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Context        

Layers of abstraction in modern computing

  Applications                

  Programming Environment

  Algorithm Implementations

  Operating System

  Hardware

Ongoing research and development at all levels

Sorting and searching

  fundamental algorithms

  still the bottleneck in modern applications

  primitive in modern programming environments

  methods in use based on 1970s research

BASIC RESEARCH on algorithm analysis   



Motivation        

MOORE’S LAW: Processing Power Doubles every 18 months

similar maxims:

  memory capacity doubles every 18 months

  problem size expands to fill memory

Sedgewick’s Corollary: Need Faster Sorts every 18 months!

  sorts take longer to complete on new processors

    old: N lg N

    new: (2N lg 2N)/2 = N lg N + N

Other compelling reasons to study sorting

  cope with new languages and machines

  rebuild obsolete libraries

  address new applications

  intellectual challenge of basic research

Simple fundamental algorithms: the ultimate portable software 



Quicksort        

Recursive procedure based on PARTITIONING

to PARTITION an array, divide it so that

  some element a[i] is in its final position

  no larger element left of i

  no smaller element right of i

After partitioning, sort the left and right parts recursively

PARTITIONING METHOD:      

  pick a partitioning element

  scan from right for smaller element

  scan from left for larger element

  exchange

  repeat until pointers cross



Quicksort example       

A S O R T I N G E X A M P L E
A A E E T I N G O X S M P L RE
A A EE
A AA
AA

L I N G O P M R X T SR
L I G M O P NM
G I LG

I LL
II

N P ON
O PO

PP
S T XS

T XX
TT

A A E E G I L M N O P R S T X



Partitioning examples       

A S O R T I N G E X A M P L EE

A S
A M P L

A A S M P L E

O
E X

A A E O X S M P L E

R
E R T I N G

A A E E T I N G O X S M P L RE



Partitioning implementation       

Use Item to embody records-with-keys abstraction
  less: compare two keys
  exch: exchange two records

    int partition(Item a[], int l, int r)

      { int i = l-1, j = r; Item v = a[r];

        for (;;)

          { 

            while (less(a[++i], v)) ;

            while (less(v, a[--j])) 

              if (j == l) break;

            if (i >= j) break;

            exch(a[i], a[j]);

          }

        exch(a[i], a[r]);

        return i;

      }

Detail (?)      
  how to handle equal keys [stay tuned]



Quicksort implementation       

    quicksort(Item a[], int l, int r)

      { int i;

        if (r > l)

          {

            i = partition(a, l, r);

            quicksort(a, l, i-1);

            quicksort(a, i+1, r);

          }

      }

Issues       
  overhead for recursion?
  small files
  running time depends on input
  worst-case time cost (quadratic, a problem)
  worst-case space cost (linear, a serious problem)



Quicksort analysis (distinct keys)     

BEST case: split in the middle, O(N lg N) compares
  C(N) = N + 2 C(N/2)

WORST case: split at one end, O(N^2) compares
  C(N) = C(N-1) + N

AVERAGE case: split at random position, ~2 N ln N compares
  C(N) = N + 2 ( C(0) + ... + C(N-1) )/N

Defense against worst case:
  choose random partitioning element
  N log N randomized algorithm (Hoare, 1960)

Mathematical analysis      
  predicts performance 
  guides performance tuning
  nontrivial

    ex: limit distribution?



Quicksort with equal keys     

N keys, n distinct key values, N >> n
How to handle keys equal to PE?
DANGER: quadratic performance pitfalls    

Method A: Put equal keys all on one
.    4  4  4  4  4  4  4  4  4

.    4  4  4  4  4  4  4  4

NO: quadratic for n = 1 (all keys equal)

Method B. scan over equal keys?  
.    1  4  1  4  1  4  1  4  4

.    1  4  1  4  1  4  1  4  4

.    1  1  1  4  1  4  4 

NO: quadratic for n = 2 (linear for n = 1)

recursion GUARANTEES that above cases WILL occur for small n
randomization provides NO protection (!!)



Quicksort with equal keys (continued)    

Method C. special case for small n? 
  guaranteed O(N) for small n
  O(N) overhead even if no equal keys

Method D. stop both pointers on equal keys?
.    4  9  4  1  4  4  9  1  4

.    1  4  4  1  4  9  9  4  4

  guaranteed O(N lg N) for small n
  no overhead if no equal keys
  state of the art for library qsorts (through 1990s)

Not all library qsorts use Method D
Run qsort on huge file with two different keys

  doesn’t finish: A or B
  quick: C
  immediate: D

Can be inhibiting factor in library utility



Three-way partitioning       

PROBLEM: Sort files with 3 distinct key values

Natural and appealing problem
  Hoare, 1960
  Dijkstra, "Dutch National Flag Problem"

Immediate application to quicksort
  put ALL keys equal to the PE into position

l j i r

less than v equal to v greater than v

Early solutions cumbersome and/or expensive
  not used in practical sorts before mid-1990s



Bentley-McIlroy three-way partitioning (1993)     

FOUR-part partition      
  some elements between i and j equal to v
  no larger element left of i
  no smaller element right of j
  more elements between i and j equal to v

Swap equal keys into center

l p i j q r

equal less greater equal v

All the right properties
  easy to implement
  linear if keys all equal
  no extra compares if no equal keys (always N-1)

Expands utility of system qsort
  old: N lg N (or quadratic!) for small n
  new: LINEAR for small n



Three-way partitioning implementation      

  void quicksort(Item a[], int l, int r)
  { 
  int i, j, k, p, q; Item v;
  if (r <= l) return;
  v = a[r]; i = l-1; j = r; p = l-1; q = r;
  for (;;)
  { 
    while (less(a[++i], v)) ;
    while (less(v, a[--j])) if (j == l) break;
    if (i >= j) break;
    exch(a[i], a[j]);
    if (eq(a[i],v)) { p++; exch(a[p],a[i]); }
    if (eq(v,a[j])) { q--; exch(a[q],a[j]); }
  }
  exch(a[i], a[r]); j = i-1; i = i+1;
  for (k = l  ; k < p; k++, j--) exch(a[k], a[j]);
  for (k = r-1; k > q; k--, i++) exch(a[k], a[i]);
  quicksort(a, l, j);
  quicksort(a, i, r); 
  }



Analysis of 3-way partitioning     

Average running time of Quicksort with 3-way partitioning?

Empirical studies (Bentley, 1993)

  LINEAR number of compares for small n

ONE key value

  N - 1 compares

TWO key values: x1 instances of first, x2 instances of second

  with probability x1/N: (N-1) + (x2-1) compares

  with probability x2/N: (N-1) + (x1-1) compares

  total avg: 

    N - 2  +  2 x1 x2 / N

    max at x1 = x2: 1.5 N - 2

THREE key values

  [analysis looks complicated]

          



Detailed analysis of 3-way partitioning    

Burge (1975): analysis of search trees with equal keys
Sedgewick (1975): lower bound on Quicksort with equal keys

  n distinct key values
  xi instances of key i, for i from 1 to n
  x1 + x2 + ... + xn = N

THM: Average number of compares is  
    C = N - n + 2 Q N

Q is "Quicksort entropy"
  pi = xi/N (convert to probabilities)
  q{ij} = pi pj/(pi + ... pj)
  r{ij} = q{ij} + ... + q{jj}
  Q = r{1n} + r{2n} + ... + r{nn}

Ex: xi all equal (to N/n)   
  pi = 1/n
  q{ij} = (1/n)(1/(i-j+1))
  r{ij} = (1/n)(1 + 1/2 + ... + 1/(i-j+1))
  Q = ln n + O(1)
  C = 2 N ln n + O(N)



Information-theoretic sorting lower bound     

DECISION TREE describes all possible sequences of compares

1 < 2 ?

2 < 3 ? 1 < 3 ?

1 < 3 ? 2 < 3 ?1 < 2 < 3

1 < 3 < 2 3 < 1 < 2

2 < 1 < 3

2 < 3 < 1 3 < 2 < 1

number of leaves > N!/(x1! x2! x3! ... xn!) [multinomial coefficient]

take lg for bound on compares

  C > lg N! - lg x1! - ... - lg xn!

  C > N lg N - N - x1 lg x1 - ... - xn lg xn

    (Stirling’s approximation)

ENTROPY:

  H = (x1/N)lg(N/x1) + ... + (xn/N)lg(N/xn) 

  N H = N lg N - x1 lg x1 - ... - xn lg xn

THM: C > N H - N 



Entropy comparison       

Relationship between Q and H??

Standard entropy H

  equal to lg n if all freqs equal

  maximized when all freqs equal (H never exceeds lg n)

"Quicksort entropy" Q

  approaches ln n if all freqs equal

  NOT maximized when all freqs equal

Ex: x1 = x2 = x3 = N/3 

  Q = .4444...

Ex: x1 = x3 = .34N, x2 = .32N

  Q = .4453...



Entropy comparison (continued)      

Ex: x2 through xn all equal   

horizontal axis: x1 (ranges from 0 to N)

N = 512, curve for each n from 2 to 30

"Quicksort entropy" Q

Standard entropy H

General result relating Q and H?

  answer found in basic research by Melhorn (1978)



Quicksort is optimal      

"Quicksort entropy" function arises in analysis

    of "self-organizing" binary search trees

  Allen and Munro, 1978

THM (Melhorn, 1978): Q < (ln 2) H

THM (1999): Quicksort is optimal (!)  

Proof: 

    N H - N < C  < (2 ln 2) N H + N

    [ C grows asymptotically with NH ]  

conjecture: with sampling, C*/NH -> 1  

NO sorting method can use fewer compares (asymptotically)

for ANY distribution of key values



Extensions and applications      

Optimality of Quicksort
  underscores intrinsic value of algorithm
  resolves basic theoretical question
  analysis shows qsort to be sorting method of choice for

    randomly ordered keys, abstract compare
    small number of key values

Real-world applications
  nonuniform key values?
  varying key length?
  arbitrary distribution?

Extension 1: Adapt for varying key length 
  Multikey Quicksort
  SORTING method of choice

Extension 2: Adapt algorithm to searching  
  Ternary search trees
  SEARCHING method of choice



MSD radix sort      

Sort files where keys are sequences of BYTES

  each byte has value less than M

  typical: group of bits

METHOD:       

  Partition file into M buckets

    all keys with first byte 0

    all keys with first byte 1

    all keys with first byte 2

    ...

    all keys with first byte M-1

  Sort M pieces recursively

Tradeoff

  large M: space for buckets (too many empty buckets)

  small M: too many passes (too many keys per bucket)



MSD radix sort potential fatal flaw   

each pass ALWAYS takes time proportional to N+M
  initialize the buckets
  scan the keys

Ex: (ASCII bytes) M = 256   
  100 times slower than insertion sort for N = 2

Ex: (UNICODE) M = 65536    
  30,000 times slower than insertion sort for N = 2

TOO SLOW FOR SMALL FILES
recursive structure GUARANTEES sort is used for small files
Solution: cut to insertion sort for small files

Practical problems for library sort
  choice of radix
  cutoff point
  nonuniformity in keys



Three-way radix Quicksort      

PROBLEM:       
  long keys that differ slightly can be costly to compare
  this is the common case!

   absolutism

   absolutely

SOLUTION:       
  Do three-way partitioning on key characters
  Sort three parts recursively

    (increment char ptr on middle subfile)

Ex: N records with huge (w-byte) keys  
  Byte comparisons for pointer sort

    MSD radix sort: Nw
    3-way radix quicksort: 2 N ln N

  SUBLINEAR sort

Multikey Quicksort      
  same algorithm, keys are VECTORS
  Unicode (16-bit chars) blurs distinction



String sort example      

    actinian       coenobite     actinian

    jeffrey        conelrad      bracteal

    coenobite      actinian      coenobite

    conelrad       bracteal      conelrad

    secureness     secureness    cumin

    cumin          dilatedly     chariness

    chariness      inkblot       centesimal

    bracteal       jeffrey       cankerous

    displease      displease     circumflex

    repertoire     repertoire    repertoire

    dourness       dourness      dourness

    centesimal     southeast     southeast

    dilatedly      cumin         secureness

    inkblot        chariness     dilatedly

    southeast      centesimal    inkblot

    cankerous      cankerous     jeffrey

    circumflex     circumflex    displease



Perspective on radix sorting     

Three-way radix quicksort
  blends quicksort and MSD radix sort

quicksort
  leading part of keys used in all compares
  short inner loop otherwise

MSD radix sort
  empty bins on small files
  adapts poorly to variable-length keys
  long inner loop

Three-way radix quicksort     
  compares characters, not strings
  short inner loop
  adapts to multikey
  METHOD of CHOICE for sorting long keys

    easy to implement
    works well on nonuniform keys
    fastest in practice



M-way trie       

SEARCH data structure corresponding to MSD radix sort

Nodes contain characters/links to implement M-way branching
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M-way trie analysis      

Assumptions
  N keys, total of C characters in keys
  approx. N trie nodes (or more, details omitted)
  M links per node

Space: N*M + C    
Time: lgN/lgM CHARACTER comparisons (constant in practice) 

Ex: M=26, N=20000      
    520,000 links, tree height 3-4

Ex: M=16, N=1M      
    16M links, tree height 5

Faster than hashing
  successful search: no arithmetic
  unsuccessful search: don’t need to examine whole key

DRAWBACKS       
  good implementation nontrivial
  too much space for null links



Ternary search trees (TSTs)     

Search algorithm corresponding to 3-way radix Quicksort

Nodes contain characters and links for three-way branching
  left: key character less
  middle: key character equal
  right: key character greater

Equivalent to TRIE with BST implementation of trie nodes
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TST implementation       

Search algorithm writes itself

  int RSTsearchR(RSTptr x, char *v)

    { 

      if (x == NULL) return 0; 

      if ((*v == ’ ’) && (x->ch == ’ ’)) return 1; 

      if (*v < x->ch)

        return RSTsearchR(x->l, v);

      if (*v == x->ch)

        return RSTsearchR(x->m, v+1);

      if (*v > x->ch)

        return RSTsearchR(x->r, v);

    }

Optimal (fully balanced) tree
  SUCCESSFUL search: lg N + [key length]  character compares
  UNSUCCESSFUL search: lg N  character compares

Idea dates at least to 1962
  practical impact unnoticed until late 1990s
  casualty of compare abstraction 



Perspective on radix searching     

TSTs blend binary search trees (BSTs) and tries

BSTs (correspond to Quicksort)
  leading part of keys always used in compares
  short inner loop otherwise

tries
  too many null links for large radix
  long inner loop for small radix

TSTs       
  compares characters, not strings
  equivalent to using BSTs for trie nodes
  automatically adapts radix to keys
  METHOD of CHOICE for searching

    faster than hashing
    gracefully grows and shirnks
    support partial match, near-neighbor search, ...

AVERAGE-CASE ANALYSIS?      



TST and multikey quicksort analysis    

Clement, Flajolet, Valle (1999)
  unifies classical tree/trie analyses
  generalizes to nonuniform models
  extends to cover TSTs
  exploits powerful tools

    generalized Ruelle operators
    Mellin transforms

Eight theorems
  algebraic and asymptotic analysis
  Poisson and Bernoulli models
  path lengths and height

THM: Asymptotic TST search cost: (Q/H) lg N

Open problems
  TST height?
  concentration of distribution?
  limit distributions?



Perspective        

New research on fundamental algorithms
  3-way quicksort

    method of choice for small keys
  multikey quicksort

    method of choice for large keys
  TSTs

    searching method of choice

Direct practical impact
  new applications demand fast algorithms
  new algs improve performance for all apps

old basic research results establish optimality of new algs

Deep new theory analyzes new algorithms
  predict performance
  set parameters

Future challenges      
  similar refinements for other classic fundamental algorithms
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Average number of compares for QUICKSORT with distinct keys

Recurrence from recursive program

CN = N − 1 +
1
N

∑
1≤j≤N

(Cj−1 + CN−j)

Change j to N + 1− j in second sum

CN = N − 1 +
2
N

∑
1≤j≤N

Cj−1.

Multiply both sides by N

NCN = N (N − 1) +
2
N

∑
1≤j≤N

Cj−1.

Subtract same equation for N − 1

NCN − (N − 1)CN−1 = 2N + 2CN−1

Rearrange terms
NCN = (N + 1)CN−1 + 2N

Divide by N (N + 1)
CN
N + 1

=
CN−1

N
+

2
N + 1

Telescope
CN
N + 1

= 2(HN+1 − 1)

Approximate
CN ≈ 2N lnN



Average number of compares for QUICKSORT with equal keys

Recurrence for average number of comparisons

C(x1, . . . , xn) = N + 1 +
1
N

∑
1≤j≤N

xj(C(x1, . . . , xj−1) + C(xj+1 . . . xn))

Multiply both sides by N = x1 + . . . + xn

NC(x1, . . . , xn) = N (N − 1) +
∑

1≤j≤N
xjC(x1, . . . , xj−1) +

∑
1≤j≤N

xjC(xj+1, . . . , xn).

Subtract same equation for x2, . . . , xn (with D(x1 . . . xn) ≡ C(x1, . . . , xn)− C(x2, . . . , xn))

(x1 + . . . + xn)D(x1 . . . , xn) = x2
1 − x1 + 2x1(x2 + . . . + xn) +

∑
2≤j≤n

xjD(x1, . . . , xj−1)

Subtract same equation for x1, . . . , xn−1

(x1 + . . . + xn)D(x1, . . . , xn)− (x1 + . . . + xn−1)D(x1, . . . , xn−1) = 2x1xn + xnD(x1, . . . , xn−1)

Simplify, divide by N

D(x1, . . . , xn) = D(x1 . . . , xn−1) +
2x1xn

x1 + . . . + xn

Telescope (twice)

C(x1, . . . , xn) = N − n + 2
∑

1≤k≤j≤n

xkxj
xk + . . . + xj



Upper bound on QUICKSORT entropy

Quicksort entropy definition

Q =
∑

1≤k<j≤n

pkpj
pk + . . . + pj

Separate double sum
Q =

∑
1≤k<n

pk
∑

k<j≤n

pj
pk + . . . + pj

Substitute qij = (pi + . . . + pj/pi) (note: 1 = qii ≤ qi(i+1) ≤ . . . ≤ qin < 1/pi)

Q =
∑

1≤k<N
pk

∑
k<j≤n

qkj − qk(j−1)

qkj

Bound with integral

Q <
∑

1≤k<n
pk

∫ qkn

qkk

1
x
dx

Simplify
Q <

∑
1≤k<n

pk ln qkn ≤
∑

1≤k<n
pk(− ln pk) = H ln 2
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