
Resizable Arrays in Optimal Time and SpaceAndrej Brodnik1;2, Svante Carlsson2, Erik D. Demaine3, J. Ian Munro3, andRobert Sedgewick41 Dept. of Theoretical Computer Science, Institute of Mathematics, Physics, andMechanics, Jadranska 19, 1111 Ljubljana, Slovenia, Andrej.Brodnik@IMFM.Uni-Lj.SI2 Dept. of Computer Science and Electrical Engineering, Lule�a University ofTechnology, S-971 87 Lule�a, Sweden, svante@sm.luth.se3 Dept. of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1,Canada, feddemaine, imunrog@uwaterloo.ca4 Dept. of Computer Science, Princeton University, Princeton, NJ 08544, U.S.A.,rs@cs.princeton.eduAbstract. We present simple, practical and e�cient data structuresfor the fundamental problem of maintaining a resizable one-dimensionalarray, A[l::l + n � 1], of �xed-size elements, as elements are added toor removed from one or both ends. Our structures also support accessto the element in position i. All operations are performed in constanttime. The extra space (i.e., the space used past storing the n currentelements) is O(pn) at any point in time. This is shown to be within aconstant factor of optimal, even if there are no constraints on the time.If desired, each memory block can be made to have size 2k � c for aspeci�ed constant c, and hence the scheme works e�ectively with thebuddy system. The data structures can be used to solve a variety ofproblems with optimal bounds on time and extra storage. These includestacks, queues, randomized queues, priority queues, and deques.1 IntroductionThe initial motivation for this research was a fundamental problem arising inmany randomized algorithms [6, 8, 10]. Speci�cally, a randomized queue main-tains a collection of �xed-size elements, such as word-size integers or pointers,and supports the following operations:1. Insert (e): Add a new element e to the collection.2. DeleteRandom: Delete and return an element chosen uniformly at randomfrom the collection.That is, if n is the current size of the set, DeleteRandom must choose eachelement with probability 1=n. We assume our random number generator returnsa random integer between 1 and n in constant time.At �rst glance, this problem may seem rather trivial. However, it becomesmore interesting after we impose several important restrictions. The �rst con-straint is that the data structure must be theoretically e�cient: the operationsshould run in constant time, and the extra storage should be minimal. The sec-ond constraint is that the data structure must be practical: it should be simple



IIto implement, and perform well under a reasonable model of computation, e.g.,when the memory is managed by the buddy system. The �nal constraint is moreamusing and was posed by one of the authors: the data structure should bepresentable at the �rst or second year undergraduate level in his text [10].One natural implementation of randomized queues stores the elements in anarray and uses the doubling technique [3]. Insert (e) simply adds e to the end ofthe array, increasing n. If the array is already full, Insert �rst resizes it to twicethe size. DeleteRandom chooses a random integer between 1 and n, and retrievesthe array element with that index. It then moves the last element of the array toreplace that element, and decreases n, so that the �rst n elements in the arrayalways contain the current collection.This data structure correctly implements the Insert and DeleteRandom op-erations. In particular, moving the last element to another index preserves therandomness of the elements chosen by DeleteRandom. Furthermore, both opera-tions run in O(1) amortized time: the only part that takes more than constanttime is the resizing of the array, which consists of allocating a new array of doublethe size, copying the elements over, and deallocating the old array. Because n=2new elements were added before this resizing occurred, we can charge the O(n)cost to them, and achieve a constant amortized time bound. The idea is easilyextended to permit shrinkage: simply halve the size of the structure whenever itdrops to one third full. The amortization argument still goes through.The O(n) space occupied by this structure is optimal up to a constant factor,but still too much. Granted, we require at least n units of space to store thecollection of elements, but we do not require 4:5n units, which this data structureoccupies while shrinkage is taking place. We want the extra space, the space inexcess of n units, to be within a constant factor of optimal, so we are lookingfor an n+ o(n) solution.1.1 Resizable ArraysThis paper considers a generalization of the randomized queue problem to (one-dimensional) resizable arrays. A singly resizable array maintains a collection ofn �xed-size elements, each assigned a unique index between 0 and n�1, subjectto the following operations:1. Read (i): Return the element with index i, 0 � i < n.2. Write (i, x): Set the element with index i to x, 0 � i < n.3. Grow: Increment n, creating a new element with index n.4. Shrink: Decrement n, discarding the element with index n� 1.As we will show, singly resizable arrays solve a variety of fundamental data-structure problems, including randomized queues as described above, stacks,priority queues, and indeed queues. In addition, many modern programminglanguages provide built-in abstract data types for resizable arrays. For example,the C++ vector class [11, sec. 16.3] is such an ADT.Typical implementations of resizable arrays in modern programming systemsuse the \doubling" idea described above, growing resizable arrays by any con-stant factor c. This implementation has the major drawback that the amount



IIIof wasted space is linear in n, which is unnecessary. Optimal space usage is es-sential in modern programming applications with many resizable arrays each ofdi�erent size. For example, in a language such as C++, one might use compounddata structures such as stacks of queues or priority queues of stacks that couldinvolve all types of resizable structures of varying sizes.In this paper, we present an optimal data structure for singly resizable arrays.The worst-case running time of each operation is a small constant. The extrastorage at any point in time is O(pn), which is shown to be optimal up toa constant factor.1 Furthermore, the algorithms are simple, and suitable foruse in practical systems. While our exposition here is designed to prove themost general results possible, we believe that one could present one of the datastructures (e.g., our original goal of the randomized queue) at the �rst or secondyear undergraduate level.A natural extension is the e�cient implementation of a deque (or double-ended queue). This leads to the notion of a doubly resizable array which main-tains a collection of n �xed-size elements. Each element is assigned a uniqueindex between ` and u (where u� ` + 1 = n and `; u are potentially negative),subject to the following operations:1. Read (i): Return the element with index i, ` � i � u.2. Write (i, x): Set the element with index i to x, ` � i � u.3. GrowForward: Increment u, creating a new element with index u+ 1.4. ShrinkForward: Decrement u, discarding the element with index u.5. GrowBackward: Decrement `, creating a new element with index `� 1.6. ShrinkBackward: Increment `, discarding the element with index `.An extension to our method for singly resizable arrays supports this data typein the same optimal time and space bounds.The rest of this paper is outlined as follows. Section 2 describes our fairlyrealistic model for dynamic memory allocation. In Section 3, we present a lowerbound on the required extra storage for resizable arrays. Section 4 presents ourdata structure for singly resizable arrays. Section 5 describes several applicationsof this result, namely optimal data structures for stacks, queues, randomizedqueues, and priority queues. Finally, Section 6 considers deques, which requireus to look at a completely new data structure for doubly resizable arrays.2 ModelOur model of computation is a fairly realistic mix of several popular models: atransdichotomous [4] random access machine in which memory is dynamicallyallocated. Our model is random access in the sense that any element in a blockof memory can be accessed in constant time, given just the block pointer andan integer index into the block. Fredman and Willard [4] introduced the termtransdichotomous to capture the notion of the problem size matching the ma-chine word size. That is, a word is large enough to store the problem size, and1 For simplicity of exposition, we ignore the case n = 0 in our bounds; the correctstatement for a bound of O(b) is the more tedious O(1 + b).



IVso has at least dlog2(1 + n)e bits (but not many more). In practice, it is usuallythe case that the word size is �xed but larger than log2M whereM is the size ofthe memory (which is certainly at least n+ 1). Our model of dynamic memoryallocation matches that available in most current systems and languages, forexample the standard C library. Three operations are provided:1. Allocate (s): Returns a new block of size s.2. Deallocate (B): Frees the space used by the given block B.3. Reallocate (B, s): If possible, resizes the block B to the speci�ed size s.Otherwise, allocates a block of size s, into which it copies the contents of B,and deallocates B. In either case, the operation returns the resulting blockof size s.Hence, in the worst case, Reallocate degenerates to an Allocate, a block copy,and a Deallocate. It may be more e�cient in certain practical cases, but it o�ersno theoretical bene�ts.A memory block B consists of the user's data, whose size we denote by jBj,plus a header of �xed size h. In many cases, it is desirable to have the total sizeof a block equal to a power of two, that is, have jBj = 2k � h for some k. Thisis particularly important in the binary buddy system [6, vol. 1, p. 435], whichotherwise rounds to the next power of two. If all the blocks contained user datawhose size is a power of two, half of the space would be wasted.The amount of space occupied by a data structure is the sum of total blocksizes, that is, it includes the space occupied by headers. Hence, to achieve o(n)extra storage, there must be o(n) allocated blocks.3 Lower BoundTheorem 1. 
(pn) extra storage is necessary in the worst case for any datastructure that supports inserting elements, and deleting those elements in some(arbitrary) order. In particular, this lower bound applies to resizable arrays,stacks, queues, randomized queues, priority queues, and deques.Proof. Consider the following sequence of operations:Insert (a1), . . . , Insert (an), Delete, . . . , Delete| {z }n times .Apply the data structure to this sequence, separately for each value of n. Con-sider the state of the data structure between the inserts and the deletes: let f(n)be the size of the largest memory block, and let g(n) be the number of memoryblocks. Because all the elements are about to be reported to the user (in an ar-bitrary order), the elements must be stored in memory. Hence, f(n) � g(n) mustbe at least n.At the time between the inserts and the deletes, the amount of extra storageis at least hg(n) to store the memory block headers, and hence the worst-caseextra storage is at least g(n). Furthermore, at the time immediately after theblock of size f(n) was allocated, the extra storage was at least f(n). Hence, theworst-case extra storage is at least maxff(n); g(n)g. Because f(n) � g(n) � n,the minimum worst-case extra storage is at least pn. 2



VThis theorem also applies to the related problem of vectors in which elementscan be inserted and deleted anywhere. Goodrich and Kloss [5] show that O(pn)amortized time su�ces for updates, even when access queries must be performedin constant time. They use O(pn) extra space, which as we see is optimal.4 Singly Resizable ArraysThe basic idea of our �rst data structure is storing the elements of the array in�(pn) blocks, each of size roughly pn. Now because n is changing over time,and we allocate the blocks one-by-one, the blocks have sizes ranging from �(1) to�(pn). One obvious choice is to give the ith block size i, thus having k(k+1)=2elements in the �rst k blocks. The number of blocks required to store n elements,then, is �(p1 + 8n� 1)=2� = �(pn).The problem with this choice of block sizes is the cost of �nding a desiredelement in the collection. More precisely, the Read and Write operations must�rst determine which element in which block has the speci�ed index, in what wecall the Locate operation. With the block sizes above, computing which blockcontains the desired element i requires computing the square root of 1 + 8i.Newton's method [9, pp. 274{292] is known to minimize the time for this, taking�(log log i) time in the worst case. This prevents Read and Write from runningin the desired O(1) time bound.2Another approach, related to that of doubling, is to use a sequence of blocksof sizes the powers of 2, starting with 1. The obvious disadvantage of these sizesis that half the storage space is wasted when the last block is allocated andcontains only one element. We notice however that the number of elements inthe �rst k blocks is 2k � 1, so the block containing element i is blog2(1 + i)c.This is simply the position of the leading 1-bit in the binary representation ofi+ 1 and can be computed in O(1) time (see Section 4.1).Our solution is to sidestep the disadvantages of each of the above two ap-proaches by combining them so that Read and Write can be performed in O(1)time, but the amount of extra storage is at most O(pn). The basic idea is tohave conceptual superblocks of size 2i, each split into approximately 2i=2 blocksof size approximately 2i=2. Determining which superblock contains element i canbe done in O(1) time as described above. Actual allocation of space is by block,instead of by superblock, so only O(pn) storage is wasted at any time.This approach is described more thoroughly in the following sections. Webegin in Section 4.1 with a description of the basic version of the data structure.Section 4.2 shows how to modify the algorithms to make most memory blockshave total size a power of two, including the size of the block headers.4.1 Basic VersionThe basic version of the data structure consists of two types of memory blocks:one index block, and several data blocks. The index block simply contains pointersto all of the data blocks. The data blocks, denoted DB0; : : : ; DBd�1, store all of2 In fact, one can use O(pn) storage for a lookup table to support constant-timesquare-root computation, using ideas similar to those in Section 4.1. Here we developa much cleaner algorithm.



VIGrow:1. If the last nonempty data block DBd�1 is full:(a) If the last superblock SBs�1 is full:i. Increment s.ii. If s is odd, double the number of data blocks in a superblock.iii. Otherwise, double the number of elements in a data block.iv. Set the occupancy of SBs�1 to empty.(b) If there are no empty data blocks:i. If the index block is full, Reallocate it to twice its current size.ii. Allocate a new last data block; store a pointer to it in the index block.(c) Increment d and the number of data blocks occupying SBs�1.(d) Set the occupancy of DBd�1 to empty.2. Increment n and the number of elements occupying DBd�1.Algorithm 1. Basic implementation of Grow.the elements in the resizable array. Data blocks are clustered into superblocks asfollows: two data blocks are in the same superblock precisely if they have thesame size. Although superblocks have no physical manifestation, we will �nd ituseful to talk about them with some notation, namely SB0; : : : ; SBs�1. Whensuperblock SBk is fully allocated, it consists of 2bk=2c data blocks, each of size2dk=2e. Hence, there are a total of 2k elements in superblock SBk. See Fig. 1.SB0 SB1 SBs�1SB2Data blocksIndex block Fig. 1. A generic snapshot of the basic data structure.We reduce the four resizable-array operations to three \fundamental" oper-ations as follows. Grow and Shrink are de�ned to be already fundamental; theyare su�ciently di�erent that we do not merge them into a single \resize" opera-tion. The other two operations, Read and Write, are implemented by a commonoperation Locate (i) which determines the location of the element with index i.The implementations of the three fundamental array operations are given inAlgorithms 1{3. Basically, whenever the last data block becomes full, anotherone is allocated, unless an empty data block is already around. Allocating adata block may involve doubling the size of the index block. Whenever two datablocks become empty, the younger one is deallocated; and whenever the indexblock becomes less than a quarter full, it is halved in size. To �nd the blockcontaining a speci�ed element, we �nd the superblock containing it by computingthe leading 1-bit, then the appropriate data block within the superblock, and�nally the element within that data block.Note that the data structure also has a constant-size block, which stores thenumber of elements (n), the number of superblocks (s), the number of nonemptydata blocks (d), the number of empty data blocks (which is always 0 or 1), andthe size and occupancy of the last nonempty data block, the last superblock,and the index block.



VIIShrink:1. Decrement n and the number of elements occupying the last nonemptydata block DBd�1.2. If DBd�1 is empty:(a) If there is another empty data block, Deallocate it.(b) If the index block is a quarter full, Reallocate it to half its size.(c) Decrement d and the number of data blocks occupying the lastsuperblock SBs�1.(d) If SBs�1 is empty:i. Decrement s.ii. If s is even, halve the number of data blocks in a superblock.iii. Otherwise, halve the number of elements in a data block.iv. Set the occupancy of SBs�1 to full.(e) Set the occupancy of DBd�1 to full.Algorithm 2. Basic implementation of Shrink.Locate (i):1. Let r denote the binary representation of i+ 1, with all leading zeros removed.2. Note that the desired element i is element e of data block b of superblock k,where(a) k = jrj � 1,(b) b is the bk=2c bits of r immediately after the leading 1-bit, and(c) e is the last dk=2e bits of r.3. Let p = 2k � 1 be the number of data blocks in superblocks prior to SBk.4. Return the location of element e in data block DBp+b.Algorithm 3. Basic implementation of Locate.In the rest of this section, we show the following theorem:Theorem 2. This data structure implements singly resizable arrays usingO(pn) extra storage in the worst case and O(1) time per operation, on a ran-dom access machine where memory is dynamically allocated, and binary shift byk takes O(1) time on a word of size dlog2(1 + n)e. Furthermore, if Allocate orDeallocate is called when n = n0, then the next call to Allocate or Deallocate willoccur after 
(pn0) operations.The space bound follows from the following lemmas. See [2] for proofs.Lemma 1. The number of superblocks (s) is dlog2(1 + n)e.Lemma 2. At any point in time, the number of data blocks is O(pn).Lemma 3. The last (empty or nonempty) data block has size �(pn).To prove the time bound, we �rst show a bound of O(1) for Locate, and thenshow how to implement Reallocate �rst in O(1) amortized time and then in O(1)worst-case time.The key issue in performing Locate is the determination of k = dlog2(1 + i)e,the position of the leading 1-bit in the binary representation of i + 1. Manymodern machines include this instruction. Newer Pentium chips do it as quicklyas an integer addition. Brodnik [1] gives a constant-time method using onlybasic arithmetic and bitwise boolean operators. Another very simple method is



VIIIto store all solutions of \half-length," that is for values of i up to 2b(log2(1+n))=2c =�(pn). Two probes into this lookup table now su�ce. We check for the leading1-bit in the �rst half of the 1+ blog2(1 + n)c bit representation of i, and if thereis no 1-bit, check the trailing bits. The lookup table is easily maintained as nchanges. From this we see that Algorithm 3 runs in constant time.We now have an O(1) time bound if we can ignore the cost of dynamicmemory allocation. First let us show that Allocate and Deallocate are only calledonce every 
(pn) operations as claimed in Theorem 2. Note that immediatelyafter allocating or deallocating a data block, the number of unused elements indata blocks is the size of the last data block. Because we only deallocate a datablock after two are empty, we must have called Shrink at least as many times asthe size of the remaining empty block, which is 
(pn) by Lemma 3. Because weonly allocate a data block after the last one becomes full, we must have calledGrow at least as many times as the size of the full block, which again is 
(pn).Thus, the only remaining cost to consider is that of resizing the index blockand the lookup table (if we use one), as well as maintaining the contents ofthe lookup table. These resizes only occur after 
(pn) data blocks have beenallocated or deallocated, each of which (as we have shown) only occurs after
(pn) updates to the data structure. Hence, the cost of resizing the index blockand maintaining the lookup table, which is O(n), can be amortized over theseupdates, so we have an O(1) amortized time bound.One can achieve a worst-case running time of O(1) per operation as follows.In addition to the normal index block, maintain two other blocks, one of twicethe size and the other of half the size, as well as two counters indicating howmany elements from the index block have been copied over to each of theseblocks. In allocating a new data block and storing a pointer to it in the indexblock, also copy the next two uncopied pointers (if there are any) from the indexblock into the double-size block. In deallocating a data block and removing thepointer to it, also copy the next two uncopied pointers (if there are any) fromthe index block into the half-sized block.Now when the index block becomes full, all of the pointers from the indexblock have been copied over to the double-size block. Hence, we Deallocate thehalf-size block, replace the half-size block with the index block, replace the indexblock with the double-size block, and Allocate a new double-size block. Whenthe index block becomes a quarter full, all of the pointers from the index blockhave been copied over to the half-size block. Hence, we Deallocate the double-sizeblock, replace the double-size block with the index block, replace the index blockwith the half-size block, and Allocate a new half-size block.The maintenance of the lookup table can be done in a similar way. The onlydi�erence is that whenever we allocate a new data block and store a pointer toit in the index block, in addition to copying the next two uncopied elements (ifthere are any), compute the next two uncomputed elements in the table. Notethat the computation is done trivially, by monitoring when the answer changes,that is, when the question doubles. Note also that this method only adds a



IXconstant factor to the extra storage, so it is still O(pn). The time per operationis therefore O(1) in the worst case.4.2 The Buddy SystemIn the basic data structure described so far, the data blocks have user data ofsize a power of two. Because some memory management systems add a blockheader of �xed size, say h, the total size of each block can be slightly more than apower of two (2k+h for some k). This is inappropriate for a memory managementsystem that prefers blocks of total size a power of two. For example, the (binary)buddy system [6, vol. 1, p. 540] rounds the total block size to the next powerof two, so the basic data structure would use twice as much storage as required,instead of the desired O(pn) extra storage. While the buddy system is rarelyused exclusively, most UNIX operating systems (e.g., BSD [7, pp. 128{132]) useit for small block sizes, and allocate in multiples of the page size (which is alsoa power of two) for larger block sizes. Therefore, creating blocks of total sizea power of two produces substantial savings on current computer architectures,especially for small values of n.This section describes how to solve this problem by making the size of the userdata in every data block equal to 2k�h for some k. As far as we know, this is the�rst theoretical algorithm designed to work e�ectively with the buddy system.To preserve the ease of �nding the superblock containing element number i, westill want to make the total number of elements in superblock SBk equal to 2k.To do this, we introduce a new type of block called an over
ow block. There willbe precisely one over
ow block OBk per superblock SBk. This over
ow block isof size h2bk=2c, and hence any waste from using the buddy system is O(pk).Conceptually, the over
ow block stores the last h elements of each data blockin the superblock.We refer to a data blockDBi together with the corresponding helements in the over
ow block as a conceptual block CBi. Hence, each conceptualblock in superblock SBk has size 2dk=2e, as did the data blocks in the basic datastructure.We now must maintain two index blocks: the data index block stores pointersto all the data blocks as before, and the over
ow index block stores pointers toall the over
ow blocks. As before, we double the size of an index block wheneverit becomes full, and halve its size whenever it becomes a quarter full.The algorithms for the three fundamental operations are given in Algo-rithms 4{6. They are similar to the previous algorithms; the only changes are asfollows. Whenever we want to insert or access an element in a conceptual block,we �rst check whether the index is in the last h possible values. If so, we use thecorresponding region of the over
ow block, and otherwise we use the data blockas before. The only other di�erence is that whenever we change the number ofsuperblocks, we may allocate or deallocate an over
ow block, and potentiallyresize the over
ow index block.We obtain an amortized or worst-case O(1) time bound as before. It remainsto show that the extra storage is still O(pn). The number s of over
ow blocksis O(logn) by Lemma 1, so the block headers from the over
ow blocks aresu�ciently small. Only the last over
ow block may not be full of elements;



XGrow:1. If the last nonempty conceptual block CBd�1 is full:(a) If the last superblock SBs�1 is full:i. Increment s.ii. If s is odd, double the number of data blocks in a superblock.iii. Otherwise, double the number of elements in a conceptual block.iv. Set the occupancy of SBs�1 to empty.v. If there are no empty over
ow blocks:{ If the over
ow index block is full, Reallocate it to twiceits current size.{ Allocate a new last over
ow block, and store a pointer to it inthe over
ow index block.(b) If there are no empty data blocks:i. If the data index block is full, Reallocate it to twice its current size.ii. Allocate a new last data block, and store a pointer to it inthe data index block.(c) Increment d and the number of data blocks occupying SBs�1.(d) Set the occupancy of CBd�1 to empty.2. Increment n and the number of elements occupying CBd�1.Algorithm 4. Buddy implementation of Grow.its size is at most h times the size of the last data block, which is O(pn) byLemma 3. The over
ow index block is at most the size of the data index block, soit is within the bound. Finally, note that the blocks whose sizes are not powersof two (the over
ow blocks and the index blocks) have a total size of O(pn),so doubling their size does not a�ect the extra storage bound. Hence, we haveproved the following theorem.Theorem 3. This data structure implements singly resizable arrays in O(pn)worst-case extra storage and O(1) time per operation, on a dlog2(1 + n)e bitword random access machine where memory is dynamically allocated in blocksof total size a power of two, and binary shift by k takes O(1) time. Furthermore,if Allocate or Deallocate is called when n = n0, then the next call to Allocate orDeallocate will occur after 
(pn0) operations.5 Applications of Singly Resizable ArraysThis section presents a variety of fundamental abstract data types that aresolved optimally (with respect to time and worst-case extra storage) by the datastructure for singly resizable arrays described in the previous section. Pleaserefer to [2] for details of the algorithms.Corollary 1. Stacks can be implemented in O(1) worst-case time per operation,and O(pn) worst-case extra storage.Furthermore, the general Locate operation can be avoided by using the point-er to the last element in the array. Thus the computation of the leading 1-bitis not needed. This result can also be shown or the following data structure bykeeping an additional pointer to an element in the middle of the array [2].Corollary 2. Queues can be implemented in O(1) worst-case time per opera-tion, and O(pn) worst-case extra storage.



XIShrink:1. Decrement n and the number of elements occupying CBd�1.2. If CBd�1 is empty:(a) If there is another empty data block, Deallocate it.(b) If the data index block is a quarter full, Reallocate it to half its size.(c) Decrement d and the number of data blocks occupying the lastsuperblock SBs�1.(d) If SBs�1 is empty:i. If there is another empty over
ow block, Deallocate it.ii. If the over
ow index block is a quarter full, Reallocate it to half its size.iii. Decrement s.iv. If s is even, halve the number of data blocks in a superblock.v. Otherwise, halve the number of elements in a conceptual block.vi. Set the occupancy of SBs�1 to full.(e) Set the occupancy of DBd�1 to full.Algorithm 5. Buddy implementation of Shrink.Locate (i):1. Let r denote the binary representation of i+ 1, with all leading zeros removed.2. Note that the desired element i is element e of conceptual block b ofsuperblock k, where(a) k = jrj � 1,(b) b is the bk=2c bits of r immediately after the leading 1-bit, and(c) e is the last dk=2e bits of r.3. Let j = 2dk=2e be the number of elements in conceptual block b.4. If e � j � h, element i is stored in an over
ow block:Return the location of element bh+ e� (j � h) in over
ow block OBk.5. Otherwise, element i is stored in a data block:(a) Let p = 2k � 1 be the number of data blocks in superblocks prior to SBk.(b) Return the location of element e in data block DBp+b.Algorithm 6. Buddy implementation of Locate.Corollary 3. Randomized queues can be implemented in O(pn) worst-case ex-tra storage, where Insert takes O(1) worst-case time, and DeleteRandom takestime dominated by the cost of computing a random number between 1 and n.Corollary 4. Priority queues can be implemented in O(logn) worst-case timeper operation, and O(pn) worst-case extra storage.Corollary 5. Double-ended priority queues (which support both DeleteMin andDeleteMax) can be implemented in O(logn) worst-case time per operation, andO(pn) worst-case extra storage.6 Doubly Resizable Arrays and DequesA natural extension to our results on optimal stacks and queues would be tosupport deques (double-ended queues). It is easy to achieve an amortized timebound by storing the queue in two stacks, and 
ipping half of one stack whenthe other becomes empty. To obtain a worst-case time bound, we use a new data



XIIstructure that keeps the blocks all roughly the same size (within a factor of 2).By dynamically resizing blocks, we show the following result; see [2] for details.Theorem 4. A doubly resizable array can be implemented using O(pn) extrastorage in the worst case and O(1) time per operation, on a transdichotomousrandom access machine where memory is dynamically allocated.Note that this data structure avoids �nding the leading 1-bit in the binaryrepresentation of an integer. Thus, in some cases (e.g., when the machine doesnot have an instruction �nding the leading 1-bit), this data structure may bepreferable even for singly resizable arrays.7 ConclusionWe have presented data structures for the fundamental problems of singly anddoubly resizable arrays that are optimal in time and worst-case extra space on re-alistic machine models. We believe that these are the �rst theoretical algorithmsdesigned to work in conjunction with the buddy system, which is practical formany modern operating systems including UNIX. They have led to optimal datastructures for stacks, queues, priority queues, randomized queues, and deques.Resizing has traditionally been explored in the context of hash tables [3].Knuth traces the idea back at least to Hopgood in 1968 [6, vol. 3, p. 540]. Aninteresting open question is whether it is possible to implement dynamic hashtables with o(n) extra space.We stress that our work has focused on making simple, practical algorithms.One of our goals is for these ideas to be incorporated into the C++ standardtemplate library (STL). We leave the task of expressing the randomized queueprocedure in a form suitable for �rst year undergraduates as an exercise for the�fth author.References1. A. Brodnik. Computation of the least signi�cant set bit. In Proceedings of the 2ndElectrotechnical and Computer Science Conference, Portoroz, Slovenia, 1993.2. A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick. Resizablearrays in optimal time and space. Technical Report CS-99-09, U. Waterloo, 1999.3. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SICOMP,23(4):738{761, Aug. 1994.4. M. L. Fredman and D. E. Willard. Surpassing the information theoretic boundwith fusion trees. JCSS, 47(3):424{436, 1993.5. M. T. Goodrich and J. G. Kloss II. Tiered vector: An e�cient dynamic array forJDSL. This volume.6. D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1968.7. M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design andImplementation of the 4.4 BSD Operating System. Addison-Wesley, 1996.8. R. Motwani and P. Raghavan. Randomized Algorithms. Camb. Univ. Press, 1995.9. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. NumericalRecipes in C: The Art of Scienti�c Computing. Camb. Univ. Press, 2nd ed., 1992.10. R. Sedgewick. Algorithms in C. Addison-Wesley, 3rd ed., 1997.11. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd ed., 1997.


