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Abs~,ract 

Several new results which contribute to the under- 
standing of parallel merging networks are presented. 
First, a simple new explanation of the operation of 
Batcher's merging networks is offered. This view leads 
to the derivation of a modified version of Batcher's odd- 
even (m, n) network which has delay time [log(m q-- n)]. 
This is the same delay time as Batcher's bitonic (m, n) 
network, but it is achieved with substantially fewer 
comparators. Second, a correspondence is demonstrated 
between the number of comparators (and the delay time) 
for such networks and certain properties of binary num- 
ber systems which have recently been extensively studied. 
Third, the [log(m -q- n)] delay time is shown to be op- 
timal for a non-degenerate range of values of m and 
n. 

1. Introduction 
An (m, n) merging network is a model for hardware 

devices for merging sorted files. Briefly, a merging net- 
work consists of a set of m -q- n horizontal lines inter- 
connected with comparator modules. Inputs to the net- 
work pass from left to right: when a comparator module 
is encountered, an exchange is performed if necessary to 
make the number on the bottom line connected by the 
comparator greater than the number on the top line. 
For example, below is drawn a (5, 9) network. This net- 
work, when presented with one sorted file on the top 
5 input lines and another sorted file on the bottom 9 
input lines will produce a sorted file of size 14 as output 
after the numbers are passed from right to left through 
the comparator modules. 
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Such networks are good models for hardware im- 
plementation because they are oblivious: the sequence 
of comparisons is independent of the input values. They 
also are useful models for parallel computation (see 
[5]); the network structure makes obvious which com- 
parisons are independent and so can be done in parallel. 
Many more details on merging networks, along with a 
summary of known results, may be found in [4]. 

The delay time of a merging network is the min- 
imum number of parallel steps required for it to com- 
plete the merge. The delay time of the above network 
is 5, but a better delay time is possible for this example: 
the following network achieves a delay time of 4. 
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Both networks in the examples above are due to 
Batcher[1], who gave constructions for both types of 
networks for arbitrary ~ and n. The first, called the 
odd-even merge, uses fewer comparators: the number 
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of comparators used by the odd-even merge is known 
to be optimal for m = 216], but for most values of m 
and n it is not known whether networks with even one 
less comparator exist, though it is strongly suspected 
that they do not. The second, called the bitonic merge, 
has a smaller delay time: the delay time is known to be 
optimal for m = n, but for most values of m and n, 
it is not known whether networks with a shorter delay 
time exist, though it is strongly suspected that they do 
n o t .  

In Section 2 we exhibit a network, a variant of the 
odd-even merge, which achieves the same delay time 
as the bitonic merge, but using only about the same 
(asymptotically) number of comparators as the odd- 
even merge. Thus the best known bounds for delay 
time and number of comparators can be achieved simul- 
taneously, at least asymptotically. The following is the 
(5, 9) version of this network, which has a delay time 
of 4, but uses two less comparators than the bitonic 
network. 
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The number of comparators in the networks for 
general m and n has proven to be a difficult quantity 
to analyze: in Section 3 we show how this quantity 
can be studied through a correspondence with certain 
properties of binary number systems. These properties 
have only recently been fully analyzed: this analysis 
yields results of direct applicability to merging net- 
works. 

Minimal delay time and minimal number of com- 
parators for merging networks are thought to be ex- 
tremely difficult questions to resolve. In Section 4 we 
give some evidence that the modified odd-even merge 
of Section 2 (and the bitonic merge) have optimal delay 
time by proving a lower bound that holds for m and n 
satisfying certain conditions. 

Section 5 offers some concluding remarks. 

2. Merging Tableaux 
Butcher's odd-even merging method can be very 

simply described and proven correct in terms of opera- 
tions on two-dimensional tableaux of numbers, as fol- 
lows: Suppose that the following two files of eight num- 
bers are to be merged: 

0 0 0 4 6 9 9 9  0 1 2 2 3 3 8 8  

If we write one file on top of the other, then compare- 
exchange the vertical pairs to put the smaller one on 
top, then we get a 2 X 8 tableau with the property that 
both rows and columns are sorted: 

0 0 0 4 6 9 9 9  
I I I I l l l l  
0 1 2 2 3 3 8 8  

0 0 0 2 3 3 8 8  

0 1 2 4 6 9 9 9  

Now, this tableau can be compressed into a 4 X 4 tableau 
with the same property by exactly the same operation: 
divide each row in half, interleave the rows, then per- 
form compare-exchanges on vertical pairs: 

0002 0002 
3388 0124 
I I I I  
0124 3388 
6999 6999 

Again, both rows and columns are sorted. Clearly, 
compare-exchanges are needed only between elements 
in the middle two rows: all elements in the first row 
are smaller than all elements in the second row because 
they came from the same row in the previous tableau, 
and they are smaller than corresponding elements in 
the third row because they were involved in compare- 
exchanges on the previous step. 

Continuing, we divide each row in half, interleave 
the rows, and perform compare-exchanges on vertical 
pairs to get a 8 × 2 tableau with both rows and columns 
sorted: 

O0 O0 
02 Ol 
I I 
Ol 02 
2 4  23  
I I 
3 3  3 4  
88 68 
I I 
69 89 
99 99 

It is possible to prove that compare-exchanges are only 
needed between (even, odd) row pairs, though this proof 
is not as trivial as it first seems. 

One more step completes the sort, creating a 16 × 1 
sorted tableau: 
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Odd-Even (16,16) Merging Network 

0 
0 

0 

0 
0 

0 
0 

1 
2 

2 
3 

3 
4 

6 
8 

8 
9 

9 
9 

Again, only compare-exchanges between (even, odd) 
pairs are needed. 

The generalization of the description above to larger 
files is obvious: to merge together two files of size 2 n 
organized in a 2 × 2 a tableau, compare-exchange ver- 
tically adjacent elements, then perform the following 
steps n times: divide each row in half, interleave the 
row halves, and perform compare-exchanges between 
vertically adjacent elements in (even, odd) row pairs. 
To prove that  this is valid, it is necessary to prove tha t  
compare-exchanges between two sorted row pairs leaves 
both rows sorted (this is easily proven by contradiction), 
and that  the specified compare-exchanges are su~cient 
to sort the columns (this is proven by showing that,  
after interleaving, elements in odd numbered rows could 

not have any smaller elements in the column below 
them, while elements in even numbered rows could have 
one smaller element immediately below). 

The comparisons performed in this method are obliv- 
ious, so it can be translated directly to a merging net- 
work. The network which results is Batcher's odd- 
even merging network. For example, the network for a 
16 X 16 merge is given above. (The 8 X 8 network cor- 
responding directly to the above example may be found 
by considering only those comparators with both ends 
on the middle 16 lines.) 

All of the compare-exchanges during each divide- 
interleave-compare-exchange step can be done in paral- 
lel, so the delay time of the network is simply the num- 
ber of such steps. 

The same idea can be used to describe Batcher's 
bitonic method, as follows: To merge to sorted files of 
size 2 ~, organize them in a 2 × 2 ~ tableau as before, but 
put the second line in reverse order. Then compare- 
exchange the two rows and perform the divide-interleave- 
compare-exchange cycle as before, except using verti- 
cally adjacent elements in (odd, even) row pairs. The 
following table shows the first three steps of this method 
on the same sample file as above: 

0 0 0 4 6 9 9 9  8 8 3 3 2 2 1 0  

0 0 0 4 6 9 9 9  0 0 0 3 2 2 1 0  
I I I I I I I I  
8 8 3 3 2 2 1 0  8 8 3 4 6 9 9 9  
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Bitonic (16,16) Merging Network 

O0 
I I 
22 
8 8  

I I 
69 

0 3  0 0 0 0  
I I  
10  2 2 1 3  
3 4  6 8 3 4  
I I  
9 9  8 9 9 9  

0 0  0 0  
I I  
0 0  0 0  
22  12  
I I  
1 3  2 3  
6 8  3 4  
I I  
3 4  6 8  
8 9  8 9  
I I  
9 9  9 9  

Continuing, the sort will be completed in one more step. 
This method obviously requires more comparisons than 
the odd-even merge, but it has other benefits (descibed 
below). The proof that  this method is correct is some- 
what more complicated than for the odd-even merge, 
because the rows are not completely sorted. (Instead, 
they form bitonic sequences, which go up, then down, 
then possibly up again.) The bitonic merging network 
which derives directly from this method is complemen- 
tary to the odd-even network in an obvious way, as 
shown in the above diagram. 

Tableaux provide a simple derivation and descrip- 
tion of Batcher's methods: the benefits of this view 
are apparent when we consider the problem of deriving 
a method for (m, n) merging when r~ and n are not 
equal to the same power of two. The idea is to use 
the method above for a power of two bigger than ra 
and n, supplementing the numbers to be sorted with 
conveniently placed "dummy ~ keys. In the standard 

odd-even merge, the dummy keys have values higher 
than all other keys and are placed at the ends of the 
arrays. For example, to do a 5 by 9 merge, we would 
begin with the tableau 

2 4 4 8 9  . . . . . . . . . . .  
1 3 3 4 5 5  6 6 7  . . . . . . .  

Comparisons between two dummy ~ keys are ignored, 
since the outcome is predetermined and cannot affect 
the result. The delay time for this case is obviously 
Flog2(max(m, n))l + 1. 

This method can be improved as follows: put dummy 
keys with value smaller than every other key (o) at the 
beginning of the first array, dummy keys with value 
larger than every other key (oo) at the end of the second 
array. Thus, for the example above, we would begin 
with the tableau 

0 0 0 0 0 0 0 0 0 0  0 2 4 4 8  9 
1 3 3 4 5 5 6 6 7  . . . . . . .  

Now, the result of all the compare-exchanges is predeter- 
mined for this case, so the first stage can be skipped 
entirely. The delay time for this modified version of 
the odd-even merge is rlog2(r~-i-n)]. We'll refer to this 
method as the even-odd merge. This same delay time 
can be achieved in the bitonic merge, for example by 
beginning with the tableau 

o o o o o  o o o o o o 2 4 4 8 9  

7 6 6 5 5 4 3 3 1 ° °  o o o o o 

Actually, since the network can sort bitonic sequences, 
a different method is normally used, as demonstrated 
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by the following initial tableau. 
o o o o o o o o o o o o o o o o  

0 0 2 4 4 8 9 7 6 6 5 5 4 3 3 1  

To derive (m, n) merging networks from these con- 
siderations, we start with the network for a power of 
two bigger than both m and n and then delete superfluous 
lines and redundant comparators. The situation is more 
complicated than it might seem because lines may need 
to be relabeled to account for the effect of exchanges in- 
volving dummy keys. (The reader may appreciate this 
point by deriving the (5, 9) network given in Section 1 
from the comparators touching the 1st through the 5th 
and the 26th through the 32nd lines in the large odd- 
even network above.) Though this relabeling involves 
no real cost, it makes particular networks difficult to 
comprehend and analyze. 

For the even-odd and the bitonic merges, such relabel- 
ing is avoided because of the placement of the dummy 
keys. An (m, n) even-odd network is derived by choos- 
ing m lines above the center and n lines below the cen- 
ter from a larger network, keeping all comparators with 
both endpoints on such lines; an (m, n) bitonic network 
is derived from the (m-bn) bottom lines in a larger net- 
work in the same way. (The reader may wish to check 
the use of these constructions for the (5, 9) networks 
in Section 1 from the 32-line networks in this section.) 
The placement of the dummy keys in these networks 
is such that  no "virtual exchanges" are required: (e) 
keys never move down and (oo) keys never move up. If 
[log2(m -5 n)] < [log2(max(m , n))] -5 1 then no com- 
parators from the first stage survive: this is the savings 
in the delay time. 

3. Networks and Number Systems 
The delay time for the odd-even and the even-odd 

networks is trivial to compute from the tableau repre- 
sentation; the bitonic merge has a recursive structure 
which also yields the delay time immediately. Counting 
the number of comparators for a general (m, n) net- 
work, however, is significantly more difficult: no closed 
formula has previously been available for any of the 
methods. In this section, we see the reason for this 
by exhibiting correspondences between the numbers of 
comparators in these networks and simple quantities re- 
lated to binary numbers. Closed formulae have recently 
been derived for these quantities, but only after exten- 
sive analysis (see [2,3]). 

The number of comparators for each of the three 
types of networks that  we have discussed can be described 
by relatively simple recurrence relations, shown in the 
table below. 

Each formula gives the number of comparators used 
in a (m, n) network. All of the quantities are 1 for m = 
n = 1 and 0 for m-bn < 2; the number of comparators 
for the odd-even and even-odd merges is also 0 if m or n 
is 0. Derivations of the recurrences for the bitonic and 
odd-even methods may be found in [4]; the argument 
for the even-odd method is similar. 

Knuth notes that  Co(re, n) is ~not an especially 
simple" function of m and n, and this comment cer- 
tainly applies to the other functions. By working with 
Co(m -5 I, n -5 I) -- Co(m, n), Knuth is able to show 
that 

cocm,.) = ~nC[Iog2 ml + 6(m)) + ocI) 

(where 6(m) = m/2 [l°g~ m]) as n grows, for m fixed. By 
working with C,(m -5 1, ,- 1) -- C,(m, n), we are able 
to show that the same expression holds for Ce(m, n), so 
that 

C,(m, n) -~- Co(m , n) -5 0(1) 

as n grows, for fixed m. 
Knuth does not give a solution for the recurrence 

for C~(m -5 n); but it turns out that  this is the easiest 
of the functions to deal with. Consider the function 

u(i) = { #  of l ' s  in the binary representation of i}. 

We are primarily interested in the function 

p1(-)= ~ ,'({). 
O<_i<n 

There are Ln/2] odd numbers less than n and In/2] 
even numbers less than n, so we are immediately led to 
the recurrence 

/hCn) --/~lC[Cn/2)]) +/hC[Cn/2)]) -5 [(nl2)J. 

This is precisely the same as the recurrence for Ca(m+ 
n), including initial conditions, so this constitutes a 
proof that  

Cb(r., + n) = Pi(rn, + n). 

Bitonie CC~(m -5 n) = Cob(r½(m -5 n)]) -5 C~(L½(~ -5 n)]) -5 [½(~ -5 n)] 
Odd-even CoCra , n) = Co(rm121, rn121) + CoCLml2], LnI2J) + r½cm + n)1) - z 
Even-odd c.cm,.) = c.Crml~1, Ln/2]) + ceC[ra/2], [n/21) -5 [m/2] -5 r-/~] - i 

Recurrences to count comparators 
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This function has been recently analyzed in detail (see 
[2,3]) with the result that  

ill(n) = ~-n(log2(n) -'[- B(log2 n)) + O(1) 

where B(n) is a periodic function with period 1. 
Similar, though more complicated results are avail- 

able for the other recurrences. First, consider a com- 
plementary function to ~i: 

=  (2rlo,,-I _ I - d). 

O<i<~ 

This is the same as the number of 0 bits in the rightmost 
[log 2 n] bits of the binary representation of the numbers 
less than n, so that 

PoCn) + #1(n) = nFlog2 nl. 

As we know from the analysis of the bitonic net,- 
works, there is a strong relationship between the net- 
work recurrences and these ~-functions. For example, 
it turns out that ~o(m + n) -- I satisfies the same 
recurrence as does the number of comparators for the 
odd-even merge, and ~o(n) + ~o(m) satifies the same 
recurrence as does the number of comparators for the 
even-odd merge. However, unlike the bitonic case, the 
initial conditions do not match. Close examination of 
this discrepency uncovers some interesting facts about 
the networks, described below. 

The problem is that the recurrences for the odd- 
even and even-odd methods assume (naturally) that no 
comparators are required for a (0, n) merge, while this 
initial condition is not imposed on the recurrence for the 
bitonic network. The reason for this is that an n-line 
bitonic network can be used not only for a (0, n) merge 
but also for a (I, n -- I) merge, a (2, n -- 2) merge, etc. 
Thus, obviously, more than 0 comparators are needed, 
which is reflected in the analysis only by the absence 
of an initial condition for m = 0 or n = 0. Now, 
such a condition can be imposed on bitonic networks, 
resulting in merging networks with fewer comparators 
and the same delay time. (An alert reader may have 
noticed a "missing" comparator in the (5,9) bitonic 
network in Section 1, which was removed according to 
this principle.) The recurrence describing the number 
of comparators is the recurrence for the even-odd case, 
with the additive term modified to be the additive term 
for the bitonic case, which is one greater if both m and 
n are odd. This recurrence seems to be as diffJ.cult to 
solve as the others. 

Conversely, this suggests that if we remove the ini- 
tial conditions for m = 0 and n = 0, then the recur- 
rences for the odd-even and the even-odd cases my be 
easier to solve. This in fact turns out to be the case: 

the number of comparators for the odd-even merge un- 
der these assumptions is ~o(m .--[- n) -- I; the number of 
comparators for the even-odd merge is/go(m) -+- Po(n). 
These solutions are proven directly from the recurrences 
and simple properties of binary numbers, as was done 
above for the bitonic case. The networks described by 
these recurrences have extra comparators: it is not clear 
whether they give the networks any particular special 
properties. The expressions involving ,8o are quite ac- 
curate estimates of the number of comparators in the 
networks for m close to n. 

4. Lower Bounds 
The delay time for any (m, n) merging network is 

known to be less than or equal to [log2(m --[- n)] for 
m = i or m = n (see [4]); thus both the bitonic and 
the even-odd method are optimal for these values. In 
this section we extend the range of values for which 
these networks are known to be optimal. 

In particular, we are able to prove that, for m < n, 
any (m, n) merging network must have a delay time of 
at least [log2(m ~ n)] except possibly for 

2 < m< 2 [l°g~nj < n< 2 [I°g2"] < m-{-n. 

The obvious symmetric result holds for n < m. The 
shaded areas in the following diagram show the values 
of m, n < 16 for which the question is unresolved. 

The proofs consist of case analyses covering the 
various gaps in the inequality list above. 

If m = I, then [log2(n + 1) levels of delay are 
required because the first input could end up on any 
one of the n --[- 1 output lines, and each level of delay 
can at most double the number of lines that the first 
input could be switched to. (See [4].) 

If 77t ~ n _< 2 [l°g2 hI, then we must have 

[log2(m -{- n)] _< [log 2 .] _< [log2(n + 1)] 

which we know is no bigger than the delay time required 
to do a (1, n) merge, which certainly is no bigger than 
the delay time required to do an (m, n) merge. 
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If n is a power of 2, then we must have 

[log2(m -5 n)l <_ [log2 n] -5 1 < [log2(n -5 1)l 

which is no bigger than the delay time required to do 
an (m, n) merge, as above. 

If m > 2[ l°g2 ~j, then we must have 

[log2(m -5 n)l _< [log2(n -5 I)] -5 1 _< [log2(2m -5 1)l. 

The last inequality holds because 

[log2(n -5 i)] -5 1 = 
< 

Now, [log2(2m-5 1)] is no 

[log2(2Fl°s'(~+1)l + 1)] 

[log2(2Ll°s2 ~J+* -5 1)]. 

greater than then delay time 
required to do an (m, n) merge by the same kind of 
argument used for the m = 1 case above: any one 
of the first m or the last m + 1 inputs could end up 
on the last output line, and each level of delay can at 
most halve the number of input lines switchable to any 
particular output line. 

Although these proofs show that the bitonic and 
even-odd networks have optimal delay time for a large 
range of values of m and n, the general question of 
proving optimality for all m and n still appears to be 
quite difficult. It is certainly reasonable to conjecture 
that they are optimal, but the remaining cases seem to 
require much more sophisticated arguments. 

5. Conclusion 
Networks for merging and sorting have been the 

subject of intensive study since the "Bose-Nelson" prob- 
lem first came to light before 1960, culminating in the 
development of Batcher's odd-even and bitonic sorting 
and merging networks. As appropriate models for VLSI 
implementations of sorting and merging machines, there 
has been renewed interest in the properties of Batcher's 
and related networks. The simplified explanation of 
Batcher's odd-even network which is given in Section 
2 may make easier the development of variants ap- 
propriate for new technologies, as is evidenced by the 
development in Section 3 of a natural way to improve 
the delay time of the odd-even merge for (re, n) net- 
works. The correspondence with binary number sys- 
tems which is described in Section 5 provides a new 
approach to analyzing the networks, which has been 
useful in understanding known networks and in study- 
ing new ones. 
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