
 NEW RESEARCH

 on

 THEORY and PRACTICE

 of

 SORTING and SEARCHING

 R. Sedgewick

 Princeton University

 J. Bentley

 Bell Laboratories

Context

Layers of abstraction in modern computing

 Applications

 Programming Environment

 Algorithm Implementations

 Operating System

 Hardware

Ongoing research and development at all levels

Sorting and searching

 fundamental algorithms

 still the bottleneck in modern applications

 primitive in modern programming environments

 methods in use based on 1970s research

BASIC RESEARCH on algorithm analysis

Motivation

MOORE’S LAW: Processing Power Doubles every 18 months

similar maxims:

 memory capacity doubles every 18 months

 problem size expands to fill memory

Sedgewick’s Corollary: Need Faster Sorts every 18 months!

 sorts take longer to complete on new processors

 old: N lg N

 new: (2N lg 2N)/2 = N lg N + N

Other compelling reasons to study sorting

 cope with new languages and machines

 rebuild obsolete libraries

 address new applications

 intellectual challenge of basic research

Simple fundamental algorithms: the ultimate portable software

Quicksort

Recursive procedure based on PARTITIONING

to PARTITION an array, divide it so that

 some element a[i] is in its final position

 no larger element left of i

 no smaller element right of i

After partitioning, sort the left and right parts recursively

PARTITIONING METHOD:

 pick a partitioning element

 scan from right for smaller element

 scan from left for larger element

 exchange

 repeat until pointers cross

Quicksort example

A S O R T I N G E X A M P L E
A A E E T I N G O X S M P L RE
A A EE
A AA
AA

L I N G O P M R X T SR
L I G M O P NM
G I LG

I LL
II

N P ON
O PO

PP
S T XS

T XX
TT

A A E E G I L M N O P R S T X

Partitioning examples

A S O R T I N G E X A M P L EE

A S
A M P L

A A S M P L E

O
E X

A A E O X S M P L E

R
E R T I N G

A A E E T I N G O X S M P L RE

Partitioning implementation

Use Item to embody records-with-keys abstraction
 less: compare two keys
 exch: exchange two records

 int partition(Item a[], int l, int r)

 { int i = l-1, j = r; Item v = a[r];

 for (;;)

 {

 while (less(a[++i], v)) ;

 while (less(v, a[--j]))

 if (j == l) break;

 if (i >= j) break;

 exch(a[i], a[j]);

 }

 exch(a[i], a[r]);

 return i;

 }

Detail (?)
 how to handle equal keys [stay tuned]

Quicksort implementation

 quicksort(Item a[], int l, int r)

 { int i;

 if (r > l)

 {

 i = partition(a, l, r);

 quicksort(a, l, i-1);

 quicksort(a, i+1, r);

 }

 }

Issues
 overhead for recursion?
 small files
 running time depends on input
 worst-case time cost (quadratic, a problem)
 worst-case space cost (linear, a serious problem)

Quicksort analysis (distinct keys)

BEST case: split in the middle, O(N lg N) compares
 C(N) = N + 2 C(N/2)

WORST case: split at one end, O(N^2) compares
 C(N) = C(N-1) + N

AVERAGE case: split at random position, ~2 N ln N compares
 C(N) = N + 2 (C(0) + ... + C(N-1))/N

Defense against worst case:
 choose random partitioning element
 N log N randomized algorithm (Hoare, 1960)

Mathematical analysis
 predicts performance
 guides performance tuning
 nontrivial

 ex: limit distribution?

Quicksort with equal keys

N keys, n distinct key values, N >> n
How to handle keys equal to PE?
DANGER: quadratic performance pitfalls

Method A: Put equal keys all on one
. 4 4 4 4 4 4 4 4 4

. 4 4 4 4 4 4 4 4

NO: quadratic for n = 1 (all keys equal)

Method B. scan over equal keys?
. 1 4 1 4 1 4 1 4 4

. 1 4 1 4 1 4 1 4 4

. 1 1 1 4 1 4 4

NO: quadratic for n = 2 (linear for n = 1)

recursion GUARANTEES that above cases WILL occur for small n
randomization provides NO protection (!!)

Quicksort with equal keys (continued)

Method C. special case for small n?
 guaranteed O(N) for small n
 O(N) overhead even if no equal keys

Method D. stop both pointers on equal keys?
. 4 9 4 1 4 4 9 1 4

. 1 4 4 1 4 9 9 4 4

 guaranteed O(N lg N) for small n
 no overhead if no equal keys
 state of the art for library qsorts (through 1990s)

Not all library qsorts use Method D
Run qsort on huge file with two different keys

 doesn’t finish: A or B
 quick: C
 immediate: D

Can be inhibiting factor in library utility

Three-way partitioning

PROBLEM: Sort files with 3 distinct key values

Natural and appealing problem
 Hoare, 1960
 Dijkstra, "Dutch National Flag Problem"

Immediate application to quicksort
 put ALL keys equal to the PE into position

l j i r

less than v equal to v greater than v

Early solutions cumbersome and/or expensive
 not used in practical sorts before mid-1990s

Bentley-McIlroy three-way partitioning (1993)

FOUR-part partition
 some elements between i and j equal to v
 no larger element left of i
 no smaller element right of j
 more elements between i and j equal to v

Swap equal keys into center

l p i j q r

equal less greater equal v

All the right properties
 easy to implement
 linear if keys all equal
 no extra compares if no equal keys (always N-1)

Expands utility of system qsort
 old: N lg N (or quadratic!) for small n
 new: LINEAR for small n

Three-way partitioning implementation

 void quicksort(Item a[], int l, int r)
 {
 int i, j, k, p, q; Item v;
 if (r <= l) return;
 v = a[r]; i = l-1; j = r; p = l-1; q = r;
 for (;;)
 {
 while (less(a[++i], v)) ;
 while (less(v, a[--j])) if (j == l) break;
 if (i >= j) break;
 exch(a[i], a[j]);
 if (eq(a[i],v)) { p++; exch(a[p],a[i]); }
 if (eq(v,a[j])) { q--; exch(a[q],a[j]); }
 }
 exch(a[i], a[r]); j = i-1; i = i+1;
 for (k = l ; k < p; k++, j--) exch(a[k], a[j]);
 for (k = r-1; k > q; k--, i++) exch(a[k], a[i]);
 quicksort(a, l, j);
 quicksort(a, i, r);
 }

Analysis of 3-way partitioning

Average running time of Quicksort with 3-way partitioning?

Empirical studies (Bentley, 1993)

 LINEAR number of compares for small n

ONE key value

 N - 1 compares

TWO key values: x1 instances of first, x2 instances of second

 with probability x1/N: (N-1) + (x2-1) compares

 with probability x2/N: (N-1) + (x1-1) compares

 total avg:

 N - 2 + 2 x1 x2 / N

 max at x1 = x2: 1.5 N - 2

THREE key values

 [analysis looks complicated]

Detailed analysis of 3-way partitioning

Burge (1975): analysis of search trees with equal keys
Sedgewick (1975): lower bound on Quicksort with equal keys

 n distinct key values
 xi instances of key i, for i from 1 to n
 x1 + x2 + ... + xn = N

THM: Average number of compares is
 C = N - n + 2 Q N

Q is "Quicksort entropy"
 pi = xi/N (convert to probabilities)
 q{ij} = pi pj/(pi + ... pj)
 r{ij} = q{ij} + ... + q{jj}
 Q = r{1n} + r{2n} + ... + r{nn}

Ex: xi all equal (to N/n)
 pi = 1/n
 q{ij} = (1/n)(1/(i-j+1))
 r{ij} = (1/n)(1 + 1/2 + ... + 1/(i-j+1))
 Q = ln n + O(1)
 C = 2 N ln n + O(N)

Information-theoretic sorting lower bound

DECISION TREE describes all possible sequences of compares

1 < 2 ?

2 < 3 ? 1 < 3 ?

1 < 3 ? 2 < 3 ?1 < 2 < 3

1 < 3 < 2 3 < 1 < 2

2 < 1 < 3

2 < 3 < 1 3 < 2 < 1

number of leaves > N!/(x1! x2! x3! ... xn!) [multinomial coefficient]

take lg for bound on compares

 C > lg N! - lg x1! - ... - lg xn!

 C > N lg N - N - x1 lg x1 - ... - xn lg xn

 (Stirling’s approximation)

ENTROPY:

 H = (x1/N)lg(N/x1) + ... + (xn/N)lg(N/xn)

 N H = N lg N - x1 lg x1 - ... - xn lg xn

THM: C > N H - N

Entropy comparison

Relationship between Q and H??

Standard entropy H

 equal to lg n if all freqs equal

 maximized when all freqs equal (H never exceeds lg n)

"Quicksort entropy" Q

 approaches ln n if all freqs equal

 NOT maximized when all freqs equal

Ex: x1 = x2 = x3 = N/3

 Q = .4444...

Ex: x1 = x3 = .34N, x2 = .32N

 Q = .4453...

Entropy comparison (continued)

Ex: x2 through xn all equal

horizontal axis: x1 (ranges from 0 to N)

N = 512, curve for each n from 2 to 30

"Quicksort entropy" Q

Standard entropy H

General result relating Q and H?

 answer found in basic research by Melhorn (1978)

Quicksort is optimal

"Quicksort entropy" function arises in analysis

 of "self-organizing" binary search trees

 Allen and Munro, 1978

THM (Melhorn, 1978): Q < (ln 2) H

THM (1999): Quicksort is optimal (!)

Proof:

 N H - N < C < (2 ln 2) N H + N

 [C grows asymptotically with NH]

conjecture: with sampling, C*/NH -> 1

NO sorting method can use fewer compares (asymptotically)

for ANY distribution of key values

Extensions and applications

Optimality of Quicksort
 underscores intrinsic value of algorithm
 resolves basic theoretical question
 analysis shows qsort to be sorting method of choice for

 randomly ordered keys, abstract compare
 small number of key values

Real-world applications
 nonuniform key values?
 varying key length?
 arbitrary distribution?

Extension 1: Adapt for varying key length
 Multikey Quicksort
 SORTING method of choice

Extension 2: Adapt algorithm to searching
 Ternary search trees
 SEARCHING method of choice

MSD radix sort

Sort files where keys are sequences of BYTES

 each byte has value less than M

 typical: group of bits

METHOD:

 Partition file into M buckets

 all keys with first byte 0

 all keys with first byte 1

 all keys with first byte 2

 ...

 all keys with first byte M-1

 Sort M pieces recursively

Tradeoff

 large M: space for buckets (too many empty buckets)

 small M: too many passes (too many keys per bucket)

MSD radix sort potential fatal flaw

each pass ALWAYS takes time proportional to N+M
 initialize the buckets
 scan the keys

Ex: (ASCII bytes) M = 256
 100 times slower than insertion sort for N = 2

Ex: (UNICODE) M = 65536
 30,000 times slower than insertion sort for N = 2

TOO SLOW FOR SMALL FILES
recursive structure GUARANTEES sort is used for small files
Solution: cut to insertion sort for small files

Practical problems for library sort
 choice of radix
 cutoff point
 nonuniformity in keys

Three-way radix Quicksort

PROBLEM:
 long keys that differ slightly can be costly to compare
 this is the common case!

 absolutism

 absolutely

SOLUTION:
 Do three-way partitioning on key characters
 Sort three parts recursively

 (increment char ptr on middle subfile)

Ex: N records with huge (w-byte) keys
 Byte comparisons for pointer sort

 MSD radix sort: Nw
 3-way radix quicksort: 2 N ln N

 SUBLINEAR sort

Multikey Quicksort
 same algorithm, keys are VECTORS
 Unicode (16-bit chars) blurs distinction

String sort example

 actinian coenobite actinian

 jeffrey conelrad bracteal

 coenobite actinian coenobite

 conelrad bracteal conelrad

 secureness secureness cumin

 cumin dilatedly chariness

 chariness inkblot centesimal

 bracteal jeffrey cankerous

 displease displease circumflex

 repertoire repertoire repertoire

 dourness dourness dourness

 centesimal southeast southeast

 dilatedly cumin secureness

 inkblot chariness dilatedly

 southeast centesimal inkblot

 cankerous cankerous jeffrey

 circumflex circumflex displease

Perspective on radix sorting

Three-way radix quicksort
 blends quicksort and MSD radix sort

quicksort
 leading part of keys used in all compares
 short inner loop otherwise

MSD radix sort
 empty bins on small files
 adapts poorly to variable-length keys
 long inner loop

Three-way radix quicksort
 compares characters, not strings
 short inner loop
 adapts to multikey
 METHOD of CHOICE for sorting long keys

 easy to implement
 works well on nonuniform keys
 fastest in practice

M-way trie

SEARCH data structure corresponding to MSD radix sort

Nodes contain characters/links to implement M-way branching

b

y

s

e

a l

l

s

h

e

l

l

s

o

r

e

t

h

e

b

y

s

e

a l

l

s

h

e

l

l

s

t

h

e

M-way trie analysis

Assumptions
 N keys, total of C characters in keys
 approx. N trie nodes (or more, details omitted)
 M links per node

Space: N*M + C
Time: lgN/lgM CHARACTER comparisons (constant in practice)

Ex: M=26, N=20000
 520,000 links, tree height 3-4

Ex: M=16, N=1M
 16M links, tree height 5

Faster than hashing
 successful search: no arithmetic
 unsuccessful search: don’t need to examine whole key

DRAWBACKS
 good implementation nontrivial
 too much space for null links

Ternary search trees (TSTs)

Search algorithm corresponding to 3-way radix Quicksort

Nodes contain characters and links for three-way branching
 left: key character less
 middle: key character equal
 right: key character greater

Equivalent to TRIE with BST implementation of trie nodes

a c f g h i j m n o r s t w a o

j

f

c

a

h

g i

r

m

n

o

w

t

s

a

o

TST implementation

Search algorithm writes itself

 int RSTsearchR(RSTptr x, char *v)

 {

 if (x == NULL) return 0;

 if ((*v == ’ ’) && (x->ch == ’ ’)) return 1;

 if (*v < x->ch)

 return RSTsearchR(x->l, v);

 if (*v == x->ch)

 return RSTsearchR(x->m, v+1);

 if (*v > x->ch)

 return RSTsearchR(x->r, v);

 }

Optimal (fully balanced) tree
 SUCCESSFUL search: lg N + [key length] character compares
 UNSUCCESSFUL search: lg N character compares

Idea dates at least to 1962
 practical impact unnoticed until late 1990s
 casualty of compare abstraction

Perspective on radix searching

TSTs blend binary search trees (BSTs) and tries

BSTs (correspond to Quicksort)
 leading part of keys always used in compares
 short inner loop otherwise

tries
 too many null links for large radix
 long inner loop for small radix

TSTs
 compares characters, not strings
 equivalent to using BSTs for trie nodes
 automatically adapts radix to keys
 METHOD of CHOICE for searching

 faster than hashing
 gracefully grows and shirnks
 support partial match, near-neighbor search, ...

AVERAGE-CASE ANALYSIS?

TST and multikey quicksort analysis

Clement, Flajolet, Valle (1999)
 unifies classical tree/trie analyses
 generalizes to nonuniform models
 extends to cover TSTs
 exploits powerful tools

 generalized Ruelle operators
 Mellin transforms

Eight theorems
 algebraic and asymptotic analysis
 Poisson and Bernoulli models
 path lengths and height

THM: Asymptotic TST search cost: (Q/H) lg N

Open problems
 TST height?
 concentration of distribution?
 limit distributions?

Perspective

New research on fundamental algorithms
 3-way quicksort

 method of choice for small keys
 multikey quicksort

 method of choice for large keys
 TSTs

 searching method of choice

Direct practical impact
 new applications demand fast algorithms
 new algs improve performance for all apps

old basic research results establish optimality of new algs

Deep new theory analyzes new algorithms
 predict performance
 set parameters

Future challenges
 similar refinements for other classic fundamental algorithms

partial BIBLIOGRAPHY

Allen and Munro, Self-organizing search trees
 JACM, 1978

Hoare, Quicksort
 Computer Journal, April 1962

Clampett, Randomized binary searching with trees
 CACM, March 1964

devroye, A probabilistic analysis of the height of tries
 Acta Informatica, 1984

Knuth, The Art of Computer Programming, vol. 3
 Addison-Wesley, 1975

Sedgewick, Quicksort with equal keys
 SICOMP, June 1977

Wegner, Quicksort for equal keys
 IEEE Trans. on Computers, April 1985

Bentley and McIlroy, Engineering a sort function
 Software Practice and Experience, Jan. 1993

Bentley and Sedgewick, Sorting/searching strings
 SODA, January 1997
 Dr. Dobbs Journal, April and November, 1998

Clement, Flajolet, and Vallee, Analysis of Tries
 Algorithmica, 1999

Average number of compares for QUICKSORT with distinct keys

Recurrence from recursive program

CN = N − 1 +
1
N

∑
1≤j≤N

(Cj−1 + CN−j)

Change j to N + 1− j in second sum

CN = N − 1 +
2
N

∑
1≤j≤N

Cj−1.

Multiply both sides by N

NCN = N (N − 1) +
2
N

∑
1≤j≤N

Cj−1.

Subtract same equation for N − 1

NCN − (N − 1)CN−1 = 2N + 2CN−1

Rearrange terms
NCN = (N + 1)CN−1 + 2N

Divide by N (N + 1)
CN
N + 1

=
CN−1

N
+

2
N + 1

Telescope
CN
N + 1

= 2(HN+1 − 1)

Approximate
CN ≈ 2N lnN

Average number of compares for QUICKSORT with equal keys

Recurrence for average number of comparisons

C(x1, . . . , xn) = N + 1 +
1
N

∑
1≤j≤N

xj(C(x1, . . . , xj−1) + C(xj+1 . . . xn))

Multiply both sides by N = x1 + . . . + xn

NC(x1, . . . , xn) = N (N − 1) +
∑

1≤j≤N
xjC(x1, . . . , xj−1) +

∑
1≤j≤N

xjC(xj+1, . . . , xn).

Subtract same equation for x2, . . . , xn (with D(x1 . . . xn) ≡ C(x1, . . . , xn)− C(x2, . . . , xn))

(x1 + . . . + xn)D(x1 . . . , xn) = x2
1 − x1 + 2x1(x2 + . . . + xn) +

∑
2≤j≤n

xjD(x1, . . . , xj−1)

Subtract same equation for x1, . . . , xn−1

(x1 + . . . + xn)D(x1, . . . , xn)− (x1 + . . . + xn−1)D(x1, . . . , xn−1) = 2x1xn + xnD(x1, . . . , xn−1)

Simplify, divide by N

D(x1, . . . , xn) = D(x1 . . . , xn−1) +
2x1xn

x1 + . . . + xn

Telescope (twice)

C(x1, . . . , xn) = N − n + 2
∑

1≤k≤j≤n

xkxj
xk + . . . + xj

Upper bound on QUICKSORT entropy

Quicksort entropy definition

Q =
∑

1≤k<j≤n

pkpj
pk + . . . + pj

Separate double sum
Q =

∑
1≤k<n

pk
∑

k<j≤n

pj
pk + . . . + pj

Substitute qij = (pi + . . . + pj/pi) (note: 1 = qii ≤ qi(i+1) ≤ . . . ≤ qin < 1/pi)

Q =
∑

1≤k<N
pk

∑
k<j≤n

qkj − qk(j−1)

qkj

Bound with integral

Q <
∑

1≤k<n
pk

∫ qkn

qkk

1
x
dx

Simplify
Q <

∑
1≤k<n

pk ln qkn ≤
∑

1≤k<n
pk(− ln pk) = H ln 2

	Montreal
	MontrealM

