
Creating “Algorithms”

Robert Sedgewick
Princeton University

Third Edition 5
graph algorithms

~500 pages

Third Edition 1-4
basic/ADTs/sort/search

~700 pages

Second Edition
~650 pages

Algorithms
~550 pages

Java

C++

C

Java

C++

C

Modula-3
C++
C

Pascal

Pascal1982

2003

2001

2001

2002

1998

1997

1993
1992
1990
1988

Brief history of books

Translations: Japanese, French, German, Spanish, Italian, Polish, Russian
 20 years, 11 books, 17+ translations, 400,000+ copies in print

Ground rules for book authors

1. You are on your own

2. Deadlines exist

3. Content over form

4. Focus on the task at hand

5. Tell the truth about what you know

6. Revise, revise, revise

First edition 1977-1982

Goals:
Algorithms for the masses
Use real code, not pseudocode
Exploit computerized typesetting technology

Problems:
Real code hard to find for many algorithms
Laser printers unavailable outside research labs
low resolution
software to create figures?

Approach:
emacs + TeX for text
pen-and-ink for figures

1977 historical context

not enough G’s in Paris

First edition features:
phototypeset final copy
real Pascal code
pen-and-ink drawings

loom

Goal:
All the book’s code should be real code.

Problems:
Pascal compiler expects code in .p file
TeX formatter expects code in .tex file
Not all the code goes into the book
Code has to be formatted
Continually need to fix bugs and test fixes

Solution:
Add comments in .p files to id and name code fragments
Add “include” lines to source that refer to names
loom: shell script to build .tex file

loom example (1st edition)
Text (.loom file)

program example(input,output);
var a: array[1..100] of integer;
 N,i: integer;
{include code}
procedure solve;
 var i,j,t: integer;
 begin
 ...
 end;
{end include code}
begin
...
solve;
...
end.

\Sh{Example program}
One of the simplest algorithms for
this task works as follows: first
do this, then do that. This code
does this and that:
\prog{
%include example.p code
}
\noindent
This algorithm is sometimes useful.
Its running time is proportional to
... loom

Typescript (.tex file)
\Sh{Example program}
One of the simplest algorithms for
this task works as follows: first
do this, then do that. This code
does this and that:
\prog{
procedure solve;
 var i,j,t: integer;
 begin
 ...
 end;
}
\noindent
This algorithm is sometimes useful.
Its running time is proportional to
...

Program (.p file)

Second edition 1986-87

Goals:
Make content more widely accessible
Eliminate pen-and-ink
Add visual representations of data structures

Problem:
Figures are numerous and intricate

Opportunities:
LaserWriter + PostScript
Algorithm animation research

Approach:
Add introductory material; move math algs to end
dsdraw: package for drawing data structures
fig: use loom to include program output in figs

dsdraw

PostScript code to draw data structures
basic graphics
automatic layout of snapshots

Ex: points in the plane
/points
 % Points in the plane
 % Stack: array containing the points
([label,x,y] for each node).
 % (Example: [[(C) 1 3] [(B) 2 5] [(D) 3 5]
[(A) 3 1]])
 % Optional fourth argument can change nodestyle
 % Put a dummy point [N M] to fool (size) (?)
{/option exch def
 option (size) eq
 {dup
 /xmax 0 def /ymax 0 def
 {aload length 4 eq {pop} if
 dup ymax gt {/ymax exch def}{pop} ifelse
 dup xmax gt {/xmax exch def}{pop} ifelse
 pop} forall
 xmax ymax} if
 option (plot) eq
 {{aload length 3 eq {nodestyle} if drawnode}
forall} if
 } def

dsdraw: basic data structure drawings

[[[(X)]
 [(T) A][(P)]
 [(G)][(S) A][(O)][(N)]
 [(A)][(E)][(R) A][(A)][(I)][(M)]]]
(completetree)

[[[[(A) 1 7][(B) 2 5][(C) 4 5][(D) 2 3][(E) 4 3]
 [(F) 1 1][(G) 6 5][(H) 8 6][(I) 10 6][(J) 8 3]
 [(K) 10 3][(L) 8 1][(M) 10 1]]
 [[() 1 7][() 1 2][() 1 3][() 12 13][() 10 13]
 [() 10 12][() 10 11][() 5 4][() 6 4][() 8 9]
 [() 6 5][() 1 6][() 7 5]]]]
(graph)

[[...]]
(polygon)

permutation
array of ints
2D array
points

completetree
tree
polygon
graph

fig

Goal:
Use programs to produce figures

Problem:
figures are PostScript programs

Opportunities:
loom

Solution:
instrument Pascal code to produce .ps code
use loom to include program output in .ps files

(filter out instrumentation)
include refs to .ps files in .tex files

fig example (2nd edition)
Text (.loom file)

...
{include code}
procedure solve;
 var i,j,t: integer;
 begin
 ...
{IE} for i:= l to r do
{IE } write(a[i]:4);
 ...
 end;
{end include code}
...

\Sh{Example program}
One of the simplest algorithms for
this task works as follows: first
do this, then do that. This code
does this and that:
\prog{
%include example.p code | grep -v IE
}
\noindent
This algorithm is sometimes useful.
This figure shows how it works:
\fig{... psfile: fig1.ps ...}
... loom

Typescript (.tex file)
\Sh{Example program}
One of the simplest algorithms for
this task works as follows: first
do this, then do that. This code
does this and that:
\prog{
procedure solve;
 var i,j,t: integer;
 begin
 ...
 end;
}
\noindent
This algorithm is sometimes useful.
This figure shows how it works:
\fig{... psfile: fig1.ps ...}
...Program (.p file)

[
[127 125 126 124 115 117 122 123 ...]
]
(permutation) showdata

Figure (.ps file)

Note: can use loom here, too!

dsdraw: automatic layout of snapshots

[
[[(A)][(S)][(O)][(R)][(T)]
 [(I)][(N) A][(G)][(E)][(X)]
 [(A)][(M)][(P)][(L) B][(E) B]]
[[(A)][(S)][(O)][(R)][(T)]
 [(P) A][(N)][(G)][(E)][(X)]
 [(A)][(M) B][(I) A][(L)][(E)]]
[[(A)][(S)][(O)][(R)][(X) A]
 [(P)][(N)][(G)][(E)][(T) A]
 [(A) B][(M)][(I)][(L)][(E)]]
[[(A)][(S)][(O)][(R) A][(X)]
 [(P)][(N)][(G) B][(E) B][(T)]
 [(A)][(M)][(I)][(L)][(E)]]
[[(A)][(S)][(P) A][(R)][(X)]
 [(O) A][(N) B][(G)][(E)][(T)]
 [(A)][(M)][(I)][(L)][(E)]]
[[(A)][(X) A][(P)][(R) B][(T) A]
 [(O)][(N)][(G)][(E)][(S) A]
 [(A) B][(M)][(I)][(L)][(E)]]
[[(X) A][(T) A][(P) B][(R) B]
 [(S) A][(O)][(N)][(G)][(E)]
 [(A) A][(A) B][(M)][(I)][(L)]
 [(E)]]
]

(completetree)

Beyond manual drafting

Second edition features

Algorithms for the masses

Uses real code, not pseudocode

Fully exploits technology

Original goals realized, PLUS

Innovative, detailed visualizations

Done?

Other languages (1990-1993)

Mandate:
Spread the word in other programming languages

Challenges:
Which languages? (Answer: C, C++, and Modula-3)
Who translates?
Early versions of new languages are unstable

Solution:
Copy-and-edit to implement programs in new language
Use conditionals in typescript for language-dependent text

Problems:
(figs were produced by Pascal programs)
difficult to take advantage of language features
typescript is a mess; layout is painful

Third edition 1993-
Goals:

Full coverage, not summary
Take visualizations to next level
Analyses with empirical verification

Challenges:
Typescript filled with conditionals
Program code filled with instrumentation
figs made with Pascal code
Many algorithms not well-understood

Approach:
START OVER, one language at a time

 Status: 9 books, 6 done

Algorithms in
C
C+

Java

Parts 1-4
Part 5

Parts 6-8

Layout:
Structured text, figures, exercises, programs, tables
Multiple story flows (figs with captions in margins)

Figures:
Direct PostScript implementations
Visualize “large” examples
Explanatory captions

Programs:
Full implementations to support empirical studies
Emphasize ADTs in all languages
Use consultants to champion language features

Exercises:
All questions addressed

Tables:
Summarize full empirical studies

Starting over (third edition)

PostScript as algorithm visualization tool

/insert
 {
 /X rand 1000 idiv N mod def
 /N N 1 add def
 /sum 0 def
 /a [
 0 1 a length 1 sub
 {
 a exch get /nd exch def
 X sum ge X sum nd add lt and
 {
 nd 1 add M 1 add ge
 { M 1 add 2 div dup
 /S S 1 add def }
 { nd 1 add } ifelse
 } { nd } ifelse
 /sum sum nd add def
 } for
] def
 } def

/doit
 {
 /a [M] def showline
 Nmax { insert showline } repeat
 } def

Third edition features
programs

C, C++, Java
figures

dsdrawn
direct

tables
empirical
summaries

exercises
(1000s)

properties
(theorems)

layout design
links**

** not enough (stay tuned)

Creating “Algorithms”

programs

tables

Java

G R A P H P R O P E R T I E S A N D T Y P E S

Many computational applications naturally involve not just a set of
items, but also a set of connections between pairs of those items.
The relationships implied by these connections lead immediately to a
host of natural questions: Is there a way to get from one item to another
by following the connections? How many other items can be reached
from a given item? What is the best way to get from this item to this
other item?

To model such situations, we use abstract objects called
graphs. In this chapter, we examine basic properties of graphs in
detail, setting the stage for us to study a variety of algorithms that
are useful for answering questions of the type just posed. These
algorithms make effective use of many of the computational tools that
we considered in Parts 1--4. They also serve as the basis for
attacking problems in important applications whose solution we could
not even contemplate without good algorithmic technology.
...

text sections

program euclid(input,output);
var x,y: integer;
function gcd(u,v:integer): integer;
 begin
 if v=0 then gcd:=u
 else gcd:=gcd(v, u mod v)
 end;
begin
while not eof do
 begin
 readln(x,y);
 if x<0 then x:=-x;
 if y<0 then y:=-y;
 writeln(x,y,gcd(x,y));
 end;
end.

figures

Write a representation-independent graph-initialization ADT
function that, given an array of edges, returns a graph.

exercises

Bookmaker
English

Bookmaker (the lonely author)

TeX

.ps
emacs

.pdf

Unix

juggler image from Northern Lights Software

Facts and figures

0

0

Third edition
 1-8 (est.)

Third edition
 1-5 (typical)

Second edition
(typical)

Algorithms

filesexercisestablesfiguresprogramspages

40,000

25,000

6,000

600

3,500

2,000

400

400

120

75

800

500

350

150

400

250

200

140

2000

1200

650

550

digression: PostScript as math visualization tool

/doit
{ /M exch def /Nmax exch def
 /A [0 M 1 sub M div 1 M div 0] def
 3 1 Nmax
 { /N exch def
 [0
 1 1 N
 { /k exch def
 A k 1 sub get M div A k get M 1 sub mul M div add
 } for
 0] /A exch def
 A drawcurve
 } for
} def

Fourth edition 2003-??

Goals:
Do answers to exercises
Stabilize content
Create interactive and dynamic eBook supplements

Problems:
Tens of thousands of files
Thousands of exercises
Different typescripts for C, C++, Java
Deep hacks throughout figs (need new dsdraw)
Ancient typesetting engine

Approach:
Back to single typescript??
Layout language??
Scripting language??

Needs for fourth edition

1. Structured-document authoring and editing tool
simple system- and machine- independent editor
manage nonlinear organization of fragments
TeX-like plugin for equations
application-independent primary source format
cross-reference/indexing across all types of fragments

2. Programming tools
Source language with flexible ADT and IO mechanisms
Postscript

3. Flexible document-creation engine
semiautomatic layout
programming language
smart filters with link/embed/unlink/unembed

Inventing the Future

Q: Where is the “Algs” e-/dynamic-/interactive- book?

A: (1984): Done. Balsa (with M. Brown).

1985 choice: content over form

Triumph of content leads to (reasonable) demand for:
Answers to exercises
Online lecture notes
Customizable versions
Dynamic figures
Interactive testing/drill
...

Inventing the Future

Q: Where is the “Algs” e-/dynamic-/interactive- book?

A: (2002): Where are the tools that an individual author
 could use to make one??

