CS-1 for Scientists

Panel Proposal

P
Greg Wilson
Dept. of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S 2E4
gvwilson@cs.toronto.edu

Categories and Subject Descriptors

K.3 [K.3.2]: Computer and Information Science Education

General Terms
Design

Keywords

CS-1, Computational Science

1. PROPOSAL

Students in science and engineering are poorly served by
most general-purpose CS-1 courses, which rarely discuss sci-
entific problems or applications. At the same time, fewer
and fewer computer science students are exposed to scien-
tific ideas or thinking in any of their introductory courses.
This divide hurts both sides: scientists and engineers must
struggle later in their careers to pick up the computing skills
and mindset they need to cope with increasingly computa-
tional disciplines, while CS graduates lack the background
knowledge needed to work in “relevant” domains ranging
from health care to climate modeling.

The aim of this panel is to explore what each community
thinks it and its students need, and to discuss what is being
done to meet those needs at leading institutions. Topics will
include:

1. What “CS-1 for Scientists” courses ought to look like,
and how (or whether) this differs from the standard
CS-1 curriculum.

2. How to teach computational thinking [1] to science stu-
dents.

3. How the scientific approach to problem solving can be
incorporated into mainstream computer science courses,
and what the benefits of doing this are.

Copyright is held by the author/owner(s).
SIGCSE’08, March 12-15, 2008, Portland, Oregon, USA.
ACM 978-1-59593-947-0/08/0003.

36

4. How to present scientific topics and examples to main-
stream computer science students, many of whom are
unfamiliar with advanced mathematics.

5. What effect such changes might have on enrollments
in affected disciplines.

2. PANELISTS

Christine Alvarado, Assistant Professor, Computer
Science Department, Harvey Mudd College, Clare-
mont CA

Harvey Mudd College, a small liberal arts college focused
on science and engineering, requires all of its students to take
a single introductory computer science course in the fall of
their freshman year. Thus approximately 85% of the stu-
dents in this course will go on to study a scientific discipline
other than computer science.

In 2005 we redesigned our traditional Java-programming
introductory course to better serve the needs of our broad
student body. We aimed to present a broad, representative
view of the field of computer science, and to allow students
to develop programming skills that would be both sufficient
to continue on to a CS2 course and useful for any scientific
field of study.

Our new course, which completed its second offering in
the fall of 2007, takes a breadth-first approach comprising
five major modules: functional programming, digital logic
and circuit design, imperative programming, object-oriented
programming, and concepts in computability. The emphasis
is on conveying major concepts rather than training ”indus-
trial strength” programmers. We use Python for the func-
tional, imperative and object-oriented parts of the course
because Python is simple enough for an introductory course,
versatile enough to illustrate a broad range of programming
paradigms, and powerful enough to be used by scientists
in many disciplines. Our weekly programming assignments
offer a broad range of often real-world scientific problems.
Examples include programs to simulate biological systems,
programs to explore the Collatz problem, and a final project
to build a virtual pool game, including modeling the physical
interactions of the balls. To excite a broad range of students,
we often allow students to select a subset of problems they
find the most interesting.

Although we are still gathering and analyzing data, initial
assessment suggests that, compared to students completing
the previous offering of the course, students completing this
course have a better understanding of the field of computer
science, are equally proficient or superior programmers, and



have a better understanding of the relationship of computer
science to other scientific disciplines.

Jennifer Campbell, Lecturer, Dept. of Computer
Science, University of Toronto, Toronto ON

We recently introduced a first-year course aimed at science
students. Our goals for this course include teaching enough
programming and general technical material to demonstrate
to students the practical value of CS in their scientific dis-
cipline, and introducing the field of CS to a larger number
of science students to give them a path into, and possibly
attract them to, our programs.

The course content overlaps significantly with traditional

CS1 courses, but we also introduce atypical topics like databases

and 2D plotting. All examples from the course are scientific,
which gives students a sense of how the tools and skills they
learn can be applied to their disciplines.

By creating a course that is specifically for students in the
sciences, we are making computer science more accessible to
students in other disciplines. Rather than take a course
with computer science majors, the students can sign up for
a course that seems more relevant to them. For students
who take this course and then decide to become CS majors,
there is a suitable follow-up course that allows them to enter
second year with the same number of first-year CS courses
as a typical CS major.

We have already seen positive signs that we are achieving
our goals to some degree. Several students have expressed
interest in learning more computer science and least one stu-
dent applied his newly attained knowledge while working at
his summer research position in chemistry. As an interesting
side note, the percentage of women enrolled was 37%.

Rubin Landau, Professor, Dept. of Physics, Oregon
State University, Corvallis OR

The first and second Scientific Computing courses at Ore-
gon State are taken by freshmen and aim to give them a
background in the computing skills and tools they can use
throughout their college careers. Three subsequent courses
are taken by all computational physics students, and many
others as well (including some graduate students). All courses
are project-oriented, and cover over 100 scientific problems.

37

Our experience is that science and engineering students
learn computing best by first applying it to concrete science
problems (our courses) and then learning the formal theory
of computing (CS courses). We also find it important for
science students to understand the basis of floating-point
computations, the concordant round-off and algorithmic er-
rors, and the use of large arrays of data. Although much
scientific computation is done with problem-solving environ-
ments, programming remains a valuable skill for students.
While many departments do offer courses in computation
for their particular disciplines, there still is value in general
courses that teach the theory underlying computing.

Robert Sedgewick, Professor, Dept. of Computer
Science, Princeton University, Princeton NJ

Before the advent of computing, a standard science and
mathematics curriculum was developed in secondary educa-
tion, supported and expanded by first-year college courses,
that serves as the technical basis for every student in science
and engineering. For whatever reason, we have seen two un-
fortunate developments at the dawn of the new millenium.
First, many computer science students have somehow been
exempted from having to know basic precepts of science and
math (instead, they learn to develop large programs). Sec-
ond, many students in science and engineering have some-
how been exempted from being exposed to basic precepts of
computer science (instead, they learn specific programming
tools). In both cases, students are being shortchanged. One
solution to both of these problems is to integrate computer
science into the standard curriculum, so that all students
with a general interest in science and engineering develop a
common technical basis in math, science, and computing be-
fore moving into discipline-specific studies. Providing such
integration early in the curriculum is easier than it might
seem.

3. REFERENCES

[1] J. M. Wing. Computational thinking. Communications
of the ACM, 49(3), March 2006.



