys
e METHOD of CHOICE for secarching
faster than hashing
gracefully grows and shirnks
support partial match, near-neighbor secarch, ..

AVERAGE-CASE ANALYSIS?

(T5T and multikey quicksort analysis

Clement, Flajolet, Valle (i999)
e unifies classical tree/triec analyses
e generalizes to nonuniform models
e extends to cover T5Ts
e exploits powerful tools
generalized Ruelle operators
Mellin transforms

Eight theorems
* algebraic and asymptotic analysis
e Poisson and Bernoulli models
 path lengths and height

THM: Asymptotic TST search cost: (Q/H) Ig N

Open problems
e TST height?
e concentration of distribution?
e limit distributions?

(Perspective)

New resecarch on fundamental algorithms
e 3-way quicksort
method of choice for small keys
e multikey quicksort
method of choice for large keys
e T5Ts
searching method of choice

Direct practical impact
e new applications demand fast algorithms
* new algs improve performance for all apps

old basic research results establish optimality of new algs
Deep new theory analyzes new algorithms
o predict performance

e set parameters

Future cth¢n9¢$
o similar refinements for other classic fundamental algorithms

(partial BIBLIOGRAPHY)

Allen and Munro, Self-organizing search trees
« JACM, 1978
Hoare, Quicksort
e« Computer Journal, April 1962
Clampett, Randomized binary secarching with trees
« CACM, March 1964
devroye, A probabilistic analysis of the height of tries
 Acta Informatica, 1984
Knuth, The Art of Computer Programming, vol. 3
* Addison-Wesley, 1975
Sedgewick, Quicksort with equal keys
e SICOMP, June 1977
Wegner, Quicksort for equal keys
e IEEE Trans. on Computers, April 1985
Bentley and Mcliroy, Engineering a sort function
 Software Practice and Experience, Jan. 1993
Bentley and Sedgewick, Sorting/searching strings
e SODA, January 1997
e Dr. Dobbs Journal, April and November, 1998
Clement, Flajolet, and Vallee, Analysis of Tries
» Algorithmica, 1999

Average number of compares for QUICKSORT with distinct keys

Recurrence from recursive program
1
CN:N—1+N Z (Cj_1+CN_j)
1<G<N

Change jto N +1— jin second sum

2

Cn=N-1+— Z Cj_]_.

N 1<j<N

Multiply both sides by N

2
NCy=N(N-1)+= 3 Cju
1<j<N

Subtract same equation for N — 1
NCN - (N - 1)CN—1 =2N + 2CN—1

Rearrange terms
NCN = (N + 1)CN—1 +2N

Divide by N(NV +1)
Cn Cn_1 N 2

N+1 N N+1

Telescope
Cn

N+1

=2(Hyn+1 — 1)

Approximate
Cy=~2NInN

Average number of compares for QUICKSORT with equal keys

Recurrence for average number of comparisons

1
Clzy,...,zp) = N+1+ = > z;(C(21,
N 1<G<N

Multiply both sides by N =z, +...+z,

NC(xq,...,2p) = NN — 1)+ Z zjC(zq, ...,
1<5<N

Subtract same equation for zo, ..., x, (With D(x; .

(x1+...+xn)D(x1...,xn)=x%—x1+2x1(x2+.

Subtract same equation for zq,...,x,_1

(x1+...+vz)D(xq,...,2p) — (1 +...+2,_1)D(21, ..

Simplify, divide by N
D(Jfl, .- -,xn) = D(Jfl .- '71:71—1)

Telescope (twice)

Clzy,...,zp) = N—n+2 Y

1<k<j<n

.. ,:1:]-_1) + C($j+1 .- xn))

rj_1)+ Z 2;C(x 41, . .
1<j<N

,xn)-

coxp) =C(xq, ..., xn) — Clx, ..., 1))

Lotxy)+ Z ziD(xq, ...,

2<j<n

G Tp—1) = 2212 + Xy D(21, . .

2x1x
+ 14n
r1t...tx,

T
Tpt... .tz

Tj-1)

. ,xn—l)

Upper bound on QUICKSORT entropy

Quicksort entropy definition

_ Prpy
@= ...+
1<k<j<n Pk T---TDj

Separate double sum

Q:ZPkZL

1<khen hejen Pt -+ D)

Substitute qij = (pit+... +pj/pi) (note: 1 =¢; < Qii+1) < -+ < Gin < 1/pi)

= Y m ¥ (chj—q%(j—l)

1<k<N k<j<n Ik

Bound with integral
dkn 1

Q< Zpk/ —dx

1<k<n Uk X

Simplify

Q< Y pngm< > p(—Inp)=HIn2
1<k<n 1<k<n

	Montreal
	MontrealM

