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THE AVERAGE CASE ANALYSIS OFALGORITHMS:Mellin Transform AsymptoticsPhilippe Flajolet1 & Robert Sedgewick2Abstract. This report is part of a series whose aim is to present in asynthetic way the major methods of \analytic combinatorics" needed in theaverage{case analysis of algorithms. It reviews the use of Mellin-Perron for-mul� and of Mellin transforms in this context. Applications include: divide-and-conquer recurrences, maxima �nding, mergesort, digital trees and planetrees. L'ANALYSE EN MOYENNE D'ALGORITHMES:La transformation de MellinR�esum�e. Ce rapport fait partie d'une s�erie dont le but est de pr�esenter demani�ere uni��ee les principales m�ethodes de \combinatoire analytique" utiles�a l'analyse d'algorithmes. Il y est d�ecrit l'utilisation des formules de Mellin-Perron et de la transformation de Mellin dans ce contexte. Les applicationscomprennent: les r�ecurrences diviser-pour-r�egner, la recherche de maxima,le tri-fusion, ainsi que les arbres digitaux et les arbres plans.1Algorithms Project, INRIA Rocquencourt, F-78153 Le Chesnay (France)2Department of Computer Science, Princeton University, Princeton, New-Jersey 08544(USA)



iForewordThis report is part of a projected series whose aim is to present in asynthetic way the major methods and models in the average{case analysisof algorithms. It belongs to a collection of reports relative to \AnalyticCombinatorics" that comprises the following sections:I. Counting and generating functions.II. Complex asymptotics and generating functions.III. Saddle point asymptotics.IV. Mellin transform asymptotics.V. Functional equations.VI. Multivariate asymptotics.Parts I, II, and III consist of 6 chapters that have been issued as INRIAResearch Reports 1888 (116 pages, 1993), 2026 (100 pages, 1993), and 2376(55 pages, 1994).The present report constitutes Section IV. It is devoted to complexasymptotics methods based on Mellin transforms. It consists of one chapter(numbered consecutively after those of Parts I, II, III):7. Mellin Transform Asymptotics.
Acknowledgements. The work of Philippe Flajolet was supported in part by theLong Term Research Project of the European Union Alcom-IT (# 20244).The authors are grateful to Tsutomu Kawabata for a careful scrutiny of thepaper and for detailed technical comments.
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Chapter 7Mellin TransformAsymptoticsDie Theorie der reziproken Funktionen und Integraleist ein centrales Gebiet, welches manche anderen Gebieteder Analysis miteinander verbindet.| Hjalmar MellinThis chapter presents a collection of closely related methods for the asymp-totic analysis of sums that arise in combinatorial problems and have anumber-theoretic 
avour. Such sums involve coe�cients either related tothe multiplicative structure of integers (the number of divisors in the anal-ysis of the expected height of plane trees), to the binary representation ofintegers (the number of 1-digits for the best case of the sorting method knownas \mergesort"), or to the powers of 2 (the Bernoulli splitting process andthe analysis of digital trees also known as \tries" in computing applications.Typically, what is required there is to estimate asymptotically sums ofmore or less standard functions weighted by coe�cients that 
uctuate ratherwildly, the resulting estimates themselves showing sometimes traces of suchoscillatory behaviour.The Mellin transform is a classical integral transform closely related tothe Laplace and Fourier transforms. It establishes an explicit mapping be-tween the asymptotic expansions of a function near zero and in�nity on theone hand, and the set of singularities of the transform in the complex planeon the other hand. At the same time, it transforms a general class of sums,1



2 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICScalled harmonic sums, into a tractable factored form. Regarding applica-tions in combinatorics and the analysis of algorithms, the power of Mellintransform methods derives in an essential way from the combination of thesetwo features.There is actually a whole galaxy of methods related to Mellin transform.A simple type that is especially close to basic analytic number theory dealswith the analysis of coe�cients of Dirichlet series, and we start our expositionwith examples falling into this category. An important application is theexact asymptotics of divide-and-conquer recurrences that arise in connectionwith one of the most fruitful paradigm of algorithm design. This is a subjectthat we discuss in some detail and Mellin related techniques are especiallyinstrumental in analyzing the fractal component that is often present in suchalgorithms.Mellin transforms largely originate in number theory, going back to Rie-mann's celebrated memoir on the distribution of prime numbers. They havefound applications in the theory of functions, as initially showed by Mellin(see [33] for a biographical notice with references), and in various areas ofapplied mathematics. As should become apparent in this chapter, Mellintransform are also part of the arsenal of asymptotic methods for discretemathematics and the analysis of algorithms.This chapter is based on a series of papers dealing with Mellin transformasymptotics in analytic combinatorics [15, 16, 17, 22].7.1 Dirichlet series and coe�cient formulaeMany applications in combinatorial analysis, discrete probability, and theanalysis of algorithms involve quantities of an arithmetic nature. For in-stance, the analysis of the expected height of plane trees involves the divisorfunction d(k) (the number of divisors of integer k), register allocation andsome sorting networks lead to quantities related to the binary representationof integers, like v2(k) (the exponent of 2 in the prime number decompositionof integer k) or �(k) (the number of 1-digits in the binary representationof k), etc.Algebra of Dirichlet series. In situations involving arithmetic quanti-ties, asymptotic estimates are best performed by using Dirichlet generatingfunctions rather than ordinary or exponential generating functions. A cleartreatment of the elementary aspects discussed in this section can be found



7.1. DIRICHLET SERIES AND COEFFICIENT FORMULAE 3in Apostol's book [2].De�nition 7.1 Let fang1n=1 be a sequence of complex numbers. The Dirich-let generating function, DGF in short, of the sequence is the formal sum�(s) = 1Xn=1 anns :The simplest Dirichlet series is the zeta function of Riemann,�(s) = 1Xn=1 1ns ;where the sum de�nes an analytic function of s in the half-plane <(s) > 1.Other examples of Dirichlet series are1Xn=1 (�1)n�1ns = (1� 21�s)�(s); 1Xk=1 1(2k)s = 2�s1� 2�s ;which de�nes the \alternating" zeta function, and the DGF of the charac-teristic function of powers of 2 for <(s) > 0.Given three DGFs, �(s); �(s); 
(s) with coe�cients an; bn; cn, sum andproduct relations translate over coe�cients as follows,�(s) = �(s) + 
(s) =) an = bn + cn�(s) = �(s) � 
(s) =) an = Xd j n bdcn=d;where the sum is over the integers d � 1 that divide n, a property writtend j n. The relation that corresponds to the product is called the multiplica-tive convolution or the Dirichlet convolution of coe�cients. From it, we seefor instance that 1Xn=1 d(n)ns = �2(s); 1Xn=1 v2(n)ns = �(s)1� 2�s :In the same vein, one has the famous product formula of Euler for �(s):�(s) =Yp 11� 1ps ; (7:1)



4 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSwhere the product ranges over all primes p. The identity (7.1) is easilychecked by distributing the products inYp 11� p�s =Yp �1 + 1ps + 1p2s + � � �� ;and it is logically equivalent to the property that every integer decomposesuniquely as a product of prime powers.An interesting application of Dirichlet convolutions is to the famousMoe-bius inversion relations. De�ne �(n), the Moebius function, by�(p�11 � � �p�rr ) = 8><>: (�1)r if �1 = � � � = �r = 10 if some �j � 2.and �(1) = 1. Then 1Xn=1 �(n)ns = 1�(s) :The relation �(s) = �(s)�(s) is equivalent to an =Pd j n bd. Solving forbn is achieved by solving for �(s) which gives �(s) = �(s)��1(s). Expressingthe Dirichlet convolution in turn yields the Moebius inversion relation:an = Xd j n bd =) bn = Xd j nad �(nd ):Moebius inversion is in particular useful in dealing with ordinary gener-ating functions. The in�nite functional equation1Xd=1 f(zd) = g(z);with g(z) = O(z) at z = 0, admits the formal solutionf(z) = 1Xd=1�(d)g(zd);as is directly obtained by applying Moebius inversion to the induced relationon coe�cients. As an application, let the class G be the multiset construction(as de�ned in Chapter 1) applied to F . Then,G(z) = exp 1Xm=1 1mF (zm)! ;



7.1. DIRICHLET SERIES AND COEFFICIENT FORMULAE 5or, taking logarithms and applying Moebius inversion on coe�cients,F (z) = 1Xd=1 �(d)d logG(zd):This yields an explicit enumeration for the component class F when thefunction (OGF) of the multiset class G is known. A typical instance is thecounting according to degree of the class F � G = GF (q)[x] of irreducible(monic) polynomials over a �nite �eld for which G(z) = (1 � qz)�1: thenumber of irreducible polynomials of degree n isFn = qnn Xd j n�(d)qn=d:Admissibility of the unlabelled cycle construction, as stated in Chapter 1,obeys similar principles.Exercise 1. Find the DGFs of log(n), of p(n) and of p(n)q(logn) withp; q arbitrary polynomials.Exercise 2. For DGFs �j(s) =P aj;nn�s and �(s) =Pn bnn�s thatsatisfy �(s) = �1(s)�2(s)�3(s), one hasbn = Xn1n2n3=n a1;n1a2;n2a3;n3:Exercise 3. The OGFs of d(k) and v2(k) are given byD(z) = 1Xk=1d(k)zk = 1Xm=1 zm1� zm ; V2(z) = 1Xk=1v2(k)zk = 1Xm=1 z2m1� z2m :Show that D(z) � (1 � z)�1 log(1 � z)�1 as z ! 1� and V2(z) �log2(1 � z)�1, but that singularity analysis cannot be applied as thefunctions cannot be extended beyond jzj = 1.Exercise 4. Prove the translation of the unlabelled cycle constructionstated in Chapter 1.Exercise 5. Assuming that g(x) is analytic at 0 and g(0) = g0(0) = 0,then 1Xn=1f(nx) = g(x) =) f(x) = 1Xn=1�(n)g(nx):



6 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICS�(s) =Xn�1 1ns (<(s) > 1) De�nition(1� 21�s)�(s) =Xn�1 (�1)n�1ns (<(s) > 0) Alternating zeta function�(s) =Yp (1� p�s)�1 (<(s) > 1) Euler product1�(s) =Xn�1 �(n)ns (<(s) > 1) Moebius function�(2m) = (2�)2m2(2m)! (�1)m�1B2m Bernoulli numbers and zetas�(�2m) = 0; �(�2m + 1) = �B2m2m Bernoulli numbers and zetas�(0) = �12 ; � 0(0) = logp2��(1� s) = 21�s��s�(s)�(s) cos(�s2 ) Functional equation (1)�( s2)��s=2�(s) = �(1 � s2 )��(1�s)=2�(1 � s) Functional equation (2)�(s) = 1s � 1 + 
 + 
1(s � 1) + � � � (s! 1) Singular expansion at s = 1�(s) = O(t1=2�<(s)) (=(s)!�1;<(s) < 0) Growth at �i1Figure 7.1: A summary of the main properties of the zeta function.Analysis of Dirichlet series. A clear introduction to the analytic prop-erties of Dirichlet series is given in Chapter IX of Titchmarsh's book [42]to which we globally refer for this section. It is a standard theorem of thetheory of Dirichlet series that they converge in a half{plane <(s) > �c andconverge absolutely in a (possibly smaller) half{plane <(s) > �a, where byelementary analysis 0 � �a � �c � 1, see [42, p. 290{292]. Thus, Dirichletseries exist and are analytic in half-planes. As we have seen, the pair (�c; �a)is (1; 1) for �(s). For the alternating zeta function, it is (0; 1), for the char-acteristic function of powers of 2, it is (0; 0). The half-plane may be emptyas in the DGF of an = 2n for which �c = �a = +1 or equal to the wholecomplex plane as for an = 2�n for which �c = �a = �1. In full generality,a Dirichlet series exists analytically in some region only if its coe�cients arepolynomially bounded.It is a classical theorem [42, 44] that �(s) admits an analytic continuation:�(s) extends to a meromorphic function in the whole of C with only a simple



7.1. DIRICHLET SERIES AND COEFFICIENT FORMULAE 7pole at s = 1, near which�(s) = 1s � 1 + 
 + 
1(s� 1) + 
2(s� 1)2 + � � � ; (7:2)where 
 is the usual Euler constant,
 = limn!+1Hn � logn;and the 
j are sometimes called the Stieltjes constants. First, the extensionto <(s) > 0 can be deduced elementarily from the fact that the alternatingzeta function is by design analytic in <(s) > 0. Next, the extension to thewhole of C results from a much stronger property, the functional equationof Riemann given below that relates �(s) to �(1 � s) and thus permits tocontinue �(s) to the half-plane <(s) � 0.The functional equation of the zeta function admits two standard forms:the asymmetrical form�(1� s) = 21�s��s�(s)�(s) cos(�s2 ); (7:3)and the symmetrical form�(s2)��s=2�(s) = �(1� s2 )��(1�s)=2�(1� s): (7:4)The basic properties of the zeta function including a proof of the functionalequation form the subject of [44, Chap. XIII] to which the reader is referredfor the exercises that follow.Exercise 6. [Euler] Prove that the Euler product formula holds trueanalytically for any s > 1. Prove that �(s) ! +1 as s ! 1+. Showthat the property �(s)!1 as s! 1 implies that there exist in�nitelymany prime numbers.Exercise 7. Use the alternating zeta function to justify directly that�(s) has only a simple pole at s = 1 in <(s) > 0.



8 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSExercise 8. Let Bn = n![zn]z=(ez � 1) denote the Bernoulli numbers.Then, for m a positive integer,�(2m) = (2�)2m2(2m)! (�1)m�1B2m:[Hint. Determine the partial fraction decomposition of coth z and ex-pand. See Chapter 4.]Prove that for m a positive integer,�(�m) = �Bm+1m + 1 ; �(0) = �12 :Exercise 9. Use the asymptotic expansion of the harmonic numbersHn to deduce that the corresponding DGF is meromorphic in the wholeof C with poles at a subset of f: : : ;�2;�1; 0; 1g.Exercise 10. Give an alternative de�nition of the Stieltjes constants
j that generalizes the classical de�nition of the Euler constant.Inversion formulae The Cauchy coe�cient formula provides a way ofrelating a power series to its coe�cients by means of an integral representa-tion. There is a similar formula for Dirichlet series, although it gives partialsums of coe�cients, rather than directly the coe�cients themselves. Thisformula is known as Perron's formula and, as we shall see, it also relates tothe collection of general methods based on Mellin transforms.Theorem 7.1 (Mellin-Perron's coe�cient formula) Let �(s) be theDirichlet generating function of the sequence fang. Let c > 0 lie insidethe half-plane of absolute convergence of �(s).(i) The partial sums of the an are given byX1�k<nak + 12an = 12i� Z c+i1c�i1 �(s)ns dss : (7:5)(ii) Iterated sums of the an for m � 1 are given by1m! X1�k<nak(1� kn )m = 12i� Z c+i1c�i1 �(s)ns dss(s + 1) � � �(s+m) : (7:6)



7.1. DIRICHLET SERIES AND COEFFICIENT FORMULAE 9It is interesting to observe that power series are \generated" by zn whileDirichlet series are \generated" by n�z; accordingly, the inversion formulaeinvolve z�n for the former (Cauchy's coe�cient formula) and nz for the latter(Mellin-Perron's coe�cient formula).Proof. We establish here the case m = 1 of part (ii). Detailed proofs maybe found in almost any book on analytic number theory, see for instance [2],the basic version (m = 0) appearing also in Titchmarsh's book [42, p. 301].Take x > 0 and consider the integralJ1(x) = 12i� Z c+i1c�i1 xs dss(s + 1) : (7:7)Closing the line of integration by a large semi-circle to the left, when x � 1,and taking residues at s = 0;�1 into account, one �nds that J1(x) = 1�x�1in that case (the assumption that x � 1 is necessary to ensure convergenceof the integral taken along the semi-circle). When x � 1, one can close thecontour by a large semi-circle to the right; since there are no poles, one �ndsthat J1(x) = 0 in this case. In summary, we haveJ1(x) = 8><>: 0 if x � 11� x�1 if x � 1. (7:8)Now, the left hand side of Equation (7.6) is equal to1Xk=1J1(nk )ak = 1n n�1Xk=1(n� k)ak:Thus, the right hand side of (7.6) develops by linearity as (7.7), the exchangeof sum and integral being permitted as c lies, by assumption, in the domainwhere the DGF converges absolutely.The other cases follow by a similar argument. For instance, for m = 0corresponding to part 1, one operates with the function J0(x) de�ned likein (7.7), but with s(s + 1) replaced by s, and one �nds that J0(x) = 0; 12 ; 1when x < 1, x = 1 and x > 1. 2The connection of the sums in (7.6) with iterated sums (iterated Ces�aroaverages) should also be clear, as for instance when m = 1,n�1Xk=1(n� k)ak = n�1Xk=1 kX̀=1 a`! :



10 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSA favorable situation for applying Theorem 7.1 is to sequences whose dif-ferences (of some order � 1) admit Dirichlet series that are expressible interms of standard functions.Exercise 11. State conditions that justify the Mellin-Perron formulaof \order �1": an = limT!1 12i� Z c+iTc�iT �(s)ns ds:Exercise 12. EvaluateJm(x) = 12i� Z c+i1c�i1 xs dss(s + 1) � � � (s +m � 1) :Exercise 13. EvaluateKm(x) = 12i� Z c+i1c�i1 xs dssm+1 :Deduce a formula for \logarithmic averages" of coe�cients of a Dirich-let series that are de�ned asXk<nak �log(nk )�m :Growth conditions. The simplest case of application of Mellin-Perronformulae is when the DGFs involved admit a meromorphic continuationin some extended region of the complex plane. A natural approach thenconsists in pushing the line of integration past the leftmost poles. Thissituation is in a sense analogous to the analysis of coe�cients for powerseries that are meromorphic. However, as the contour of integration is nowin�nite, it requires some supplementary condition in order for integrals to beconvergent: the growth of the DGF �(s) on vertical lines must be less thanthe the growth of the kernel's denominator polynomial s(s + 1) � � �(s +m)when j=(s)j ! 1.The analysis of the growth of Dirichlet series is often not easy, and itsometimes relates to deep conjectures of number theory. Though a DGF isclearly O(1) inside its half-plane of absolute convergence, it tends to oscil-late heavily there [42, p. 293], and the behaviour of its analytic continuation



7.2. ASYMPTOTICS WITH THE MELLIN-PERRON FORMULA 11can be rather wild (though constrained by a few general theorems, see [42,p. 299]). For instance, it is still an unproven conjecture, known as Riemann'shypothesis1, that all the zeros of the �(s) in the strip 0 < <(s) < 1 satisfy<(s) = 12 . There is however a well established body of knowledge on thesequestions, and we shall freely borrow from the classical literature. For in-stance, for s = � + it with � < 0, the zeta function is known to satisfy theestimate �(� + it) = O(t 12��) as t! �1: (7:9)In summary, the Mellin Perron formula plays a rôle analogous to theCauchy coe�cient formula. There is however a priori a di�culty since in-tegration is required along vertical lines rather than just circles or closedcurves, a fact which may pose delicate convergence problems. Fortunately, inmany discrete mathematics problems, only basic growth conditions like (7.9)are needed in order to apply the method.Exercise 14. Prove that the two functionsh(s) = 1Xn=1 Hnns ; ĥ(s) = 1Xn=1(�1)nHnnsare of \�nite order": there exists a function �(s) such that h(s); ĥ(s) =O(jsj�(�)) in any half-plane <(s) � �.7.2 Asymptotics with the Mellin-Perron formulaIn this section, we focus on the use of the Mellin-Perron formula for estimat-ing asymptotically coe�cients of a Dirichlet series. We �rst treat in detailthe estimation of the number of 1-digits in the binary representations ofintegers, and then extract the general method underlying this special treat-ment. The next section provides further applications to divide{and conquerrecurrences. This section and the next are largely based on [15, 17].What is striking in all these problems is the occurrence of fractal periodicfunctions with explicit Fourier expansions that are easily captured by theMellin-Perron formula.1Such properties directly in
uence our knowledge of the distribution of primes that isclosely related to analytic properties of � 0(s)=�(s) or log �(s).



12 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSThe sum-of-digits function. The Trollope{Delange formula [10] ex-presses the quantity S(n) representing the total number of 1-digits in therepresentation of integers 1; : : : ; n � 1 in terms a fractal function that iscontinuous but nowhere di�erentiable.First, it is not hard to see thatS(n) = 12n log2 n + o(n logn);since, asymptotically, the binary representations contains roughly as many0's as 1's. A plot of the di�erence between S(n) and its asymptotic equivalent12n log2 n reveals a somewhat erratic behaviour that still seems to obeysthree laws: the di�erence increases in proportion to n; a similar behaviourrepeats itself between consecutive powers of 2; that behaviour is not smoothbut rather strongly oscillating. In fact the local oscillations have a self-similar aspect that is characteristic of a fractal behaviour. Delange's theoremprecisely quanti�es what happens.Proposition 7.1 (Delange's digital theorem) The number of 1-digitsin the binary representation of numbers 1; : : : ; n� 1 satis�esS(n) = 12n log2 n + nP (log2 n);where P (u) is a periodic function of period 1 that is representable by theFourier series P (u) =Pk2Z pke2ik�u, andp0 = log2r�2 � 34pk = � 1log 2 �(�k)�k(�k + 1) with �k = 2ik�log 2 (k 2 Z n f0g):The proof of this proposition reveals most of the features of the Mellin-Perron formula that are essential for the analysis of divide-and-conquer re-currences and algorithms.Proof. We note that by de�nition,S(n) = n�1Xk=1 �(k);with �(k) the number of ones in the binary representation of k. Next, thefunction �(k) satis�es the obvious identity�(k)� �(k � 1) = 1� v2(k) or �(k) = k � kX̀=1 v2(`);



7.2. ASYMPTOTICS WITH THE MELLIN-PERRON FORMULA 13
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14 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSTo justify this, one considers the integral in(7.10) taken along a rectangleRT with vertical sides <(s) = 2, and <(s) = c for some c, and with verticalsides =(s) = �T . From the growth properties (7.9) of �(s), one may takec = �14 which ensures convergence of the integral along the western side.At the same time, one may let T tend to 1, and, by selecting T = (2m +1)�= log2 for integer values of m, poles are avoided in such a way that thecorresponding horizontal integrals tend to 0. Thus, with !(s) denoting theintegrand in (7.10), one has12i� "Z 2+i12�i1 � Z � 14+i1� 14�i1 #!(s) ds = Xs2PRes (!(s)) ; (7:11)where the sum is extended to the set P of poles with �14 < <(s) < 2: Thisset P consists precisely of the pointss = 0; and s = 2ik�log 2 for k 2 Z n f0g;the poles being simple except for s = 0 that is a double pole.The left hand side of (7.11) contains two integrals, the one taken along<(s) = 2 being related in a simple algebraic way to S(n), the other one alongthe line of abscissa s = �14 being by basic bounds O(n�1=4). The residuesare computable from known special values of the zeta function, like�(0) = �12 ; �0(0) = � logp2�;that derive from the functional equation (7.3), (7.4). The pole at s = 0yields a residue of �12 log2 n � log2r�2 � 14 :The poles at the �k for k 6= 0 contribute the Fourier series �P (log2 n) + p0,as is easliy checked by computing the residue of the integrand at each of thepoints s = �k. Thus, all computations done, we �nd a summation formulawith a remainder term:S(n) = 12n log2 n + nP (log2 n) +R(n) where R(n) = O(n3=4):In most cases, things end there, and a formula with some O-error termresults from the Mellin-Perron approach. However, in this particular case,



7.2. ASYMPTOTICS WITH THE MELLIN-PERRON FORMULA 15the formula turns out to be exact, that is to say, R(n) is identically 0. Thisresults from the two identities:Z � 14+i1� 14�i1 �(s)ns dss(s+ 1) = 0; Z � 14+i1� 14�i1 �(s)2s � 1ns dss(s+ 1) = 0:(See the following exercise for a proof of this simple fact.) 2The 
uctuations directly re
ect the fractal nature of binary representa-tions of numbers.Exercise 15. Use the Mellin-Perron formula to establish, for n aninteger, n� 12 = 12i� Z 2+i12�i1 �(s)ns dss(s + 1) ;and deduce by shifting the contour0 = Z � 14+i1� 14�i1 �(s)ns dss(s + 1) :By further expanding (2s � 1)�1 = �1 � 2s � 22s � � � � inside theintegrand, deduce 0 = Z � 14+i1� 14�i1 �(s)2s � 1ns dss(s + 1) :Exercise 16. [17] Analyse the number of blocks 01 in the binaryrepresentations of integers of f1; : : : ; n� 1g.Analyse the number of 1-digits in the Gray code representation ofintegers of f1; : : : ; n� 1g.The general method. It is not di�cult to encapsulate the technique usedfor the sum-of-digits function into a general theorem. The following result isbut one of a large number of possible statements that formalize the analysisof coe�cients of meromorphic Dirichlet series.Theorem 7.2 (Mellin-Perron asymptotics) Let �(s) = Pn ann�s be aDirichlet series that converges absolutely in <(s) � c > 0, is meromorphicin <(s) � d for some d < c, and is analytic on the line <(s) = d. Assumefurther that for some r < 2 and some f�ig with �i ! +1, one has�(s) = O(jsjr); uniformly for s such that d � <(s) � c; j=(s)j = �i:



16 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSDirichlet series �(s) Asymptotic expansion of coe�cient sum SnPole at s0 = �0 + i�0 Term � ns0 = n�0ei�0 logn� | with smaller real value � smaller term in expansion (n�0)� | with imaginary part 6= 0 � 
uctuating factor (ei�0 logn)� | with multiplicity r � extra factor of (logn)r�1� regularly spaced poles � Fourier series in lognSimple pole 1(s � s0) ns0s0(s0 + 1)Double pole 1(s� s0)2 ns0 logns0(s0 + 1) � ns0(2s0 + 1)s20(s0 + 1)2Triple pole 1(s � s0)3 ns0 log2 n2s0(s0 + 1) � ns0 logn(2s0 + 1)s20(s0 + 1)2 + 3 ns0s20(s0 + 1)2Figure 7.3: The correspondence between singularities of a Dirichlet series ats0 (s0 6= 0;�1) and induced terms in the asymptotic expansion of coe�cientsums.Then: 1n n�1Xk=1 ak(n� k) = Xd�<(s)�cRes��(s) nss(s + 1)�+ O(nd); (7:12)where the sum is extended to all poles in the strip d � <(s) � c.Proof. Integrate along a rectangle whose horizontal sides are ��j and ver-tical sides are <(s) = c and <(s) = d and apply the residue theorem. 2It is crucial to observe that a pole of �(s) at some point s0 = �0 + i�0leads to a residue involving the quantityns0 = n�0ei�0 logn;so that poles with larger real parts bring dominant contributions while theirimaginary parts induce a periodic function of logn. The computation iseasily carried out in full generality and is summarized in Fig. 7.3), in the caseof the formula for the sum of coe�cients, Sn =Pn�1k=1 ak(n�k), correspondingto the Mellin-Perron formula of order m = 1. We have:



7.3. DIVIDE-AND-CONQUER RECURRENCES 17| Poles of a Dirichlet series farther to the left contribute smallerterms in an asymptotic expansion of coe�cients. The growth isdictated by the real parts of the singularities; the imaginary partsinduce periodic 
uctuations.| Regularly spaced poles on a vertical line correspond to aFourier series in logn.| A pole of multiplicity r introduces a factor of (logn)r�1.Figure 7.3 gives the residues induced by simple singular elements of theform (s � s0)�j, for j = 1; 2; 3. It is asumed there that s0 is distinct fromthe values 0;�1 that render the kernel (s(s+1))�1 singular (the calculationotherwise obeys the same principles but there is an extra factor of logn).7.3 Divide-and-conquer recurrencesMany algorithms are based on a recursive divide-and-conquer strategy. Typ-ically a problem of size n is split into two subproblems of size n=2 or about(balancing usually pays!), the subproblems are solved independently, and thetwo partial solutions are woven back together. Since n = dn=2e+ bn=2c, thecost of such an algorithm obeys the classical divide-and-conquer recurrencefn = fdn=2e + fbn=2c + en; (7:13)where en, often called the \toll function", is the cost of splitting the originalproblem into two subproblems and of recombining the two partial solutions.Examples are provided by mergesort, binomial queues, sorting networks, andmany computational geometry algorithms [7, 40, 41]. The recurrence (7.13)is most frequently used for describing worst{case performance but it mayalso be used for average{case analysis of algorithms, provided randomnessis inherited by the decomposition into smaller subproblems.Although it was not stressed earlier, the sum-of-digit function falls intothis category since fn = S(n+ 1) satis�es the recurrencefn = fdn=2e + fbn=2c + bn2 c;an equality that may be checked by separating the odd and even numbersin the table of binary representations and that is equivalent to the divide-and-conquer recurrence for �(n),�(1) = 1; �(2n) = �(n); �(2n+ 1) = 1 + �(n):



18 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSExercise 17. The OGF of fn is determined by the OGF of en:f(z) = 1Xk=0 1� z2k1� z e(z2k ):Dirichlet series for divide-and-conquer recurrences. In order to an-alyze (7.13), one should look for a simple form of some Dirichlet series as-sociated with fn. This is easily found by di�erencing twice. Let fung bea sequence of numbers; the second (centered) di�erence of the sequence isde�ned as �run = un+1 � 2un + un�1:By separating the odd and even cases, we �nd�rf2m = �rfm +�re2m�rf2m+1 = +�re2m+1 (7:14)If the relation of (7.13) is to hold true for any n, we must have for consistencyat n = 0; 1 the conditions e0 = e1 = 0, which we now assume. This is not asevere restriction as the choice en = �n;1 in conjunction with (7.13) for n � 2yields fn = n. Then forming DGFs in the usual way from (7.13), throughmultiplication by n�s and summing yields1Xn=1 �rfnns = 11� 2�s 1Xn=1 �renns : (7:15)We restrict attention to the case where the en are of at most polynomialgrowth: en = O(nd) for some d. This guarantees that the DGFs of �renand �rfn have nonempty half-planes of convergence. The Mellin-Perronformula with m = 1 applies, and with c > 0 taken in the interior of thehalf-plane of absolute convergence of the DGF of �ren, one hasfn = n2i� Z c+i1c�i1 �(s)1� 2�sns dss(s+ 1) with �(s) = 1Xn=1 �renns : (7:16)This relation holds under the initial condition f1 = 0; in other cases, a termof nf1 must be added to the integral.In general the en that are \known" are simple enough so that the DGFmay be related to standard Dirichlet series with easily located singularities.



7.3. DIVIDE-AND-CONQUER RECURRENCES 19The DGF of the �rfn that are \unknown" then has its singularities fullydetermined. In particular, the factor of (1 � 2�s)�1 in (7.15) leads one toexpect poles at the points �k = 2ik�log 2 ;which induces periodic 
uctuations in the form of a Fourier series in log2 n.Theorem 7.2 is applicable each time the DGF �(s) admits an analytic contin-uation and is of a su�ciently small growth outside its half-plane of absoluteconvergence.The divide-and-conquer recurrences of the type (7.12) fall into threebroad categories depending on the growth rate of the en. From their el-ementary theory [7, 41], it is known thaten = O(n�); � < 1 =) fn = O(n)en = O(n) =) fn = O(n logn)en = O(n�); � > 1 =) fn = O(n�) (7:17)All three cases lead to some 
uctuating behaviour. In the linear case andsuperlinear case of (7.17) and for \smooth" en, 
uctuations are present butthey are restricted to subdominant asymptotic terms (as was the case forthe sum of digit function). However, in the �rst case of (7.17) where en issublinear so that fn is of linear growth, the 
uctuations appear in the mainterm of the asymptotics of fn. In particular fn=n does not generally tend toa limit but oscillates boundedly. The following result of Flajolet and Golinprecisely quanti�es what happens, assuming a minor technical condition. Itis a direct consequence of Theorem 7.2.Theorem 7.3 (Divide-and-conquer recurrence) Assume that the se-ries Pn j�renjn� is convergent for some � > 0. Then the solution to thedivide-and-conquer recurrence (7.13) satis�esfn = nQ(log2 n) +O(n1��);where Q(u) is a periodic function with mean valueq0 = 1log 2 1Xm=2 em log m2m2 � 1 :The Fourier coe�cients are given by (7.18) below.



20 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSProof. Theorem 7.2 applies here as the DGF of �ren has, by assumptiona half-plane of convergence that contains <(s) � ��. Thus, it su�ces totake c = 1, choose d = ��, and �k = (2k + 1)i�= log2 so as to avoid poles.There is only a simple pole of the integrand at s = 0 since �(0) = 0 as it isa sum of (second) di�erences. Accordingly the residue of the Mellin-Perronintegral at s = 0 is �0(0)= log(2), which gives the form of q0. To the Fourierseries, Q(u) = q0 +Xk 6=0 qke2ik�u;the imaginary poles contribute the Fourier coe�cient (k 6= 0),qk = � 1log 2 1�k(�k + 1)Xn�1 �renn�k : (7:18)2Maxima �nding. One of the fundamental problems of computational ge-ometry is to determine in a collection of points which ones are visible froma certain direction. There is a very simple and surprisingly e�cient algo-rithm for the closely related problem of maxima-�nding that works in anydimension. To keep notations concise, we base our discussion on the alreadynontrivial case of dimension d = 2.A point P = (x; y) dominates a point P 0 = (x0; y0) which we write asP � Q i� P 6= P 0 and the two simultaneous conditions x � x0 and y � y0are met. A maximal element of a �nite set of points F = (P1; : : : ; Pn) is apoint of F that is not dominated by any other point in the set. In the caseof 2-dimensional space and with the usual orientation of the axes, a pointdominates all points that lie to its South-West. Thus, in this perspective,maximal elements are the ones that do not lie indolently in the \shade" ofany other point to their North-East.The maxima �nding algorithm studied here determines the set �(F) ofmaxima in F = (P1; : : : ; Pn) in the following sequence of steps:� �nd recursively M1 = �(P1; : : : ; Pdn=2e);� �nd recursively M2 = �(Pdn=2e+1; : : : ; n);� compute the \merge" of M1 and M2 by pairwise comparisons of theirelements:



7.3. DIVIDE-AND-CONQUER RECURRENCES 21
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6.29Figure 7.4: Maxima �nding |a plot of fn=n for n = 5000; : : : ; 18000.{ �lter the elements ofM1 and retain only the set M 01 of those thatare not dominated by any element of M2:M 01 = fP 2M1 j 8Q 2M2; Q 6� Pg;{ �lter the elements ofM2 and retain only the set M 02 of those thatare not dominated by any element of M1:M 02 = fP 2M2 j 8Q 2M1; Q 6� Pg;� return �(F) =M 01 [M 02.Now comes the average{case analysis. Assume that the points to be op-erated on are all independently drawn according to the uniform distributionin the unit square [0; 1]2. Given n such points, the random variable repre-senting the number of maxima has the same distribution as the number ofrecords (or left-to-right maxima) in a random permutation of 1 : : n. (Thedistribution involves, as we know already from Chapters 2, 3, the Stirlingcycle numbers.) In particular, the mean number of maxima for n points isgiven by the harmonic number, Hn.Consider a na��ve implementation where the setsM 01 andM 02 are each com-puted by performing all pairwise comparisons (a clear optimization would



22 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSresult by using a while loop rather than a for{loop as suggested here, butthe na��ve implementation is already good enough to guarantee linear timebehaviour). Then, the mean number of comparisons required for �ndingmaxima in a set of n random points satis�es the recurrence:fn = fdn=2e + fbn=2c + 2Hdn=2eHbn=2c: (7:19)The initial conditions are f0 = f1 = 0.Fig. 7.4 displays the value of fn=n computed from this recurrence. Thereis a clear periodicity phenomenon, and the graph presents marked cusps atpowers of 2, with a very few secondary cusps being apparent. The aspectis only super�cially di�erent from that of Fig. 7.2, as it can be proved thatsimilar fractal phenomena take place.A simple computation shows that�re2m = � Hmm(m+ 1) ; �re2m+1 = � 1(m+ 1)2 ;so that the conditions of Theorem 7.3 relative to the DGF �(s) of the dif-ferences �ren are satis�ed.Proposition 7.2 (Maxima �nding) Maxima-�nding has an expected costfn that satis�es fn � nQ(log2 n);where Q(u) is a periodic function with mean valueq0 = 2 1Xm=1H2m log 11� (2m)2 + 2 1Xm=1HmHm+1 log 11� (2m+ 1)2 :Numerically, one �nds q0 := 6:3257.Linear time performance is not a priori obvious on this maxima-�ndingproblem. A direct algorithm consists in a sort along the x-coordinate andfollowed by a left-to-right scan to eliminate nonmaximal elements. However,this solution has O(n logn) cost when comparison-based sorting is used.Linearity of the divide-and-conquer solution even persists in all dimensionswhen the divide-and-conquer paradigm is used, and the methods discussedhere provide precise analyses, see [14].Exercise 18. Use a computer algebra system to determine q0 to 50signi�cant digits. (Hint: reorganize the sum as a sum of zeta functions.)Determine numerically the �rst 5 Fourier coe�cients of Q(u).



7.3. DIVIDE-AND-CONQUER RECURRENCES 23Exercise 19. [Buchta [5]] Determine the expected number of maximaof n random points in the unit hypercube of dimension d. (The answerinvolves generalized harmonic numbers.)Exercise 20. [14] Analyze the maxima �nding algorithm in dimensiond > 2, and estimate the corresponding mean-value constants for d =3; 4; 5.Exercise 21. Analyze the improved maxima-�nding algorithm wherea scan is stopped as soon as a dominating element is found (a for-loopis replaced by a while loop).Mergesort. Top-down recursive mergesort is a popular sorting algorithmthat sorts an array t[1 : : n] of n numbers according to the following princi-ple [40, p. 165]� sort recursively the \�rst half": t[1 : : dn2e];� sort recursively the \second half": t[1 + dn2 e : : n];� merge the two halves.The divide and conquer recurrence applies equally well to the worst-casecost T (n) and the average{case cost U(n), with the cost being measured inthe number of comparisons:T (n) = T (dn=2e) + T (bn=2c) + n � 1U(n) = U(dn=2e) + U(bn=2c) + n� 
nwhere 
n = bn=2cdn=2e+ 1 + dn=2ebn=2c+ 1 (7:20)These equalities result from the fact that the cost of merging two �les ofsizes a and b is a+ b� 1 and a+ b� ab+ 1 � ba+ 1 ;



24 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSin the worst case and in the average case respectively [31, ex. 5.2.4-2].The worst case is easy to analyze, and one may check directly [31, 41]from the �rst recurrence of (7.20) thatT (n) = nXk=1dlg ne = ndlg ne � 2dlgne + 1;so that periodicities are apparent without a need to appeal to Theorem 7.3:with fxg representing the fractional part of x, one has the exact expressionT (n) = n lgn + nA(lg n) + 1 where A(u) = 1� fug � 21�fug:Although U(n) grows like n logn, it is still possible to determine U(n)by Theorem 7.3: the recurrences being linear, the quantity T (n) � U(n)also satis�es a divide-and-conquer recurrence but with en = 
n � 1 = O(1).This is a case covered by Theorem 7.3, and all computations done, one �nds(see [15] for details):Proposition 7.3 (Mergesort) The average cost of mergesort satis�esU(n) = n lgn + nB(lg n) + O(pn);where B(u) is a continuous 1-periodic function with mean valueb0 = 12 � 1log 2 � 1log 2 1Xm=1 2(m+ 1)(m+ 2) log 2m+ 12m ;b0 := �1:24815 20420, and with amplitude less than 10�2.By Prop. 7.3, mergesort has an average complexity that is aboutn log2 n� (1:25� 0:01)n+ o(n):This appears to be not far from the information-theoretic lower bound whichis log2 n! � n log2 n� 1:44n+ o(n):Exercise 22. Use DGFs to prove that A(u) has mean value a0 =1=2� 1= log 2, and Fourier coe�cients (k 2 Z n f0g)ak = 1log2 1�k(�k + 1) :Verify these results by a direct calculation.



7.4. MELLIN TRANSFORMS 25Exercise 23. [15] Show that the function B(u) is not di�erentiable ata dense set of points of [0; 1]. [Hint. Express B(u) in terms of A(u) bysuitably reorganizing the Fourier expansion of B.]Other recurrences. Divide-and-conquer recurrences of a type other than(7.12) can also be treated by these methods. However, each recurrence (orbetter perhaps each solution sequence) carries with it a certain degree of\smoothness" that is also related to the growth of the intervening DGFs.If the 
uctuations of the solution sequence are too wild, then Mellin-Perronformulae of a higher order (a larger value of m in Theorem 7.1) will needto be applied resulting in estimates in the sense of Ces�aro averages. Thismay be seen as the current limitation of the method for divide-and-conquerrecurrences of practical interest.7.4 Mellin transformsHjalmar Mellin (1854-1933) gave his name to the Mellin transform thatassociates to a function f(t) de�ned over the positive reals the complexfunction f�(s) where f�(s) = Z 10 f(t)ts�1 dt:The Mellin transforms generalizes in many ways Dirichlet series that havebeen studied earlier.The primary reason why Mellin transforms are useful in asymptotic anal-ysis is the following:Mapping property. Mellin transforms establish a correspon-dence between the asymptotic expansions at 0 and +1 of theoriginal function f(x) and the set of singularities of the trans-formed function f�(s).One of the major uses of Mellin transforms is for the asymptotic analysisof sums obeying the general patternF (x) =Xk �kf(�kx);



26 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSeither as x ! 0 or as x ! +1. Such a sum is called a harmonic sum.Many sums of this type present themselves in combinatorial enumerationsand the analysis of algorithms, especially in expressions of average values ofparameters of combinatorial objects. Typical examples include the height ofplane planted trees studied by De Bruijn, Knuth, and Rice [9] or the basicparameters of randomly grown tries [31, 35]Mellin transforms nicely \separate" the components of a harmonic sum:Separation property. The Mellin transform of a harmonic sumfactorizes as the product of the transform f�(s) of the base func-tion f(x) with a generalized Dirichlet series that only depends onthe coe�cients �k; �k, namely Pk �k��sk .It is the combination of the mapping property and the separation prop-erty that gives its full power to Mellin transform asymptotics:Mellin asymptotic summation. To analyse asymptoticallya harmonic sum, determine its Mellin transform that factorisesby the separation property. Locate the singularities of its compo-nents. Find the asymptotic behaviour of the original harmonicsum by translating these singularities into asymptotic expansionsby means of the mapping property.7.5 Mellin transforms: basic propertiesIn this section we develop the basic de�nitions and functional properties ofMellin transforms.De�nition 7.2 The Mellin transform of a complex-valued function f(x)that exists over (0;+1) and is locally integrable is de�ned byM[f(x); s] = f�(s) = Z 10 f(x)xs�1 dx: (7:21)Existence. We recall that a function is locally integrable if it is integrableover any �nite closed subinterval of the open set (0;+1). Technically, thede�nition above (7.21) is taken in the sense of Lebesgue integrals2 as this2We refer to [42] for a good introduction to measure and Lebesgue integrals and weshall develop the general theory Mellin transforms along these lines though the examplesthat we treat are also Riemann integrable functions.



7.5. MELLIN TRANSFORMS: BASIC PROPERTIES 27allows for a presentation unencumbered by special conditions. It should alsobe remembered that Lebesgue integrability is a notion of absolute integra-bility.Theorem 7.4 (Fundamental strip) There is a maximal open strip 
 =f� < <(s) < �g such that the integral giving the Mellin transform of f(x) isde�ned. This strip is called the fundamental strip. The transformed functionf�(s) is analytic in the fundamental strip.Proof. As f(x) and xs�1 are both locally integrable, what can restrict theexistence of a Mellin transform is only the behaviour of f at the boundarypoints 0 and +1. The basic decompositionf�(s) = Z 10 f(x)xs�1 dx+ Z 11 f(x)xs�1 dx;is such that the �rst integral exists in some right half-plane <(s) > �, andthe second one in some left half-plane <(s) < �: the quantity � is thesupremum of all real a's such that f(x)xa�1 is integrable over (0; 1], and �is the in�mum of all real b's such that f(x)xb�1 is integrable over [1;+1).Such quantities are well de�ned as follows from the dominated convergencetheorem of Lebesgue integration [42, x10.8]. 2Thus Mellin transforms exist in strips. In particular, iff(x) = O(xa) as x! 0+; f(x) = O(xb) as x! +1;then the transform f�(s) exists and is analytic in�a < <(s) < �b(again by virtue of the dominated convergence theorem) which is thus a sub-strip of the fundamental strip. The strip above is nonempty provided b < a.Thus, for functions with de�nite orders at 0 and 1, the Mellin transformexists provided the exponent a at 0 is larger than the exponent b at 1. Sur-prisingly perhaps, constants and polynomials have no Mellin transforms inthe sense of De�nition 7.2.At this stage, it is convenient to introduce a concise notation for openstrips of the complex plane: we de�neh�; �i = fs 2 C j � < <(s) < �g:



28 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSFunction Transform Fund. stripExponential e�x �(s) h0;+1i| e�x � 1 �(s) h�1; 0i| e�x � 1� x �(s) h�2;�1iGaussian e�x2 12�( s2) h0;+1iHeaviside step H(x) 1s h0;+1i| (compl.) 1�H(x) �1s h�1; 0i11 + x �sin �s h0; 1iLogarithm log(1 + x) �s sin �s h�1; 0ie�x1� e�x �(s)�(s) h1;+1iFigure 7.5: Mellin transforms of some common functions.The fundamental strips of the functionsf1(x) = 11 + x; f2(x) = e�x; f3(x) = e�x � 1; f4(x) = e�(x+1=x);are thus
1 = h0; 1i; 
2 = h0;+1i; 
3 = h�1; 0i; 
4 = h�1;+1i:Special transforms. A table of some of the most commonly used trans-forms appears in Fig. 7.5, see also [34, 46] for more. The correspondingformulae will be established in the course of the next few pages.The prototypical Mellin transform is the Gamma function,�(s) = Z 10 e�xxs�1 ds;which is by this de�nition the transform of the exponential function; thefundamental strip is h0;+1i.



7.5. MELLIN TRANSFORMS: BASIC PROPERTIES 29Let H(x) be the Heaviside step function that takes the value 1 for x 2[0; 1] and the value 0 for x > 1. Then, by straight integration,M[H(x); s] = 1s in h0;+1i; M[1�H(x); s] = �1s in h�1; 0i:We shall determine the other transforms of Fig. 7.5 in the next few pages.Hankel contours. In all generality, Mellin transform are de�ned for functionson the real line. Stronger properties are available when the function to be trans-formed is analytic in a wider region.We have seen in an earlier chapter that a Hankel contour provides a way tocontinue analytically the Gamma function. This method extends, by the samereasoning, to the transforms of all functions that are analytic at 0 and on the realhalf-line, while decaying fast enough towards in�nity.Proposition 7.4 (Transforms of analytic functions) Let f(w) be a functionanalytic in some neighbourhood 
 of the nonnegative real axis. Assume that f(w) =O(w��) for w tending to +1 while being restricted to 
. Then, for s in h�1; �i,one has M[f(x); s] = � 12i sin�s ZH f(w)(�w)s�1 dw;where H is a contour inside 
 that starts at +1 above the real axis, encircles theorigin counterclockwise, and returns to +1 below the real axis. The determinationof (�w)s extends the principal determination for w < 0.The situation where f(w) has a pole of order k at 0 can also be accommodatedsince then wkf(w) is then regular at 0 and the proposition applies.Via a residue computation, Prop. 7.4 permits to determine explicitly the Mellintransforms of all rational functions: it su�ces to close the contour to the left by alarge circle and take residues of poles into account. For instance, if R(w) has onlysimple poles at a set P that does include 1, one hasM[R(w); s] = �sin�s X!2P c!(�!)s�1 with c! = limw!!R(w)(w � !):This justi�es for instance the fact that the transform of (1 + x)�1 is �= sin�s.(Principal determinations must be taken for assigning a value to (�!)s�1.)Exercise 24. Determine the Mellin transforms of1(1 + x)m ; 11 + x+ x2 ; 11 + xm ;with m an integer.



30 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSFunction Transform Fund. stripf(x) f�(s) h�; �if(�x) ��sf�(s) h�; �i (� > 0)f(x�) 1�f�( s� ) h��; ��i (� > 0)h��; ��i (� < 0)f(x) logx ddsf�(s) h�; �i�f(x) �sf�(s) h�0; �0i (� = x ddx )ddxf(x) �(s � 1)f�(s � 1) h�0 � 1; �0 � 1iR x0 f(t) dt �1s f�(s + 1) |Xk �kf(�kx)  Xk �k��sk ! � f�(s) h�0; �0i Harmonic sum ruleFigure 7.6: Basic functional properties of Mellin transforms.The method extends to functions that are meromorphic in C provided theirgrowth remains moderate on a collection of large contours (e.g., circles). When ap-plied to the function e�x=(1�e�x) that has poles at s = 2ik�, this technique yieldsrepresentation of the Mellin transform F �(s) of F (x) that involves Pk(2ik�)s�1and thus does not immediately reduces to the form �(s)�(s) of (7.23). Comparingboth forms establishes the functional equation of the Riemann zeta function as givenin (7.3-7.4). (Details of a proof along these lines may be found in [42, p. 148-153].)Exercise 25. Complete the proof of the functional equation of theRiemann zeta function.Functional properties. These are summarized in Fig. 7.6. The mostimportant property for us is the rescaling rule,f(�x) ,! M[f(�x); s] = ��sf�(s); � > 0;that derives from the change of variables in the Mellin integral x 7! �x.Similarly, f(x�) ,! 1�f�(s�)



7.5. MELLIN TRANSFORMS: BASIC PROPERTIES 31results from x 7! x�. The two most important cases aref( 1x) ,! �f�(�s); f(x2) ,! 12f�(s2);corresponding to � = �1; 2. In particular, this justi�es the Gaussian entryof Fig. 7.5.The rule for f(x) logx follows from di�erentiation under the integral sign.The rule for �f(x) = x ddxf(x) results from integration by parts,M[x ddxf(x); s] = [f(x)xs]10 � sM[f(x); s];with the validity region h�0; �0i � h�; �i dictated by the growth propertiesof the function. The application of the related antiderivative rule permits usto deduce the transform of log(1 + x) from that of (1 + x)�1, see Fig. 7.5.An important consequence of the rescaling rule together with the linearityof the transform is to the harmonic sums de�ned byF (x) =Xk �kf(�kx) (7:22)In view of the importance of this rule, we state it as a theorem.Theorem 7.5 (Transforms of harmonic sums) The Mellin transformof the harmonic sumF (x) =Xk �kf(�kx); �k > 0;is de�ned in the intersection of the fundamental strip of f(x) and of thedomain of absolute convergence of the generalized Dirichlet seriesPk �k��sk .In that intersection domain, its value isF �(s) =  Xk �k��sk ! � f�(s):Without substantial loss of generality, the �k can be taken to be eitherstrictly increasing (and tending to +1) or strictly decreasing (and tendingto 0). In that case, the Dirichlet series associated with the harmonic sum isknown to have a half plane of absolute convergence.Proof. The conditions of the theorem legitimate the interchange of sum-mation and integration in the integral de�ning F �(s). 2



32 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSFor instance, the Mellin transform of e�x=(1� e�x) (see Fig. 7.5) resultsfrom the expansionF (x) = e�x1� e�x = e�x + e�2x + e�3x + � � � =) F �(s) = �(s)�(s); (7:23)with a validity strip that is h1;+1i.Inversion. Mellin transforms have an inversion formula very much in linewith what exists for Laplace or Fourier transforms3.Theorem 7.6 (Mellin inversion) Let f(x) be locally integrable with fun-damental strip h�; �i. Then, provided f(x) is of bounded variation in aneighbourhood of x0, one has for any c in the interval (�; �):f(x�0 ) + f(x+0 )2 = limT!1 12i� Z c+iTc�iT f�(s)x�s0 ds: (7:24)If in addition f(x) is continuous at x0, thenf(x) = 12i� Z c+i1c�i1 f�(s)x�s0 ds: (7:25)We refer the reader to the literature for a proof of this classical theorem,see [45, p. 246].Exercise 26. Verify directly by a residue computation that, for c = 12 ,e�x = 12i� Z c+i1c�i1 �(s)x�s ds:Show that taking c = �12 gives e�x � 1 and generalize. Proceed simi-larly for (1 + x)�1.3For instance, the change of variables x = et reduces a Mellin transform to a two-sidedLaplace transform, Z 10 f(x)xs�1 dx = Z +1�1 f(et)est dt;and a further change of variables t = i! yields a Fourier transform.



7.6. MELLIN TRANSFORMS: ASYMPTOTIC PROPERTIES 337.6 Mellin transforms: asymptotic propertiesThere is a very precise correspondence between the asymptotic expansion ofa function f(x) at 0 (resp. +1) and the singularities of the Mellin transformf�(s) in a left half-plane (resp. right half-plane). Each term of the formx�(logx)kin any of the asymptotic expansions of f(x) at 0 or +1 induces for f�(s) apole of order k + 1 at s = ��, so thatf�(s) = O� 1(s + �)k+1� (s! ��):The converse property that poles of f� induce asymptotic terms of f is alsotrue under some mild conditions; it can be proved by means of the inversiontheorem and a residue calculation, very much along the lines of Theorem 7.2.Singular expansions. The mapping properties are conveniently ex-pressed in terms of \singular expansions" that we �rst introduce.De�nition 7.3 Let �(s) be meromorphic in a domain 
 with S the set ofits poles in 
. A singular expansion of �(s) in 
 is de�ned as a formal sumXs02S�s0(s);where each �s0(s) is a truncation of the Laurent expansion of �(s) at s0 tillterms of order O(1) at least. One writes�(s) � Xs02S�s0(s) (s 2 
):For instance, one has1s2(s+ 1) � � 1s + 1 + 2�s=�1 + � 1s2 � 1s�s=0 + �12�s=1 (s 2 h�2;+2i);(7:26)where the point of expansion may be indicated whenever needed as a sub-script to the corresponding singular element. The expansion (7.26) is aconcise way of combining information contained in the Laurent expansionsof the function �(s) � s�2(s+ 1)�1 at the three points of S = f�1; 0; 1g:�(s) =s!�1(s + 1)�1 + 2+ 3(s+ 1) + � � � ; �(s) =s!0 s�2 � s�1 + 1 + � � � ;



34 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICS�(s) =s!1 12 � 54(s� 1) + 178 (s � 1)2 + � � � :The fact that �(s) has poles at the integers � 0 with residue (�1)k=k!at s = �k is expressed concisely as�(s) � 1Xk=0 (�1)kk! 1(s+ k) (s 2 h�1;+1i):As we shall see shortly, this singular expansion directly re
ects the asymp-totic behaviour of e�x (of which �(s) is the Mellin transform) at 0:e�x = 1Xk=0 (�1)kk! xk (x! 0):Exercise 27. Let !(s) be analytic in 
 and let �(s) have there onlysimple poles at the points sk. Show that�(s) �Xk ck(s� sk) =) �(s)!(s) �Xk ck!(sk)(s� sk) (s 2 
):Treat similarly the case when !(s) has simple poles and/or �(s) hasdouble poles.Exercise 28. Establish the singular expansion(�(s))2 � 1Xk=0� ck(s + k)2 + dk(s + k)� ;prove that ck = (k!)�2 and that dk is expressible in terms of Euler'sconstant and harmonic numbers.Direct mapping. We show now that the empirical observation made forthe transforms of e�x corresponds to a general schema.Theorem 7.7 (Direct mapping) Let f(x) have a transform f�(s) withnon-empty fundamental strip h�; �i.(i) Assume that f(x) admits as x! 0+ a �nite asymptotic expansion ofthe form f(x) = X(�;k)2A c�;kx�(log x)k +O(x
) (x! 0+); (7:27)



7.6. MELLIN TRANSFORMS: ASYMPTOTIC PROPERTIES 35for some �nite set A of pairs (�; k), where the � satisfy �
 < �� � � andthe k are nonnegative. Then f�(s) is continuable to a meromorphic functionin the strip h�
; �i where it admits the singular expansionf�(s) � X(�;k)2A c�;k (�1)kk!(s+ �)k+1 (s 2 h�
; �i):(ii) Similarly, assume that f(x) admits as x ! +1 a �nite asymptoticexpansion f(x) = X(�;k)2B c�;kx�(log x)k (x! +1) + O(x�); (7:28)for a �nite set B of pairs (�; k) where now � � �� < ��. Then f�(s) iscontinuable to a meromorphic function in the strip h�;��i wheref�(s) � � X(�;k)2B c�;k (�1)kk!(s+ �)k+1 (s 2 h�;��i):Proof. SinceM(f(1=x); s) = �M(f(x);�s), it su�ces to treat the case (i)corresponding to x! 0+. By assumption, the function g(x)g(x) = f(x)� X(�;k)2A c�;kx�(log x)ksatis�es g(x) = O(x
).For s in the fundamental strip, a split of the de�nition domains yieldsf�(s) = Z 10 f(x) xs�1 dx+ Z 11 f(x) xs�1 dx= Z 10 g(x)xs�1 dx+ Z 10 � X(�;k)2A c�;kx�(log x)k�xs�1 dx+ Z +11 f(x)xs�1 dx:(7:29)In the last line of (7.29), the �rst integral de�nes an analytic function ofs in the strip h�
;+1i since g(x) = O(x
) as x ! 0; the third integralis analytic in h�1; �i, so that the sum of these two is analytic in h�
; �i.Finally, straight integration expresses the middle integral asX(�;k)2A c�;k (�1)kk!(s+ �)k+1



36 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSOriginal f(x) Transform f�(s)x�(log x)k (x! 0) (�1)kk!(s+ �)k+1O(x
) Meromorphicity to the left, till <(s) = �
x�(log x)k (x!1) � (�1)kk!(s+ �)k+1O(x�) Meromorphicity to the right, till <(s) = ��Figure 7.7: The correspondence between asymptotics of f(x) and poles off�(s).which is meromorphic in all C and provides the singular expansion of f�(s)in the extended strip. (See also [11].) 2The notation of singular expansions gives a transparent form to the cor-respondence between asymptotic expansions of original functions and polesof transforms. For instance, in the simpler case of an asymptotic expansionin increasing powers of x that will frequently arise from a Taylor expansionat 0, we havef(x) � 1Xn=0 cnxn (x! 0) =) f�(s) � 1Xn=0 cn(s + n) (s 2 h�1; �i):Similarly, log(1 + x) has for Mellin transform the function �=(s sin�s),as results from the transform of its derivative (1+x)�1 that is rational. Thisfunction admits the two singular expansions8>>>><>>>>: �s sin �s � 1Xk=1 (�1)k�1k 1s+ k (s 2 h�1;�12i)� 1s2 + 0s � 1Xk=1 (�1)k�1k 1s � k (s 2 h�12 ;+1i)



7.6. MELLIN TRANSFORMS: ASYMPTOTIC PROPERTIES 37that correspond term by term to the asymptotic expansions of the originalfunction at 0 and 1:8>>>><>>>>: log(1 + x) = 1Xk=1 (�1)k�1k xk (x! 0)= log x+ 1Xk=1 (�1)k�1k x�k (x!1)Exercise 29. Find the singular expansion in h�10; 10i of the Mellintransform of (coshx)�1=2.As an illustration of the theorem, consider the Mellin pairf(x) = xex � 1 f�(s) = �(s+ 1)�(s+ 1):Theorem 7.7 entails that �(s) is meromorphic in the whole of C (withoutappeal to the functional equation!), and in additionf(x) = 1Xn=0 Bnn! xn =) �(s+ 1)�(s+ 1) � 1Xn=0 Bnn! 1(s+ n) :By comparing this to the known singular expansion of �(s), we �nd that�(0) = �12 ; �(�1) = � 112 ; �(�2) = 0; �(�3) = 1120 ; : : :and more generally,�(�2m) = 0; �(1� 2m) = �B2m2m = �(2m� 1)! [z2m] zez � 1 ;this without any recourse to the functional equation.Exercise 30. What can be deduced from consideration of f(x) =(1 + ex)�1 regarding special values of L(s) = 1�s � 3�s + � � �?



38 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSNote on analytic continuation of transforms. A general principle alsoderives from the proof of Theorem 7.7: Subtracting from a function a truncated formof its asymptotic expansion at either 0 or 1 does not alter its Mellin transform butonly shifts the fundamental strip. An instance is provided by the equalitiesM(e�x; s) = �(s) s 2 h0;+1i; M(e�x � 1; s) = �(s) s 2 h�1; 0i; (7:30)previously established using integration by parts and speci�c properties of the ex-ponential. The following proof of (7.30) demonstrates the general process on thisparticular example. Take the functionF �(s) = 1s + Z 10 (e�x � 1)xs�1 dx+ Z 11 e�xxs�1 dx:Consideration of both integrals shows that the function is meromorphic inh�1;+1i. Its restriction to h0;+1i is�(s) = Z 10 e�xxs�1 dx;and its restriction to h�1; 0i isZ 10 (e�x � 1)xs�1 dx:This argument shows that the transforms of e�x and of e�x� 1 are elements of thesame meromorphic function in di�erent strips.Reverse mapping. There is a converse to Theorem 7.7: under suitablegrowth conditions, the existence of a meromorphic continuation of f�(s)entails asymptotic properties of the function itself.Theorem 7.8 (Reverse mapping) Let f(x) be continuous in ]0;+1[with Mellin transform f�(s) having a non-empty fundamental strip h�; �i.(i) Assume that f�(s) admits a meromorphic continuation to the striph
; �i for some 
 < � with a �nite number of poles there, and is analytic on<(s) = 
. Assume also that there exists a real number � 2 (�; �) such thatf�(s) = O(jsj�r) with r > 1; (7:31)when jsj ! 1 in 
 � <(s) � �. If f�(s) admits the singular expansion fors 2 h
; �i f�(s) � X(�;k)2A d�;k 1(s� �)k ; (7:32)



7.6. MELLIN TRANSFORMS: ASYMPTOTIC PROPERTIES 39then an asymptotic expansion of f(x) at 0 isf(x) = X(�;k)2Ad�;k (�1)k�1(k � 1)!x��(log x)k�1!+ O(x�
):(ii) Similarly assume that f�(s) admits a meromorphic continuation toh�; �i for some � > � and is analytic on <(s) = �. Assume also that thegrowth condition (7.31) holds for � � <(s) � �, for some � 2 (�; �). If f�(s)admits the singular expansionf�(s) � X(�;k)2B d�;k 1(s� �)k ; (7:33)for s 2 h�; �i, then an asymptotic expansion of f(x) at 1 isf(x) = � X(�;k)2B d�;k (�1)k�1(k � 1)!x��(log x)k�1!+O(x��):Proof. The proof makes use of the inversion theorem and of a residuecomputation using large rectangular contours in the extended strip of f�(s).As before, it su�ces to consider case (i) corresponding to continuation tothe left.Let S be the set of poles in h
; �i. Consider the integralJ(T ) = 12i� ZC f�(s)x�s ds;where C � C(T ) denotes the rectangular contour de�ned by the segments[� � iT; �+ iT ]; [�+ iT; 
+ iT ]; [
 + iT; 
� iT ]; [
 � iT; �� iT ]:Assume that T is larger than j=(s0)j for all poles s0 2 S. By Cauchy's theo-rem, J(T ) is equal to the sum of residues, which is by a direct computationR = X(�;k)2Ad�;kRes� x�s(s� �)k�s=� = X(�;k)2Ad�;k  (�1)k�1(k � 1)!x��(log x)k! :Let now T tend to +1. The integral along the two horizontal segmentsis O(T�r) and thus tends to 0 as T !1. The integral along the vertical line<(s) = � that lies inside the fundamental strip tends to the inverse Mellinintegral which converges given the growth assumption on f� and equals f(x)



40 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSf�(s) f(x)Pole at � Term in asymptotic exp. � x��left of fund. strip expansion at 0right of fund. strip expansion at +1Multiple pole Logarithmic factorleft: 1(s � �)k+1 (�1)kk! x��(logx)k at 0right: 1(s � �)k+1 � (�1)kk! x��(logx)k at 1Pole with imaginary part: � = � + it Fluctuations: x�� = x��eit log xRegularly spaced poles Fourier series in logxFigure 7.8: The fundamental correspondence: aspects of the reverse map-ping.by the inversion theorem (since f(x) is continuous). The integral along thevertical line <(s) = 
 is bounded by a quantity of the form12� Z 
+i1
�i1 jf�(s)j jx�sj jdsj = O(1) Z 10 x�
dt(1 + t)r = O(x�
);given the growth assumption on f�.Thus, in the limit, J(1) equals f(x) plus a remainder term that isO(x�
) plus the sum of residues that is of the stated form in x and log x. 2Theorems 7.7 and 7.8 are clearly dual. Fig. 7.8 illustrates the informa-tion that can be extracted from knowledge of the singularities of a Mellintransform and should be compared to Fig. 7.3 relative to Dirichlet series andthe Mellin-Perron formula.Asymptotics of harmonic numbers. The asymptotic expansion of theharmonic numbers provides a clear illustration of the reverse mapping cor-respondence in the context of the analysis of sums.We consider the real functionh(x) = 1Xn=1 � 1n � 1n+ x�



7.6. MELLIN TRANSFORMS: ASYMPTOTIC PROPERTIES 41that \interpolates" the harmonic numbers in the sense that h(n) = Hn forany integer n. It is also a harmonic sum, as results from the equalityh(x) = 1Xn=1 1n xn1 + xn :From the harmonic sum theorem, we �nd the transformh�(s) = �(1� s) ��� �sin �s� ;with fundamental strip h�1; 0i.Singular expansions of �(s) and �= sin�s are already known,�(s) � � 1s � 1 + 
�s=1 ; � �sin �s � �1s + 1s � 1 � 1s � 2 + � � � ;with the latter holding in h�1=2;+1i, so that, in h�12 ;+1i,h�(s) � � 1s2 � 
s �� 12 1s� 1 + 112 1s � 2 � 1120 1s� 4 + � � � :The transform h�(s) is small towards �i1 since �(s) is only of polynomialgrowth in �nite strips, while �sin �s decreases exponentially. Thus, theorem 7.8applies and by a direct term-by-term translation, we geth(x) � log x+ 
 + 12x � 112x2 + 1120x4 + � � � ;and a full expansion results for h(x), hence also for the harmonic numbers:Hn � logn + 
 + 12n � 1Xk=1 B2k2kn2k :The derivation makes use of the values of the zeta function at negativeintegers. The function h(x) is closely related to the logarithmic derivative ofthe Gamma function, since h(z) = z�1+ 
 +  (z) where  (z) = ddz log �(z).(The common elementary derivation of this results uses Euler-Maclaurinsummation, see [41, x4.5].)Exercise 31. Develop a complete asymptotic expansion for the gen-eralized harmonic numbers of some integer order r,H(r)n = nXk=1 1kr :



42 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSIn particular,H(2)n = �26 � 1n + 12n2 � 16n3 + 130n5 � 142n7 + 130n9 +O(n�11)H(3)n = �(3) � 12n2 + 12n3 � 14n4 + 112n6 � 112n8 +O(n�10)Exercise 32. [Ramanujan] Analyse asymptoticallyH(1=2)n = nXk=1 1pk :Hint: one may considerh(x) = 1Xn=1� 1pn � 1pn+ x� = 1Xn=1 1pn "1� 1p1 + x=n# :7.7 Harmonic sumsIn this section we develop applications of the previous theorems specializedto the analysis of sums. First, we state a complete set of de�nitions relativeto harmonic sums.De�nition 7.4 A harmonic sum is a sum of the formF (x) =Xk �kf(�kx):The function f(x) is called the base function. The �k are the amplitudes andthe �k are the frequencies. The (generalized)Dirichlet series of the harmonicsum is the series �(s) :=Xk �k�sk :The denomination is motivated by the fact that harmonic sums vastly gen-eralize Fourier series that correspond to frequencies �k = k and to a basefunction f that is a complex exponential, f(x) = e�ix. To avoid degenera-cies, we further assume that the frequencies �k are nonzero reals and thateither �k ! 0 or �k ! +1.



7.7. HARMONIC SUMS 43As expressed by Theorem 7.5, the Mellin transform of a harmonic sumfactorizes asF �(s) = �(s) � f�(s) where �(s) =  Xk �k��sk !which is the product of its Dirichlet series (determined by the amplitude-frequency pair) and of the Mellin transform of the base function.Mellin transform analysis of harmonic sums requires a priori two condi-tions so that the mapping theorem (Thm. 7.8) be applicable:� Analytic continuation. Both f�(s) and �(s) must be meromorphicallycontinuable beyond their original domains of existence. This is guar-anteed by the direct mapping theorem 7.7 for f�(s) as soon as f(x) hasasymptotic expansions at 0 and 1. For �(s) many number{theoreticfunctions related to divisors, or binary representations also share thisproperty.� Smallness at imaginary in�nity. The most commonly encountered sit-uation is where f�(s) decays exponentially along vertical lines (this isthe case for the transforms of e�x, (1+x)�1 and many more functions)while �(s) only grows at most polynomially along vertical lines (thefunction �(s) is itself an instance of this situation). In this case the\balance" is in favour of fast decay and the reverse mapping theoremis guaranteed to apply.To formalize this process, we make precise the notions of fast decay andmoderate growth, then state a theorem that summarizes the whole chain.De�nition 7.5 A function �(s) that is meromorphic in C is said to be offast decrease if in any �nite strip of the complex plane, it satis�es for anyr > 0, �(s) = O(jsj�r);as jsj ! +1 in the strip.A function �(s) that is meromorphic in C is said to be of moderategrowth if in any �nite strip of the complex plane, it satis�es for some r > 0,�(s) = O(jsjr);as jsj ! +1 in the strip.



44 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSWe shall also say that a meromorphic �(s) is of moderate growth in the weaksense if the condition �(s) = O(jsjr) is only required to hold alongs two setsof horizontal lines =(s) = �Tj and =(s) = Uj , where Tj; Uj ! +1.The following theorem encapsulates most of the (currently known) Mellintechnology in analytic combinatorics.Theorem 7.9 (Mellin asymptotic summation) Consider a harmonicsum F (x) =Pk �kf(�kx) that is a continuous function of x, for x 2]0;+1[.Assume the following conditions:(M0) There is a nonempty intersection of the open fundamental strip of f�(s)and of the open half-plane of absolute convergence of the Dirichlet se-ries of the harmonic sum.(M1) The transform f�(s) of the base function is meromorphic in C and offast decrease.(M2) The generalized Dirichlet series �(s) of the sum is meromorphic in Cand of moderate growth (possibly in the weak sense).Then, F (x) admits asymptotic expansions at 0 and +1 determined byXk �kf(�kx) �x!0 X<(s)<cRes �f�(s) � �(s)x�s��x!+1 � X<(s)>cRes �f�(s) ��(s)x�s�;where c lies in the intersection of the fundamenatl strip of f�(s) and thehalf-plane of abolute convergence of �(s).The treatment of harmonic numbers in the last section provides a clearinstance of Mellin asymptotic summation: the Dirichlet series �(1� s) is ofmoderate growth while the transform of the base function �= sin(�s) is offast decrease.Naturally, arbitrarily many variants of this theorem could be generated,for instance by assuming only partial meromorphic extension of F �(s) andone-sided asymptotic expansions of F (x) or by modifying the growth condi-tions in various ways (see [16]).Exercise 33. By considering sums where the base function is theHeaviside function H(x) or some of its antiderivatives, relate theMellin-Perron formula and the Mellin summation formula.



7.7. HARMONIC SUMS 45Stirling's formula. From the product decomposition of the Gamma func-tion, one has`(x) := log �(x+ 1) + 
x = 1Xn=1 �xn � log(1 + xn)� ; (s 2 h�2;+1i):The Mellin transform is `�(s) = ��(�s) �s sin �s;with fundamental strip h�2;�1i, since the Dirichlet series �(�s) convergesin <(s) < �1 while the strip of the base function is h�2;�1i.There are double poles at s = �1, s = 0 and simple poles at the positiveintegers,`�(s) � � 1(s+ 1)2 + 1� 
(s+ 1)�+ " 12s2 � logp2�s #+ 1Xn=1 (�1)n�1�(�n)n(s� n) :Hence Stirling's formulalog(x !) � log �xxe�xp2�x�+ 1Xn=1 B2n2n(2n� 1) 1x2n�1 :Euler-Maclaurin summations. Given a continuous function f(x), weconsider the sum F (x) = 1Xn=1 f(nx);where for the sake of convergence it is assumed that f(x) = O(x�1��) asx ! +1, for some � > 0. Clearly as x ! 0, the behaviour of the sumshould depend on properties of f(x) near 0.The Mellin transform of F (x) is simply�(s) � f�(s);and �(s) is of moderate growth. Assume �rst, like in the classical form ofEuler-Maclaurin summation, that f(x) has a standard asymptotic expansion,f(x) �x!0 1Xk=0 ckxk; so that f�(s) � 1Xk=0 cks+ k ;



46 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSin h�1; 1 + �i. Thus, taking into account the pole of �(s) at s = 1, we �ndF �(s) � f�(1)s � 1 + 1Xk=0 ck�(�k)s + k :Under smallness of the transform f�(s), the conditions of Mellin asymp-totic summations are satis�ed. Given that f�(1) is the integral of f(x) andgiven the known values of the zeta function, the asymptotic expansion ofF (x) results:F (x) � 1x Z 10 f(x) dx� 12f(0)�Xk�1 B2k2k c2k�1x2k�1:This is nothing but a form of Euler-Maclaurin summation specialized to theinterval (0;+1).The approach developed here has the great advantage of generalizing toarbitrary asymptotic expansions with \fractional" exponents.Proposition 7.5 (General Euler-Maclaurin summation) Assumethat f(x) satis�es an asymptotic expansionf(x) �x!0 1Xk=1 ckx�k ;where �1 < �1 < �2 < � � � and that f�(s) is of fast decrease. Then:F (x) = 1Xn=1 f(nx) � 1x Z 10 f(x) dx+Xk�1 ck�(��k)x�k:The method can also accommodate logarithmic terms in the expansionof f(x), in which case derivatives of the zeta function will be involved.Such generalizations of Euler-Maclaurin summation have been consideredby Barnes and Gonnet. Typical instances are the summatory formul� [16],1Xk=1(�1)k�1f(kx) � 1Xk=0 ck(1� 21+�k)�(��k)x�k1Xk=1(log k) f(kx) � 1x log 1x Z 10 f(x) dx+ 1x Z 10 f(x)(logx) dx+ 1Xk=0 ck�0(��k)x�k ;that are established by Estrada and Kanwal [12, Ch. 3] by means of thetheory of distributions.



7.7. HARMONIC SUMS 47Exercise 34. Analyze asymptoticallyXn�1 pnx1 + n2x2 ; Xn�1 lognx1 + n2x2 :Exercise 35. [16] Analyze asymptoticallyXn�1 e�pnx:Exercise 36. [Ramanujan] Show thatXk�1 e�kx logk = 1x (log 1x � 
) + logp2� + O(x):Exercise 37. Develop asymptotic summatory formul� forXk (�1)k log kf(kx); Xk (�1)kHkf(kx); Xk Hkf(kx):A divisors sum. The problem here is to analyze the harmonic sumD(x) = 1Xk=1d(k)e�kx; (7:34)with d(k) the number of divisors of k. Consideration of this sum is suggestedby the analysis of the expected height of Catalan trees discussed in the nextsection. The function d(k) 
uctuates rather heavily, and for instance, thevalue of d(k) equals 2 i� k is a prime number; for a highly composite numberlike N = 30n, one has d(N) = (n+ 1)3 which is about (logN)3, etc.With the trivial inequality d(k) � k, it is apparent that the sum in (7.34)is convergent and continuous for any x > 0. Also, one has D(x) � e�x asx ! +1. As x ! 0, a direct estimate D(x) = O(x�2) results from thecrude bound d(k) < k. Therefore, the Mellin transform of D(x) exists atleast in the strip h2;+1i.The harmonic sum property implies that the Mellin transform of D(x)is F �(s) = (�(s))2 � �(s)



48 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSsince �2 is the DGF of the divisor function. That transform is meromorphicin the whole of C; it is also exponentially small towards �i1 in any �nitestrip of C since �2(s) is of polynomially bounded growth while �(s) decreasesexponentially.There are singularities at s = 1, s = 0, then at all the odd negativeintegers, so thatD�(s) � � 1(s� 1)2 + 
s � 1�+ � 14s�s=0 � 1Xk=0 (�(�2k � 1))2(2k + 1)! 1s + 2k + 1 :This translates into the asymptotic expansion of D(x) as x! 0:D(x) � 1x(� logx + 
) + 14 � 1Xk=0 (�(�2k � 1))2(2k + 1)! x2k+1:Clearly sums of divisors can be treated in a similar way as their Dirichletseries are expressible in terms of the Riemann zeta function. Ramanujandiscovered a number of related formul� later established systematically byBerndt and Evans using Mellin transforms [4].A doubly exponential sum. This sum is motivated by the analysis ofthe Bernoulli splitting process treated in the next section. It illustratesthe occurrence of tiny periodic 
uctuations under the form of Fourier seriesrelated to regularly spaced poles of a Mellin transform that arise from acomponent of the form (1� 2s)�1. The sumF (x) = 1Xk=0[1� e�x=2k ];is to be analyzed as x! +1. The Mellin transform isF �(s) = � �(s)1� 2s ;with fundamental strip h�1; 0i. (It actually su�ces to prove existence of ofF � in any smaller nonemepty substrip, by elementary arguments of sorts.)There is a double pole of F �(s) at s = 0, but also imaginary poles ats = �k � 2ik�log 2 ;



7.7. HARMONIC SUMS 49which are expected to introduce periodic 
uctuations. The singular expan-sion of F �(s) in h�12 ;+2i isF �(s) � " 1log 2 1s2 � 
 + 12 log 2s log 2 #+ 1log 2 Xk2Znf0g �(�k)s� �k :Accordingly, one �ndsF (x) = log xlog 2 + 12 + 
log 2 +Q(log2(x)) + O(x�2);where Q(u) = �1log 2 Xk2Znf0g�(�k)e�2ik�u:Like before, the error term can be taken to be O(x�M) for any M > 0.The Fourier coe�cients decrease very fast, and one has for instance�(�1) = �(��1) = �0:41767 10�6� 0:35043 10�6 i;�(�2) = �(��2) = �0:14763 10�12+ 0:20480 10�12 i;and so on, so that the amplitude of the Fourier series does not exceed 10�6.Though the 
uctuations are tiny (and may be safely ignored for mostpractical purposes), their presence makes the asymptotic analysis of suchsums intrinsically nonelementary.Thus, Mellin transform |like Dirichlet series| can capture periodic
uctuations. The results bear some resemblance to the analysis of the sum-of-digits function and of divide-and-conquer recurrences discussed earlierin this chapter. However, the presence of the exponential in the originalfunction of the example just discussed entails fast convergence of the Fourierseries (via smallness of the Gamma function), so that no fractal phenomenonappears here.Dyadic sums. Mellin transforms make it possible to discuss in generalterms harmonic sums involving powers of two as frequencies. This is close inspirit to our earlier discussion of generalized Euler-Maclaurin summationsSums involving powers of 2, of the typeGw(x) =Xk�02�kwg( x2k );



50 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSare particularly frequent in the analysis of algorithms and we call themdyadic sums. In applications x usually represents a large parameter.Let g(x) be such that g(x) �x!1 1Xk=0dkx��k ;for some increasing sequence f�kg. We assume naturally that g(x) is O(x��)at 0, for some � < �0, and that g�(s) is of fast decrease towards �i1. Weexamine the case of G0(x) whose transform is (formally)G�0(s) = g�(s)1� 2s :Assume �rst that �0 > 0, so that g(1) = 0. Then the transform has anonempty fundamental strip. Theorem 7.9 applies and givesG0(x) �Xk�0g( x2k ) �x!+1 1log 2 Xk2Z g�(2ik�log 2 )e�2ik� log2 x + 1Xk=0 dk1� 2�k x��k :Thus under these conditions, G0(x) again 
uctuates asymptotically.Consider now the case where g(1) 6= 0; then a logarithmic term creepsin. For simplicity, we assume that the expansion of g(x) is of a standardform.Proposition 7.6 (Standard dyadic summation) Assume thatg(x) �x!+1 1Xk=0dkx�k;with d0 = g(1) 6= 0 and that g�(s) is of fast decrease. Then:G(x) � g(1) log2 x+ 12g(1) + 
[g]log 2 + P (log2 x) + 1Xk=1 dk1� 2kx�k;with 
[g] the Euler constant of g,
[g] = Z 10 g(x) dxx + Z 11 (g(x)� g(1)) dxx ;and with an explicitly determined periodic function P (:):P (u) = �1log 2Xk 6=0 g�(2ik�log 2)e�2ik�u:



7.8. COMBINATORIAL APPLICATIONS. 51Proof. There is now a double pole of G�0(s) at s = 0 so that a two termexpansion is required for g�(s) there. By the fundamental splitting, one hasg�(s) = �g(1)s + Z 10 g(x)xs�1 dx+ Z 11 (g(x)� g(1))xs�1 dx;so that g�(s) = �g(1)s + 
[g] +O(s):The constant 
[g] is called the Euler constant of g since 
[e�x� 1] = �
. 2This example illustrates in passing a general technique by which one candetermine terms of the series expansion of a Mellin transform outside ofits convergence strip; it may be viewed as an adaptation of the method ofsubtracted singularities of Theorem 7.7.7.8 Combinatorial applications.We discuss here three combinatorial applications of Mellin transform tech-niques. The sums in the �rst one involve the highly oscillating divisor func-tion, but these oscillations are smoothed out in the �nal asymptotic estimate.The other 2 reveal periodicity phenomena not unlike those encountered individe-and-conquer recurrences or the sum-of-digit function, though theiramplitude is minute.7.8.1 Catalan sums and the height of treesWhat we call here Catalan sums are particular binomial sums,Sn = nXk=1�k � 2nn�k��2nn � ; (7:35)where the �k are a �xed set of coe�cients (often of an arithmetical character).Such sums occur as average values of combinatorial parameters for objectsenumerated by the Catalan numbers,Cn = 1n+ 1 2nn !; (7:36)like plane trees, binary trees, or ballot sequences [6, 24].



52 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSThe paper of De Bruijn, Knuth, and Rice [9] is the historical source ofMellin transform techniques applied to combinatorial enumeration. It treatsthe expected height �Hn of a random rooted plane trees of n nodes under theuniform distribution (see Chapters 1, 3 for details). The sequence �k is inthis case the divisor function d(k). We brie
y explain here the connectionbetween this combinatorial problem and a Catalan sum like (7.35). (Seealso [41, x5.9] and [29, p. 135] for details.)As seen in Chapter 1, a plane tree decomposes recursively as a rootnode to which is attached a sequence of trees. Let Gn be the number oftrees with n nodes; the ordinary generating function of the sequence fGngis de�ned by G(z) = 1Xn=1Gnzn:This decomposition translates into a functional equation that admits anexplicit solutionG(z) = z1�G(z) and G(z) = 1� p1� 4z2 :We have Gn+1 = Cn with Cn the Catalan number of (7.36).Let similarly G[h](z) be the generating function of trees of height at mosth. As height is inherited from subtrees, one has then the basic recurrenceG[h+1](z) = z1� G[h](z) with G[0](z) = z:This is an instance of a more general scheme discussed in Chapter 3. Here,the G[h](z) are rational fractions that are also approximants to an in�nitecontinued fraction representing G(z). We haveG[h](z) = zFh+1(z)Fh+2(z) ;where the Fh(z) are a family of polynomials called Fibonacci polynomialsand de�ned by the recurrenceF0(z) = 0; F1(z) = 1; Fh+2(z) = Fh+1(z)� zFh(z):Solving this linear recurrence in h (with z a parameter) yields the closedform G[h](z) = 2z (1 +p1� 4z)h+1 � (1� p1� 4z)h+1(1 +p1� 4z)h+2 � (1� p1� 4z)h+2 : (7:37)



7.8. COMBINATORIAL APPLICATIONS. 53An alternative form of this last relation isG(z)�G[h�2](z) = p1� 4z uh(z)1� uh(z) where u(z) = 1�p1� 4z1 +p1� 4z = G(z)1� G(z) :(7:38)There results that the G[h](z) can be expressed in terms of G(z) alone; theTaylor expansions then derive by the Lagrange-B�urmann inversion theoremfor analytic functions (see [9] for details):Gn+1 � G[h�2]n+1 =Xj�1�2 2nn� jh!; (7:39)where �2 2nn �m! =  2nn + 1�m!� 2 2nn �m!+  2nn � 1�m!:Thus, the number of trees of height > h� 2 appears as a \sampled" sum ofthe 2nth line of Pascal's triangle (upon taking second order di�erences).By the well-known form of the expectations of discrete random variables,the mean height �Hn+1 satis�es1 + �Hn+1 = 1Gn+1 Xh�1Xj�1�2 2nn� jh!;Grouping terms according to the value of jh then reduces this expression toa simple sum: 1 + �Hn+1 = 1Gn+1 Xk d(k)�2 2nn� k! (7:40)We are therefore lead to considering sums obeying a pattern similarto (7.35), S(a)n = nXk=1d(k)� 2nn�k�a��2nn � ;since 1 + �Hn+1 = (n+ 1) hS(1)n � 2S(0)n + S(�1)n i : (7:41)The treatment of the central sum is typical. Stirling's formula yields theGaussian approximation of binomial numbers: for k = wpn, and with k =



54 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSo(n3=4), one has 2nn � k! 2nn ! � e�w2 �1� w4 + 3w26n + 5w8 + 6w6 � 45w4 � 60360n2 + � � �� :This leads to the continuous harmonic sumF0(x) =Xk d(k)e�k2x2 ;and an elementary argument (domination of the central terms) justi�es theuse of the Gaussian approximation inside S(0)n :S(0)n = F0( 1pn) + o(1): (7:42)The asymptotic analysis of F0(x) for x ! 0 (here, x = n�1=2) is typicalof harmonic sums and closely follows the pattern encountered in the lastsection. From F �0 (s) = 12�(s2)�2(s);one gets F0(x) � 14p�x (�2 log(2x) + 3
) + 14 � p�144x+ � � � (7:43)The other sums S(�1)n are treated similarly. From (7.41), (7.42), (7.43) andtheir analogues, the expected height is found.Proposition 7.7 The expected height of a random plane rooted tree of nnodes is p�n� 12 + o(1):Full asymptotic expansions could in principle be determined by this tech-nique but a more global approach based on singularity analysis via Mellintransforms is presented below and it appears to be preferable.The basic method here consists in approximating Catalan sums (7.35)by Gaussian sums of the formF (x) = 1Xk=1�ke�k2x2 ;



7.8. COMBINATORIAL APPLICATIONS. 55and treating the latter by Mellin transforms. Related Catalan sums surfacein the analysis of Batcher's odd-even merge sorting network [39] and in reg-ister allocation [28, 29], where the arithmetic function �k involved in (7.35)is either a function of the Gray code representation of k or the function v2(k)representing the exponent of 2 in the prime number decomposition of k.7.8.2 The Bernoulli splitting process and dyadic sumsThe Bernoulli splitting process is a general model of the random allocation ofresource either in the time domain (like stations sharing a common commu-nication channel) or in the space domain (like keys sharing some primary orsecondary storage) whose analysis usually leads to a variety of dyadic sums.The abstract process takes a set G of individuals and splits them recursivelyas follows:| If card(G) � 1 then the process stops and no splitting occurs.| Otherwise card(G) � 2, and each g 2 G 
ips independently a fair coin.Let G0 and G1 be the two subsets of G corresponding to the the groupsof individuals having 
ipped heads (0) and tails (1). Then the processis recursively applied to the two subsets G0 and G1.A realisation of the process may be described by a tree �(G) whose internalbinary nodes correspond to splittings of more than 1 element; the externalnodes either contain a single individual or the empty set.If one views each elements of G as having determined in advance anin�nite sequence of random bits (a \key") corresponding to coin 
ippings,the tree �(G) appears to be just the digital tree, also known as trie, that isassociated to G viewed as a set of \keys". Tries are basic data structures thatdynamically support searches, insertions, and deletions whose description isfound in standard treatises like [23, 31, 35, 40]. (Retrieval of an elementg in �(G) is achieved by following an access path dictated by g.) In thiscontext, the Bernoulli splitting process models the characteristics of treesbuilt from random uniform keys.Given that the cardinality of the original group G is n, there are tworandom variables of major interest: the number In of splitting stages (whereG is e�ectively split into G0; G1) that corresponds to the number of internalnodes in �(G); the total number Ln of coin 
ippings that corresponds tointernal path length in �(G). The expectations in = EfIng and `n = EfLngsatisfy recurrences that re
ect the nature of the splitting process; for n � 2,



56 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSone hasin = 1+ nXk=0�n;k(ik + in�k); `n = n+ nXk=0�n;k(`k + `n�k); �n;k = 12n nk!;(7:44)with initial conditions i0 = i1 = `0 = `1 = 0. The splitting probabilities �n;kare speci�c of the Bernoulli splitting process and they represent the proba-bility of turning k heads out of n coin 
ips. The solution to this problem wasoriginally developed by Knuth and De Bruijn [31] and it constitutes a niceapplication of dyadic sums discussed in the previous section. An elementarybut partial analysis is discussed in [41, Ch. VII].The basic technique to solve (7.44) consists in introducing the exponentialgenerating functionsI(z) = 1Xn=0 inznn! ; L(z) = 1Xn=0 `nznn! ; (7:45)with which (7.44) transforms intoI(z) = 2ez=2I(z2) + (ez � 1� z); L(z) = 2ez=2L(z2) + z(ez � 1): (7:46)A functional equation of the form�(z) = 2ez=2�(z2) + a(z); (7:47)with a(z) a known function and �(z) the unknown, is solved by iteration:�(z) = a(z) + 2ez=2�(z2)= a(z) + 2ez=2a(z2) + 4e3z=4a(z4)= � � �= 1Xk=0 2kez(1�2�k)a( z2k ): (7:48)This principle applies provided a(z) = O(z2), a condition satis�ed by I(z)and L(z) for which a(z) = ez � 1 � z and a(z) = z(ez � 1), respectively.Upon expanding the exponentials, one �nds the explicit formsin = 1Xk=0 2k �1� (1� 12k )n � n2k (1� 12k )n�1�`n = n 1Xk=0 �1� (1� 12k )n�1� : (7:49)



7.8. COMBINATORIAL APPLICATIONS. 57From there, the most direct route is the exponential approximation(1� a)n = e�n log(1�a) = e�na+O(na2) � e�na:It is legitimate to use it in (7.49), see [31, p. 131] for a justi�cation based onsplitting the sums. WithF (x) = 1Xk=0 2k �1� (1 + x2k )e�x=2k� G(x) = x 1Xk=0 h1� e�x=2ki ;one �nds elementarily in = F (n) + O(pn) and `n = G(n) + O(pn). (Wealso discuss below an approach to full asymptotic expansions that avoidsresorting to the exponential approximation.) The functions F (x) and G(x)are dyadic sums of a type already considered.Proposition 7.8 Consider a random tree grown from the Bernoulli splittingprocess with an initial group of size n. The number of internal nodes andthe internal path length of the tree have averages that satisfyin = nlog 2 + nP (log2 n) +O(pn)`n = n log2 n+ � 
log 2 + 12�n + nQ(log2 n) +O(pn);where P (u) and Q(u) are absolutely convergent Fourier series of variationless than 10�5.For tries, this result means that the number of binary nodes is on averageabout 1:44n, a 44% waste in storage when compared to standard binary treestructures, while the average depth `n=n of a random external node is aboutlog2 n, which corresponds to an asymptotically optimal search cost in aninformation-theoretic sense.The Bernoulli splitting process is also an especially useful model in dis-tributed algorithms. For intance, a sequential execution constitutes a wayto regulate access to a common shared channel (groups consisting of sin-gle individuals may deliver their message without interference): this is thetree communication protocol of Capetanakis{Tsybakov discussed for instancein [27, Ch. 9]. Also, retaining only the leftmost branch of the tree leads toan e�cient leader election algorithm [37].Note. The example of the Bernoulli process is a nice application of theestimation of dyadic sums. Its importance owes to the fact that it illustrates



58 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSa general paradigm corresponding to families of probability distribution func-tions Fn(x) that obey a \dyadic law",Fn(x) = �� n2k� � (1 + o(1)) : (7:50)A surprising number of instances have surfaced in the literature of algo-rithms, see [16, 31, 35]. For this reason, we re-examine this particular anal-ysis together with closely related examples recurrently in the rest of thischapter.In the next section, we show an approach based on singularity analysisof ordinary generating functions treated by means of Mellin transforms. Inthe last section of this chapter, we show how a full asymptotic expansion fortrie sums can be obtained by a suitable treatment of intervening Dirichletgenerating functions.Exercise 38. Assume that the error term in (7.50) is O(n�1). Statesu�cient smoothness conditions on � ensuring that the mean andvariance associated with the probability distribution function Fn arelogn+O(1) and O(1), respectively. Provide dominant asymptotics forthe variance.7.8.3 Longest runs in binary strings.Longest runs in random binary strings are treated by Knuth [32] in a paperthat deals with the equivalent problem of carry propagation in parallel binaryadders. There the problem requires an analysis of dominant poles of a familyof rational functions eventually leading to an asymptotic approximation bydyadic sums. The �nal asymptotic part of the treatment is then well-suitedto Mellin analysis.Consider strings over a binary alphabet A = f0; 1g. The problem is toestimate the expected length �Ln of the longest run of 1's in a random stringof length n, where all the 2n possible strings are taken equally likely. Thedistribution was studied by Feller [13] and Knuth [32]. We can complete nowan analysis already started in Chapters 1 (OGFs and constructions) and 4(location of poles).The probability that a random string of length n has no run of k consec-utive 1's is qn;k = 12n [zn] 1� zk1� 2z + zk+1 : (7:51)



7.8. COMBINATORIAL APPLICATIONS. 59The set of such strings is described by the regular expression 1<k � (01<k)�,where 1<k denotes a sequence of less than k 1's and ( )� denotes arbitraryrepetition of a pattern; the general principles of Chapter 1 enable us to writethe ordinary generating function of the set of strings under consideration as1� zk1� z � 11� z 1�zk1�z ;which justi�es (7.51).Let �k be the smallest positive root of the denominator of (7.51) thatlies between 12 and 1. An application of the principle of the argument showssuch a root to exist with all other roots that are of a larger modulus (seeChapter 4). By dominant pole analysis, the qn;k satisfyqn;k � ck(2�k)�n with ck = 1� �kk�k(2� (k+ 1)�kk) ; (7:52)for large n but �xed k.The denominator of the fraction in (7.51) behaves near z = 1=2 like a\perturbation" of 1� 2z so that one expects �k to be approximated by 12 ask !1. An elementary argument shows that�k = 12 �1 + 2�k�1 +O(k2�2k)� : (7:53)Accordingly ck = 1 + O(k2�k).By means of contour integration, one justi�es the use of (7.53) in-side (7.52) for a wide range of values of k and n, which results in the ap-proximate formula: qn;k � (1� 2�k�1)n � e�n2�k�1 :Let q̂n;k denote the approximation e�n2�k�1 to qn;k. Following [32], one �nds�Ln � 1Xk=0[1� qn;k] = 1Xk=0[1� q̂n;k] +O( 1pn ) = 1Xk=0 h1� e�n2�k�1i+O( 1pn ):This is a typical instance of dyadic sums studied already in great detail.Proposition 7.9 The length of the longest 1-run in a random binary stringof length n has expectation�Ln = log2 n+ 
log 2 � 12 + 1log 2 Xk2Znf0g�(2ik�log 2 )e�2ik� log2 n +O( 1pn ):



60 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSThus, the longest run is expected to have length around log2 n + 0:33274.An entirely similar analysis provides the expected size of the largestsummand in a random composition of an integer n. More generally, Gourdonhas shown these techniques to apply to estimates of largest components incombinatorial schemas of the type considered in x4.8.Exercise 39. Estimate the variance of Ln.Exercise 40. Discuss the periodicity phenomenon in connection witha limit probability distribution for Ln.Exercise 41. Analyse the size of the largest image in a random sur-jection of size n.7.9 Mellin analysis of generating functionsMellin analysis has been developed so far with the purpose of estimatingsums that are explicit expressions of combinatorial counts. In may cases,it can also be used to analyse directly generating functions, in particular inthe vicinity of a singularity. We know from the singularity analysis method(Chapter 4) or from the saddle point method (Chapter 6) that such sin-gular expansions have direct implications regarding the asymptotic form ofcoe�cients. This suggests a class of \two-stage methods":Mellin analysis of GFs. Analyse a GF in the complex plane,near a singularity, as a Mellin transform of a harmonic sum whenapplicable. Use singularity analysis or the saddle point methodto recover the asymptotic form of coe�cients.A technical di�culty arises since the singular expansions need to be valid insome domain of the complex plane, not just the real line. In other words,one has to cope with complex harmonic sums that are of the the formF (t) =Xk �kf(�kt);but where t may be complex.



7.9. MELLIN ANALYSIS OF GFS 61In the particular case where the base function is the exponential, f(t) =e�t, the problem can be solved simply by analytic continuation. Indeed,consider the inverse Mellin integral that represents F (t),F (t) = 12i� Z c+i1c�i1 F �(s)t�s dt; (7:54)valid for real t. Assume that the Dirichlet series P�k��sk of the harmonicsum is of moderate growth. Given the fast decrease of the Gamma function,j�(c+ iy)j = O(yc�1=2e��jyj=2) (y ! �1);the integral (7.54) still converges and represents an analytic function of t forany t such that <(t) > 0: to see it, set r = rei', s = c+ iy, so thatjt�sj = r�e'y;and the integrand globally decreases as a negative exponential. This princi-ple applies to the inverse Mellin integral itself and to the remainder integralobtained after the line of integration is shifted. This shows the persistence ofasymptotic expansion in the domain of complex values of t inside any cone,� �2 + � � Arg(t) � �2 � �; (7:55)de�ned by an arbitrary �xed � > 0. We �rst illustrate this technique by theclassical estimate of the number of integer partitions which resorts to saddlepoint analysis.Two-stage saddle point analysis. The OGF of integer partitions (seeChapter 1) is P (z) = 1Yk=1(1� zk)�1;and it admits the unit circle as a natural boundary. The behaviour nearz = 1 is obtained simply by setting z = e�t. We haveF (t) := log(P (e�t)) =Xk log(1� e�kt)�1;clearly a harmonic sum that needs to be studied near t = 0. The Mellintransform of F (t), de�ned for <(s) > 1, isF �(s) = �(s)�(s+ 1)�(s):



62 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSThe resulting singular expansion isF �(s) � �26 1s � 1 � " 12s2 + logp2�s # � 124(s+ 1) ;in the whole of C, so thatF (t) � �26t + logr t2� � 124 t (t! 0+):This expansion translates back into an expansion of P (z):P (z) = e��2=12p2�(1� z) exp� �26(1� z)� (1 + O((1� z))): (7:56)By the process described above, this expansion persists for complex t suchthat jArg(t)j < �4 (say), which in turn implies its truth in a wedge near 1,like jArg(1� z)j < �8 .The validity of the asymptotic expansion (7.56) is su�cient for a saddlepoint analysis of the integralPn � [zn]P (z) = 12i� Zjzj=r P (z) dzzn+1 :The simpler case of the function exp(z=(1 � z)) is similar. It was alreadydiscussed in Chapter 6 and the saddle point satis�es r = 1 � O(n�1=2).Now, since the range of the saddle point tends to 0, the asymptotic ex-pansion (7.56) can be used to estimate the part of the integral that yieldsthe dominant contribution. (The remainder of the contour is exponentiallysmall, as in the case of exp(z=(1� z)).)The same approach applies almost verbatim to partitions into distinctparts corresponding to the in�nite productQ(z) = 1Yk=1(1 + zk);with G(t) := logQ(e�t) = 1Xk=1 log(1 + e�kt):In that case, the Mellin transform isG�(s) = (1� 2�s)�(s)�(s+ 1)�(s);



7.9. MELLIN ANALYSIS OF GFS 63with singular expansionG�(s) � �212 1s � 1 � log 22s + 124(s+ 1) (s 2 h�1;+1i;so that8>><>>: G(t) = �212t � 12 log 2 + O(t) (t! 0+)Q(z) = e��2=24p2 exp� �212(1� z)� (1 +O(1� z)) (z ! 1�):Proposition 7.10 The number Pn of partitions of integer n and the num-ber Qn of partitions into distinct summands satisfyPn � exp(�p2n=3)4p3n ; Qn � exp(�pn=3)4 31=4n3=4 :The result of Prop. 7.10 is due to Hardy and Ramanujan [1] who obtainedmuch more than simple asymptotic equivalence by means of the transforma-tion theory of elliptic functions and consideration of in�nitely many saddlepoints near the unit circle. The two-stage method with Mellin transformswas �rst introduced by De Bruijn [8] in a celebrated study of \Mahler's par-tition problem". This problem consists in �nding the number of partitions ofan integer as a sum of powers of 2 (with repetitions allowed!), which meansthe asymptotic analysis of [zn] 1Yk=0�1� z2k��1 :The method was greatly generalized by Meinardus around 1954 and we referthe reader to the account given in Andrews' book [1, Ch. 6] for completedetails and the full scope of the method.Exercise 42. Determine the asymptotic number of partitions of inte-ger n into squares, cubes, etc; into distinct squares, cubes, etc.Exercise 43. Analyse the number of partitions of n whose summandsare all congruent to a modulo a certain number m. Perform similarlythe analysis for partitions into distinct summands.



64 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSExercise 44. [De Bruijn [8]] The number of binary partitions,Bn = [zn]Yk�0�1� z2k��1satis�es log(Bn) = O((logn)2):Find an asymptotic equivalent of logBn.Exercise 45. Find the order of growth of the recurrent sequencef1 = 1; fn = fn�1 + fbn=2c:Two-stage singularity analysis. Two-stage singularity analysis is anapproach that may be used for the asymptotic analysis of sequences whoseGFs involve \arithmetic" coe�cients as well as powers of a �xed function.We consider �rst the Catalan sum of Subsection 7.8.1 taken here underthe form An =Xk �k 2nn� k!:The height of general Catalan trees corresponds to �k = d(k). The generat-ing function of An is expressible in terms of an OGF of Catalan numbers asfollows. Let y(z) be the solution of the equationy(z) = z(1 + y(z))2 so that y(z) = 1� p1� 4z1 +p1� 4z = 1� 2z � p1� 4z2z :The Lagrange inversion theorem implies[zn]y(z)k = kn [wn�k](1 + w)2n = kn 2nn� k!:Thus, the OGF of An=n isT (z) �Xn�1An znn =Xk�1 �kk y(z)k:



7.9. MELLIN ANALYSIS OF GFS 65The change of variables y(z) = e�t, like in the integer partition example,puts T (z) in the form of a harmonic sum with base function e�t and withamplitude-frequency pair (�k=k; k):T (z) = �(� log(y(z))); where �(t) =Xk �kk e�kt:We assume from now on that the coe�cient sequence �k is \arithmetic"in the sense that its DGF is meromorphic in the whole of C and is of poly-nomial growth at �i1 in any �nite strip. The quantity t lies in a neighbour-hood of 0 when z is near 1=4, and the condition on the �k makes it possibleto analyse the behaviour of �(t) as t! 0+ by Mellin transforms. Thus, thesingular behaviour of T (z), at least when z tends to 1=4 from the left, isknown.The conditions of singularity analysis additionally require the expansionto be valid in an indented crown around 1=4. Now, since y(z) has a singu-larity of the square-root type,y(z) � 1� 2p1� 4z (z ! 14);the mappings z 7! y(z) and z 7! t = � log(y(z)) fold angles by a factor of 2near z = 1=4, see Fig. 7.9. Therefore, as z ! 1=4 in an indented crown, thecorresponding value of y(z) stays within the unit circle and t remains in thehalf-plane <(t) > 0 inside a cone of angle strictly less than �. This featureallows for the treatment of harmonic sums of a complex argument to apply.We have:Proposition 7.11 Consider the sum An = Pk �k�2nk � and assume that thesequence �k is arithmetic (in the sense de�ned above) and that �k � 0. Let�(s) =Pk �kk�s be the DGF of the sequence. Then, a full expansion of Anis obtained by the following process:S1. Locate the set P of poles of �(s + 1)�(s) left of the abscissa ofconvergence of �(s+ 1), and form the asymptotic expansion�(t) � Xs02P Res ��(s+ 1)�(s)t�s�s=s0 :S2. Compose the asymptotic expansion of �(t) witht = � log(y(z)) = log 1 + �1� � = 2� + 2�33 + � � � ;



66 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICS
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7.9. MELLIN ANALYSIS OF GFS 67where � = p1� 4z, which gives the singular expansion of T (z) near z = 1=4.S3. Translate termwise the singular expansion of T (z) by the singularityanalysis theorem and recover the asymptotic expansion of An=n from theindividual terms.Proof. Step S1 is justi�ed by the basic theorem of Mellin asymptotic sum-mation, Thm. 7.9. The validity of step S2 results from the general obser-vation that y(z) \folds angles" and from the fact that the Mellin analysisof harmonic sums extends to the positive real half-plane. This justi�es thevalidity of the singular expansion in an indented crown around 1=4 singular-ity analysis applies. Finally, the nonnegativity assumption implies that 1=4is the only singularity of T (z) on jzj � 1=4. These conditions validate theapplication of singularity analysis. 2The process applied to �(k) = d(k) produces the following expansion:�(t) � 12(log t� 
)2 + �212 � 2
1 + 1Xk=1(�1)k B2kk2 k! tk;from which a full expansion of An derives.This process applies to sequencesAn =Xk �k�(k)n where �(k)n = [wn�k](�(w))n;and �(w) is a function analytic at 0 with nonnegative coe�cients, satisfyingthe inversion conditions of Chapter 5 with the additional condition that�(1) = �0(1). (This means that the function y(z) = z�(y(z)) attains value 1at its singularity.) For instance, we may take for �(w),(1 + w)2; ew;which corresponds to the sumsXk �k 2nn� k!; Xk �k nn�k(n� k)! :The two-stage singularity analysis method presented here originates inthe work of Flajolet and Prodinger [18] who used it to analyse the \order"function of binary trees that intervenes in register allocation problems [28,29].



68 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSExercise 46. Analyse asymptoticallyXk pk� 2nn� k�; Xk log k� 2nn� k�;Xk d(k)(1� 1n )(1� 2n ) � � � (1� n� 1n ):Exercise 47. Analyse asymptoticallyXk (�1)kpk� 2nn � k�; Xk (�1)k log k� 2nn� k�;Xk (�1)kd(k)(1� 1n )(1� 2n ) � � � (1� n� 1n ):Exercise 48. Describe the shape of a full asymptotic expansion ofX d(k)Hk� 2nn� k�:Exercise 49. Show that the coe�cients of the full asymptotic ex-pansion of the height of general Catalan trees have an explicit formas a sum of �nite multiplicity over terms that involve only factorials,exponentials and rational functions.Digital trees (tries) and digital search trees. This section is moti-vated by the model of digital search trees that are a hybrid of digital treesor tries and binary search trees. These trees are per se a useful data struc-ture; additionally the underlying analytic model is also closely related tothe behaviour of data compression algorithms like the celebrated Lempel-Ziv scheme. The analysis is however more di�cult than that of tries: in theliterature [31, 35], it is usually obtained by a study of di�erence-di�erentialequations satis�ed by EGF's in conjunction with Mellin transform asymp-totics on coe�cients.In this section, we develop an analysis along the lines of a paper ofFlajolet and Richmond [20]. The approach is based on singularities of OGFs



7.9. MELLIN ANALYSIS OF GFS 69rather than explicit (but sometimes intricate) coe�cient forms of EGFs.This route is, in our view, more transparent and at the same time it lendsitself to useful generalizations, like to the very general b-digital search trees,a \paged" data structure that motivates the treatment of [20]. Naturally, itwould apply to many other problems like the maximum of geometric randomvariables.We illustrate here the treatment of the usual trie. Thus, we present yetanother derivation of the analysis of the expected number of nodes (splits)in a randomly grown digital trie (Bernoulli process). The starting point isthe recurrence valid for all n � 0,fn = 1� �n;0 � �n;1 + 2 nXk=0 12n nk!fk; (7:57)itself a simple rephrasing of Eq. (7.44), so that fn coincides with in in thenotations of (7.44). Let f(z) be the OGF of fn. Multiplication of both sidesof (7.57) and formation of OGFs by the classical device of multiplying by znand summing yields: f(2z) = (2z)21� 2z + 21� z f( z1� z ): (7:58)In passing, we have used the Euler transformation of series (also known asa binomial transform)a(z) = 11� z b� z1� z� () an = nXk=0 nk!bk; (7:59)where an = [zn]a(z) and bn = [zn]b(z). This equation reduces to the standardform, f(z) = z21� z + 21� z=2f � z2� z� ; (7:60)by the substitution z 7! z=2. Equation (7.60) is the basis of further devel-opments.A functional equation of the general formf(z) = �(z) + �(z)f(�(z)); (7:61)where f(z) is the unknown function, is solved formally by iteration (comparewith (7.48-7.49)): f(z) = 1Xk=0�(�(k)(z)) k�1Yj=0 �(�(j)(z)); (7:62)



70 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSwhere �(j)(z) denotes the jth iterate of function �. In the case at hand, theformal scheme (7.62) with�(z) = z21� z ; �(z) = 21� z=2 ; �(z) = z2� zis easily seen to be convergent in a neighbourhood of the origin since �(z) �z=2 is there contracting. In addition, the iterates of � |like those of anylinear fractional transformation| have an explicit form:�(k)(z) = 2k2k � (2k � 1)z ;a fact that is easily veri�ed by induction. This gives in turn an explicit formfor f(z): f(z) = z21� z 1Xk=0 2k(2k � (2k � 1)z)2 ; (7:63)as the products of (7.62) telescope.Consideration of the explicit solution (7.63) shows that there is a singu-larity at z = 1, as expected, but also singularities at a set of points�k = (1� 2�k)�1that have 1 as limit with geometric convergence. Also a simple transforma-tion puts (7.63) in the formf(z) = z2(1� z)3 1Xk=0 2�k(1 + 2�kw)2 ; w � w(z) = z1� z : (7:64)Now, singularity analysis of f(z) necessitates an asymptotic expansionof f(z) near its singularity z = 1. When z tends to 1�, we have w ! +1,so that an asymptotic expansion of the function�(w) = 1Xk=0 2�k 1(1 + 2�kw)2is required. This is by now a routine matter. The Mellin transform is��(s) = 11� 2s�1 �(1� s)sin �s h0; 1i



7.9. MELLIN ANALYSIS OF GFS 71There is a simple pole at s = 1 with residue 1= log 2 and each point s = 1+�k,where �k = 2ik�= log2 is also a simple pole. The next poles are at s = 2; 3,etc. This gives�(w) = 1log 2w�1 + R(log2w)w�1 +O(w�2) (w! +1); (7:65)where the periodic function R(u) isR(u) := 1log 2 Xk2Znf0g ��ksin ��k exp(�2ik�u):The expansion (7.65) provides the singular expansion of f(z); to �rst order,we may replace w = z=(1� z) by 1=(1� z) there, so thatf(z) = 1(1� z)2 � 1log 2 + R(log2(1� z)) +O(1� z)� ;and the asymptotic estimate of fn follows straightforwardly by singularityanalysis. We thus rederive in this way the result already stated in Prop. 7.8.Digital search trees. The derivation given above for tries is admittedlynot the most elementary possible. However, it has the great advantage oftranslating almost verbatim into an an analysis of digital search trees andtheir generalizations, see [20].The digital search tree process is de�ned by a simple modi�cation of theBernoulli splitting process, where we allow \capture" of one element at eachsplitting stage. The process takes a group G of individuals and splits themas follows:| If card(G) = 0 then the process stops.| Otherwise set n = card(G) so that n � 1. One element � 2 G (theroot) is �rst selected in some arbitrary way. each of the remaining(n� 1) elements g 2 G n f�g then 
ips independently a fair coin. LetG0 and G1 be the two subsets of G n f�g corresponding to the groupsof individuals having 
ipped heads (0) and tails (1). Then the processis recursively applied to the two subsets G0 and G1.A realisation of the process may be described by a tree �(G) whose internalbinary nodes contain selected elements and with the external nodes corre-sponding to empty subgroups. Such a tree may be used to support insertions,deletions and queries [31, 35, 40].



72 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSThe basic recuurence describing the expectation �n of an additive param-eter of the digital tree process then assumes the form (compare with (7.44))�n = en + n�1Xk=0 ��n;k(�k + �n�1�k); ��n;k = 12n�1 n� 1k !; (7:66)for some known \toll" function en; for instance path length is given byen = n� 1. In terms of EGFs, this leads to a di�erence-di�erential equationinstead of a plain di�erence equation for standard tries and the analyses areaccordingly more di�cult [21].The treatment by means of OGF needs instead only the Euler transfor-mation (7.59) and it leads to equations that are still very similar to those oftries [20], so that they can be derived in a similar manner. The nontrivialparamemeter here is path length (the number of binary nodes being plainlyequal to n), and one has:Proposition 7.12 The expected path length in a digital search tree of nbinary nodes isn log2 n + n�
 � 1log 2 + 12 � �+ �(log2 n)� ; � = 1Xk=1 12k � 1 := 1:6066995;where �(u) is aperiodic function of mean value 0 and amplitude less than10�5.7.10 General Mellin summationThis section discusses general conditions under which the Mellin asymptoticsummation process applies. It is included here in vue of the great potentialof the method but being not essential to the rest of this book, it may beskipped on �rst reading.We explore here the fact that Mellin transforms of functions with varyingdegrees of smoothness tend to be small (fast decrease condition), and thatmany natural coe�cient sequences lead to Dirichlet series that are meromor-phic and have moderate growth.Smallness of Mellin transforms. Smallness of a Mellin transform isdirectly related to the degree of \smoothness" (di�erentiability, analyticity)of the original function.



7.10. GENERAL MELLIN SUMMATION 73First, let f(x) be locally integrable with fundamental strip h�; �i. Then,uniformly with respect to � in any closed subinterval of (�; �), one hasf�(� + it) = o(1) as t! �1:If in addition f(x) is of class Cr and the fundamental strip of �rf containsh�; �i, then f�(� + it) = o(jtj�r) as t! �1:To see it, put f� under the formf�(� + it) = Z 10 f(x)e��xeit log x dx;this shows that f�(s) is an integrable function hashed by a complex exponen-tial. By the Riemann-Lebesgue lemma [26, 42], f�(s) tends to 0 as t! �1.Smallness is ampli�ed in the case of higher di�erentiability properties sinceM[�rf(x); s] = (�1)rsrf�(s).Next, smallness extends beyond the fundamental strip for smooth func-tions with smooth derivatives. Let f(x) be of class Cr with fundamentalstrip h�; �i. Assume that f(x) admits an asymptotic expansion as x ! 0+(resp. x! +1) of the formf(x) = X(�;k)2A c�;k x�(log x)k + O(x
) (7:67)where the � satisfy �� � � < 
 (resp. 
 < � � ��). Assume also that eachderivative djdxj f(x) for j = 1; : : : ; r satis�es an asymptotic expansion obtainedby termwise di�erentiation of (7.67). Then the continuation of f�(s) satis�esf�(� + it) = o(jtj�r) as jtj ! 1 (7:68)uniformly for � in any closed subinterval of (�
; �) (resp. of (�;�
)). Toprove this, it su�ces to consider extension to the left of f�(s). Choose somepositive number p > 
 and de�nea(x) = 0@ X(�;k)2A c�;k x�(log x)k1A exp(�xp):The function g(x) = f(x) � a(x) satis�es the assumptions of the previouscase so that its transform g�(s) is o(jsj�r) in its fundamental strip h�
; �i.The transform a�(s) is itself exponentially small given growth properties of



74 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSthe Gamma function and its derivatives. Thus f�(s) = a�(s)+g�(s) satis�esthe stated bounds.Finally, analyticity is the strongest possible form of smoothness for afunction f(x); in that case the transform f�(s) decays exponentially in aquanti�able way. Let f(x) be analytic in S� where S� is the sectorS� = fz 2 C j 0 < jtj < +1 and j arg(z)j � �g with 0 < � < �:Assume that f(x) = O(x��) as x! 0 in S�, and f(x) = O(x��) as x!1in S�. Then, f�(� + it) = O �e��jtj�uniformly for � in every closed subinterval of (�; �). The integral de�ningMellin transforms is in this case applied to an analytic function. By Cauchy'stheorem, the integration contour may be taken as the half-line of slope �:f�(s) = Z ei�10 f(t)ts�1 dt:The change of variable t = �ei� givesf�(s) = ei�s Z 10 f(�ei�) �s�1 d�:The result follows as the integral converges. (Smallness even extends outsideof the fundamental strip by an argument similar to that encountered aboveand based on subtracting suitable combinations of exponentials.)Arithmetic sequences and moderate growth of DGFs. We shallsay that a pair of (amplitude-frequency) sequences f�k; �kg is arithmetic if:(i) the Dirichlet series �(s) = P�k��sk is meromorphic in the whole of C;(ii) the function �(s) is of moderate growth. A single sequence �k is saidto be arithmetic if f�k; kg1k=1 is arithmetic, that is to say if its standardDGF satis�es the two conditions above. A sequence or a pair of sequencesis arithmetic in the weak sense if the growth condition is only required tohold on an in�nite collection of horizontal lines whose distance to the realline tends to in�nity. Many commonly encountered sequences are arithmeticas we now explain.The sequences f1g and f(�1)kg are arithmetic because of the basicgrowth property of the zeta function. Similarly, fk�g for some �xed � isarithmetic as its DGF is �(k � �). If f�kg is arithmetic, so is f�k(log k)r



7.10. GENERAL MELLIN SUMMATION 75for any integer r, since, as is well-known, asymptotic expansions holding insectors of the complex plane can be di�erentiated. Arithmetic sequencesare also clearly closed under sum and under multiplication by a scalar. Forinstance, pk; log kpk ; (�1)k log2 kare arithmetic.An interesting class of arithmetic sequences corresponds to �k = f( 1k)where f(w) admits an asymptotic expansion in ascending power of w at 0.Assume that f(w) � 1Xj=0 cjw�j (w! 0+):Then, for any positive M , we may �nd m0 such thatf(w) = m0Xj=0 cjw�j + O(wM+1);so that �k = m0Xj=0 cjk��j +O(k�M�1):Thus, summation over k yields, for <(s) > �M ,�(s) :=Xk�1 �kk�s = m0Xj=0 cj�(s+ �j) + R(s); (7:69)where R(s) is O(1) when s lies in a right half-plane <(s) � � > �M .Equation (7.69) shows that �(s) is meromorphic in <(s) > �M andhence in the whole of C since M is arbitrary. Given the polynomial growthof the zeta function in any right half-plane, this also implies that �k isarithmetic. In addition, Eq. (7.69) shows that the singularities of �(s) aresimple poles at the points s = 1��j with residue cj. With a slight abuse ofnotations, we may summarize this property as�(s) � 1Xj=0 cj�(s + �j):As an application, let us show that the harmonic numbers are arithmetic.Take �k = Hk � log k; we have�k � 
 + 12 k � 112 k2 + 1120 k4 + � � � :



76 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSTherefore�(s) � 
�(s) + 12�(s + 1)� 112�(s+ 2) + 1120�(s + 4) + � � �� 
s � 1 + 12s � 112(s+ 1) + 1120(s+ 3) + � � �Thus, the DGF of the harmonic numbers has the singular expansion1Xk=1 Hkks = �� 0(s) + �(s)� � 1(s � 1)2 + 
s� 1�+ 12s � 112(s+ 1) + 1120(s+ 3) + � � �Several examples are presented in the problem section and in [16].Exercise 50. Examine closure properties of arithmetic sequences.Show that fd(k)Hkg, f(Hk)2g, ��k� are arithmetic.Maximum of geometric variables and skip lists. We consider herethe problem of obtaining a full asymptotic expansion for the functionF (x) = 1Xk=1 �1� (1� 2�k)x� :For n an integer, F (n) is the expectation of the maximum Mn of n inde-pendent random variables with a common distribution that is geometric ofparameter 12 . Indeed, if G denotes such a geometrically distributed randomvariable; thenPrfMn � kg = 1� (PrfG < kg)n = (1� 2�k)�n:The function F has an expression similar to the average depth of a nodein a random digital tree and whose dominant asymptotics has been alreadytreated by means of the exponential approximation.The function F (x) is a harmonic sum,F (x) = 1Xk=1 �1� e��kx� with �k = � log(1� 2�k);



7.10. GENERAL MELLIN SUMMATION 77and direct application of Mellin summation yieldsF �(s) = ��(s)�(s); �(s) = 1Xk=1��sk (s 2 h�1; 0i):The expansion method that we have developed for harmonic numbersadapts and proves that the amplitude-frequency pair f1; �kg is arithmetic.We have �(s) = 1Xk=1 �log(1� 2�k)�1��s= 1Xk=1 2ks� 12�k log(1� 2�k)�1��s: (7:70)For any s, the expansion� 1x log(1� x)�1��s = 1� 12sx+ 124s(3s� 5)x2� 148s(s� 2)(s� 3)x3 + � � �(7:71)is valid as x! 0. The use of (7.71) for the general term of (7.70) yields aftersummation over k an in�nite collection of expansions, each of which like�(s) = 2s2s � 1�s2 2s�11� 2s�1+s(3s� 5)24 2s�21� 2s�2�s(s � 2)(s� 3)48 2s�31� 2s�3+
(s);(7:72)provides a singular expansion valid in a larger strip (for instance, here 
(s)is analytic in h�1; 4i). At the same time, this process shows that �(s) is ofpolynomial growth in any left half-plane.Concerning the asymptotic expansion of F (x) at 1, there are singulari-ties at each point s = m+2ik�= log 2 form a nonnegative integer and k 2 Z.Each line of poles on <(s) = m contributes a periodic 
uctuation. Thus:Proposition 7.13 The function F (x) = P1k=1[1 � (1 � 2�k)x] admits asx! +1 a full asymptotic expansion of the formF (x) � log2 x+ P0(log2 x) + 1Xj=1Pj(log2 x)x�j;where each Pj is a periodic function of period 1.Proof. The proof results from the developments indicated above. The formof each of the Pj is a direct re
ection of the expansion (7.72). For instance,



78 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSwith �k = 2ik�= log 2:P0(x) = 
log 2 � 12 + 1log 2 Xk2Znf0g�(�k)e�2ik� log2 xP1(x) = � 12 log 2 Xk2Z(�k + 1)�(�k + 1)e�2ik� log2 x;P2(x) = 124 log 2 Xk2Z(�k + 2)(3�k + 1)�(�k + 2)e�2ik� log2 x: 2Exercise 51. Discuss similarly the case of the maximum of n geomet-ric RVs with mean p.Exercise 52. Give a full asymptotic expansion for thge length oflongest runs.Skip lists due to Pugh [38] are a randomized data structure that consti-tutes an attractive alternative to many other tree structures like balancedtrees. Assume that a collection S = (s1; : : : ; sn) of elements in sorted orderare to be kept in a structure that supports e�cient retrieval. An idea thatgoes back to the �rst times of programming consists in building an index S 0that contains only a fraction of the elements of S in sorted order togetherwith pointers to the corresponding places where the indexed elements occurin S. For instance, if jS 0j = 12 jSj, then this process will roughly divide thesearch cost in S by a factor of 2 since only O(1) operations need to be per-formed after the proper location in the index has been detected. A naturalextension of this idea is then to build a second level index S 00, and repeatthe process. (Such ideas regarding indexed sequential �les are also at theorigin of balanced tree structures.)Pugh's beautifully simple idea presented in [38] consists in building S 0from S, S 00 from S 0 etc., by mean of successive random samplings, where eachelements is preserved in the next higher level index with probability 1=2.This solution has the great advantage of adapting to dynamically changingcollections of data, so that it supports insertions, deletions, as well as queries.As is apparent, the index depth is exactly distributed like the maximum of ngeometric random variables, and the analysis given above applies. Severalother Mellin-based analyses of the cost of skip lists appear in [30, 36].



NOTES 79NotesDirichlet series are fundamental in analytic number theory, especially inconnection with the distribution of prime numbers. Riemann is essentiallyresponsible for the deeper aspects of this connection, and some of the tech-niques of the Mellin-Perron type were already known to him. It is startingfrom Riemann's works that Hadamard and De la Vall�ee-Poussin could even-tually prove the prime number theorem. It came somewhat as a surpriseand it constitutes perhaps yet another illustration, in Wigner's terms, ofthe \unreasonable e�ectiveness of mathematics" that methods developed acentury and a half earlier for the purpose of quantifying regularities in thedistribution of primes would prove so instrumental in analysing one of themost productive paradigms in the design of computer algorithms. In fact,the situation in the analysis of algorithms as discussed here is somewhatsimpler since it does not depend upon knowledge of the location of the zerosof the zeta function.The basic use of Dirichlet series and the Mellin-Perron formula is coveredin almost any book on analytic number theory, see for instance Apostol [2]for a gentle introduction. The application to the fractal structure of divide-and-conquer recurrences and the companion periodicity phenomena is dueto Flajolet and Golin [14, 15]. A systematic treatment of characteristics ofnumber representation using these methods is developed by members of the\Vienna School" in [17]. The analysis of mergesort and of Delange's \digitstheorem" [10] given here is typical.Mellin transforms are close relatives of the integral transforms of Laplaceand Fourier. As such, they play an important rôle in applied mathematics.Good general references that include a treatment of Mellin transforms arethe books of Doetsch [11], Titchmarsh [43] and Widder [45]. The book byWong [46] is in spirit especially close to us as it focuses on asymptotic analy-sis, in particular as applied to \harmonic integrals", a continuous analogue ofour harmonic sums. Mellin himself formalized his transform for the purposeof analyzing both entire functions and special functions of the hypergeomet-ric type. We refer to Lindel�of's notice [33] for a perspective on Mellin'sresearch.The �rst important applications of Mellin transforms in discrete mathe-matics are, to the best of our knowledge, an outcome of the cooperation of DeBruijn and Knuth in the mid 1960's. We have developed here the two historicexamples of the height of trees (done jointly with Rice [9]) and of the analysisof digital trees that appeared in [31]. An account of tries in the wider context



80 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSof random search trees is given by Mahmoud [35]; see also Hofri's book [27]where the connection with communication protocols is developed. The in-teresting application to longest runs is again due to Knuth [32]. (Warning:in early combinatorial applications, Mellin transforms asymptotics often ap-peared under the name of \Gamma function method", a term that is nowabandonned.)In the paper [19], we gave in outline a presentation of Mellin transformsasymptotics oriented towards problems of analytic combinatorics and theanalysis of algorithms. There, for instance, we proposed the term \har-monic sum" and we assembled some of the basic techniques for dealing withharmonic sums. The work [19] was later expanded substantially and it re-sulted in the synthesis paper [16] by Flajolet, Gourdon and Dumas, fromwhich we have borrowed heavily throughout the Mellin transform sectionsof this chapter.The paradigm of dyadic sums is an important application of the generalanalysis of harmonic sums. It corresponds to in�nite superpositions of a basic\process" scaled according to the powers of 2, either in the frequency or theamplitude domain. Perhaps some 50 papers have appeared over recent yearsanalyzing various discrete probabilistic problems that �t into this category.Fortunately, the number of ways to conduct aMellin analysis is much smaller.We have illustrated in this chapter the most important ones based on adirect analysis of harmonic sums (the Bernoulli splitting process and tries),a two-stage singularity analysis of generating functions (digital trees), or thecomplete expansion of associated Dirichlet series (maximum of geometricvariables and skip lists).



PROBLEMS AND EXERCISES 81Problems and ExercisesDirichlet series are the central object of analytic number theory, espe-cially as regards multiplicative properties related to the prime decompositionof integers.Exercise 53. The DGF of numbers with prime factors in f2; 3; 5g onlyis 1(1� 2�s)(1� 3�s)(1� 5�s) :The DGF of numbers with no prime factor in f2; 3; 5g is(1� 2�s)(1 � 3�s)(1� 5�s)�(s):Exercise 54. The DGF of �k(n), the sum of kth powers of the divisorsof n is Xn�1 �k(n)ns = �(s � k)�(s):Exercise 55. Prove that the DGF of square-free numbers satis�es1Xn=1 j�(n)jns = �(s)�(2s) :Give a number-theoretic interpretation for the coe�cients of�(2s)=�(s).Exercise 56. [Rota] The coe�cient of n�s in the DGF12� �(s)counts the number of orderered factorizations of n.Find the DGF of the number of unordered factorizations of n.Exercise 57. Use Moebius inversion to relate the two Dirichlet seriesL(s) = log �(s) and P (s) =Xp 1ps ;where the last sum ranges overs all prime numbers p.



82 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSExercise 58. The Euler totient function �(n) counts the number ofintegers between 1 and n� 1 that are relatively prime to n. Show that�(p�11 � � �p�rr ) = p�1�11 (p1�1) � � �p�r�1r (pr�1); 1Xn=1 �(n)ns = �(s � 1)�(s) :Exercise 59. Ascribe an arithmetic meaning to the coe�cient of n�sin � 0(s)=�(s).Dirichlet series are special cases of Mellin transforms, and this connec-tion explains some of the formal similarities between Mellin transforms andDirichlet series.Exercise 60. Let fang1n=1 be a sequence of complex numbers and seta0=0. De�ne the step functionS(x) =Xn�x an:Then,S�(s) = 1Xm=1 Z m+1m (a1+� � �+am)xs�1 ds = �s [a11s + a22s + a33s + � � �] :Exercise 61. Deduce the Mellin-Perron formula from the Mellin in-version formula.Exercise 62. Find the functions of which �(s) and (1 � 2�s)�1 areMellin transforms.Many Mellin transforms can be found by means of functional propertiesand/or Hankel contours.Exercise 63. Show that, for suitable real r,Z 10 (1 + x)�rxs�1 dx = �(s)�(r � s)�(r) :[Hint. Use the Eulerian Beta integral [44]]



PROBLEMS AND EXERCISES 83Exercise 64. Determine the transforms of1(1 + x)(1 + 2x) � � � (1 +mx) ; 1(1 + x)(1 + qx) � � � (1 + qm�1x) :Ramanujan's duality [3, 25] states, in essence, that the coe�cients in theexpansion of a function at 0 and +1 are often the same analytic functiontaken at the positive and negative integers.Exercise 65. Give su�cient conditions on the complex function �(s)ensuring that12i� Z �1=2+i1�1=2�i1 �(�s)x�s � dssin�s � 1Xn=1�(n)(�x)n (x! 0)::Give other conditions ensuring that12i� Z 1=2+i11=2�i1 �(�s)x�s � dssin�s � 1Xn=1�(�n)(�x)�n (x! 0)::Exercise 66. Give conditions for a quali�ed version of Ramanujan'sduality: \if r(n) is the coe�cient of zn in the expansion of R(z) at 0,then �r(�n) is the coe�cient in the expansion of R(z) at 1."Exercise 67. Discuss Ramanujan duality for the coe�cients of thefollowing functions 11� z � z2 ; e�z; log(1 + z); arctan(z);1p1 + z ; Z 10 e�t1 + tz dt;�ze2�z � 1 ; Xk�0 h1� e�z=2ki :Exercise 68. Determine the asymptotic expansion at +1 of the an-alytic continuation ofR(z) = 1Xn=1 (�z)npn ; L(z) = 1Xn=1 logn(�z)n:



84 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSExercise 69. Show that the functionsR(z) = 1Xn=1 znpn; L(z) = 1Xn=1(logn) znsatisfy the conditions of singularity analysis. Generalize.The Mellin asymptotics game in its more advanced versions often requiresgoing back and forth between properties of Dirichlet generating functions andharmonic sums.Exercise 70. De�ne �(x) = 1Xn=1 e�n2x2 :Analyse asymptotically �(x) when x! 0. Find the singularities ofZ 10 �2(x)xs�1 dx:Exercise 71. Consider the series�(s) = Xm;n�1 1(m2 + n2)s :Show that �(s) = 1Xn=2 r(n)ns ;where r(n) is the number of representations of n as a sum of twosquares. Show that �(s) is meromorphic in the whole of C, determineits singularities, and �nd its values at the negative integers.Deduce an explicit expansion as x! 0 ofXm;n �1 + (m2 + n2)x2�2 :



PROBLEMS AND EXERCISES 85Exercise 72. De�ne �(s) = 1Xn=1 14n�2nn � 1ns :By relating �(s) to F (x) = (1� e�x)�1=2 � 1, show that �(s) is mero-morphic in the whole of C, that it satis�es�(s) � 1p� 1(s � 12 ) (s! 12);and that �(�m � 12 ) is a rational number.Exercise 73. Use the information gathered on �(s) to analyze asymp-totically, as x! 0, F (x) = 1Xn=1 14n�2nn � 11 + n2x2 ;assuming that �(s) is of at most of polynomial growth in any �nitestrip of the complex plane.Exercise 74. Prove that �(s) is of polynomial growth by using any�nite form of the asymptotic expansion of the central binomial coe�-cients, and by relating it to sums of values of the zeta function.Exercise 75. Find the asymptotic expansions of1Xn=1Hne�n2x2 ; 1Xn=1(�1)nHne�n2x2 :Exercise 76. The asymptotic expansion ofF (x) = 1Xn=1 1ne�nxp1 + xinvolves a modi�ed Euler's constant
̂ = Z 10 (e�xp1 + x� 1) dxx + Z 11 (e�xp1 + x) dxx :



86 CHAPTER 7. MELLIN TRANSFORM ASYMPTOTICSExercise 77. The Mellin transform of F (x) = log(1 � e�x)�1 isF �(s) = �(s)�(s + 1). From the expansion of F (x) at x = 0 whichrelates to the expansion of F �(s) at s = 0, one �nds�(s) = 1s� 1 + c1 + O(s � 1) (s! 1)with c1 = �
 the opposite of Eulers' constant.Exercise 78. The singular expansionXn (1 + n2)�1=2n�s = 1s + 
̂ + O(s) (s! 0)involves 
̂ = �
 + 1p2 + 1Xk=1 (�1)k4k �2kk �(�(2k + 1)� 1):Exercise 79. Find the singularities of the transform off(x) = e�xp1 + x:Find the singularities of!(s) = 1Xn=1 1p1 + n2 1ns :Determine the asymptotic expansion as x!1 ofF (x) = 1Xn=1 e�n2x2r1 + n2x21 + n2 :(First assume that F �(s) is exponentially small at �i1.)Harmonic integrals are the continuous analogue of harmonic sums. Theirtreatment along lines parallel to ours is detailed in Wong's book [46].



PROBLEMS AND EXERCISES 87Exercise 80. Give conditions under which the Mellin transform of aLaplace transform factorizes:M �Z 10 e�xt�(t) dt; s� = �(s)��(1� s):Treat similarly the case of Stieltjes transforms,Z 10 �(t) dt1 + tx:Exercise 81. Discuss su�cient conditions for the factorization oftransforms of harmonic integrals,M �Z 10 a(t)b(xt) dt; s� = Z 10 a(t)t�s dt � Z 10 b(t)ts�1 dt:Exercise 82. Find the asymptotic expansions at 0 and in�nity ofZ 10 e�t dt1 + tx; Z 10 te�t1� e�t dt1 + tx:
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