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Abstract 

Mergesort is one of the oldest and most venerable sorting algorithms and exists in many different flavors. In this 
short note we present yet another mergesort variant, queue-mergesort. We show that, like top-down mergesort but 
unlike bottom-up mergesort, this new variant performs an optimal number of comparisons in the worst case. 
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1. Introduction 

Mergesort is one of the oldest and most vener- 
able sorting algorithms known to computer sci- 
ence. The idea of sorting a set by partitioning it 
into two subsets, sorting each of the subsets sepa- 
rately and then merging the two now sorted sub- 
sets back together again is a very natural one. In 
fact it is thought that Mergesort was the first 
sorting algorithm to have been programmed into 
a computer [4]. Since those early days many varia- 
tions on the original theme have sprung up, dif- 
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fering mainly in the method of partitioning the 
set. The best known variant is probably top-down 
mergesort in which the sizes of the two sets differ 
by at most one element. This variant, usually 
implemented recursively, runs particularly well 
on arrays. There is a bottom-up mergesort which 
is well suited to sorting elements in a singly 
linked list. There is another variant which runs 
slightly better on linked lists but requires that the 
lists be doubly and not singly linked. This variant 
has been picturesquely described [6] as “burning 
the candle at both ends”. Knuth [61 and Sedgewick 
171 provide descriptions and implementations of 
these variants. 

In this note we will describe yet another vari- 
ant of Mergesort and analyze how well it com- 
pares with some of the existing versions. We 
name this new variant queue-mergesort for rea- 
sons soon to become obvious. It is particularly 
well suited for sorting elements in a linked list. In 
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queue-mergesort( 

while (Qsize! = 1) do 

Q.put(Merge(Q.get, Q.get)) 

Fig. 1. Pseudo-code for queue-mergesort. 

Section 2 we present queue-mergesort. In Section 
3 we prove that, as mergesorts go, this new vari- 
ant performs an optimal number of comparisons. 
This will follow directly from some well-known 
facts about trees and Huffman encoding. We 
conclude in Section 4 by comparing the perfor- 
mance of this new variant with those of some of 
the older variants. 

9' 

Ml F D 

Fig. 2. A worked example of queue-mergesort that sorts the keys C, F, D, A, E, B. Figs. (a)-(e) show the state of the queue at each 
step of the algorithm. The number at the top of each list is the number of elements contained in that list. Compare to Fig. 3(a). 
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2. The algorithm 

It is very easy to merge two lists L, and L, 
which are already sorted by increasing value. This 
is done by repeating the following operation until 
one of the lists is empty: compare the minimal 
element in L, to the minimal element in L, and 
remove the smaller of these two elements from its 
corresponding list. Conclude by taking, in order, 
all of the elements remaining in the non-empty 
list. If the sizes of L, and L, are respectively n1 
and n2 then merging the two lists will require, in 
the worst case, 11, + n2 - 1 comparisons. 
Merge(L,, L,) will be a function that takes point- 
ers to two sorted lists and returns a pointer to the 
sorted merged list. 

To merge II items our algorithm will start with 
each item in its own list, these n lists linked 
together to form a queue. A queue, Q, is a linked 
list with head and tail pointers pointing to its 
first and last elements. In our case the elements 
in the queue will be sorted lists. The queue Q is 
accessed through the operations Q.get which re- 
turns a pointer to the list which was at the head 
of Q while removing the list from Q and 
Q.put(p) which puts the list pointed to by p at 
the tail of Q. The function Q.&e will return the 
number of lists in Q 

We now present queue-mergesort. Start with 
each of the items to be sorted in its own unique 
list and store the lists in the queue Q. Repeat the 
following until only one list remains in Q: get the 
first two lists from the head of the queue, merge 
them, and puf the merged list at the tail of the 
queue. When the algorithm terminates the single 
list remaining in the queue will contain all of the 
items in sorted order. We present pseudo-code in 
Fig. 1 and a worked example in Fig. 2. 

It is quite simple to prove correctness of the 
algorithm. Notice that at each step the number of 
lists in the queue decreases by one so the algo- 
rithm must terminate. Notice too that the follow- 
ing invariant is true after each step; each list in 
the queue is internally sorted and together all 
lists contain the original n items. Consequen- 
tially, when the algorithm terminates the one list 
remaining in the queue will contain all of the 
items in sorted order. 

(a) 1 1 1 1 1 1 

11112 

1122 

2 2 2 

2 4 

(b) 1 1 1 I 1 1 1 1 1 1 1 

lllli11112 

111111122 

11111222 

1112222 

122222 

2 2 2 2 3 

2 2 3 4 

3 4 4 

4 7 

Fig. 3. The merge patterns for (a) 6 and (b) 11 items. The ith 

row of each pattern contains the number of items in each the 
lists stored in the queue immediately before the ith merge 

occurs: the lists appear in the order that they appear in the 
queues. Notice that the lists appear in the queue sorted by 

non-decreasing size. 

We point out that the number of items in a list 
at any given time depends only upon the number 
of items to be sorted and not upon the items 
themselves. In Fig. 3 we show the sizes of the lists 
in the queue at each step for the cases of 6 and 
11 inputs. Notice that at any given time the lists 
appear in the queue in non-decreasing order of 
size. 

3. Analysis 

In this section we will prove that queue- 
mergesort is an optimal mergesort. By this we 
mean that for every IZ the worst-case number of 
comparisons performed by queue-mergesort is no 
more than that performed by any other merge- 
sort. In order for this last statement to have any 
meaning we must first define what we mean by a 
mergesort. 

A mergesort is an algorithm which sorts by 
merging. Such an algorithm maintains a collec- 
tion of lists, each of which is internally sorted. 
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The algorithm starts with each item to be sorted 
in a separate list. At each stage of the algorithm 
two lists are removed from the collection and 
merged together to form a new list. This new list 
is added back to the collection. The algorithm 
terminates when the collection contains only one 
list. This list will in turn contain all of the input 
items in sorted order. Variants of mergesort dif- 
fer in how they choose the lists to be merged. A 
convenient way of describing a mergesort is by 
drawing its merge tree [5, 2.3.4.51. The leaves 
(external nodes) of the tree represent the original 
items to be sorted. The internal nodes represent 
the lists formed by the merges. The two children 
of the internal node corresponding to a list L are 
the nodes corresponding to the two lists that were 
merged to form L. 

When drawing the tree we associate a weight 
w(i) with each node i. This weight will be the 
number of items in the list that that particular 
node corresponds to, e.g. all leaves have weight 1 
and the root, representing the fully sorted list, 
has weight n. 

Fig. 4(a) is the merge tree for queue-mergesort 
run on 11 elements. Fig. 4(b) is the merge tree for 
top-down mergesort run on 11 elements. Top- 
down (recursive) mergesort always splits a set of 
n elements into two sets of size [n/2] and [n/21. 
Fig. 4(c) is the merge tree for bottom-up merge- 
sort run on 11 elements. Bottom-up mergesort 
starts with every item in its own list. It merges the 

lists in passes. In each pass it pairs up the current 
lists, ignoring the last list if there are an odd 
number of them, and merges the paired lists. It 
continues doing this until only one list remains. 

It is now easy to see how many comparisons a 
mergesort will perform in the worst case. Let T 

be the tree associated with a mergesort on y1 
items, i.e. T has n leaves. As mentioned at the 
beginning of Section 2 merging two lists of size n, 
and n2 requires n1 + n2 - 1 comparisons in the 
worst case. Put another way, merging two lists 
which together contain m items requires m - 1 
comparisons in the worst case. A binary tree with 
n leaves has n - 1 internal nodes. Thus the total 
number of comparisons performed by the merge- 
sort in the worst case will be 

C [w(l%) - l] = 
I’ t T 

I’ internal 1 1 C w(c) -(n- 1). 1’~ T 
I’ internal 

(1) 

We define the weight of T to be w(T) = 

c /, t T, i, interna,~(~t), where the sum is over all in- 
ternal nodes of the tree. The tree in Fig. 4(a) has 
w(T) = 39, the tree in Fig. 4(b) also has w(T) = 39 
while the tree in Fig. 4(c) has w(T) = 40. 

Eq. (1) tells us that a mergesort with associ- 
ated merge tree T will be an optimal mergesort if 
w(T) G w(T’) for all merge trees T’ with n leaves. 
We use this fact to prove the following: 

(b) 

Fig. 4. These trees represent three different methods for mergesorting 11 elements. The number in each node is its weight. (a) is 

queue-mergesort, (b) is top-down mergesort and (c) is bottom-up mergesort. Notice that even though (a) and (b) are very different 

trees they have the same external path length 5 * 3 + 6 * 4 = 39. (c) has external path length 1 * 2 + 2 * 3 + 8 * 4 = 40. 
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Theorem 1. Queue-mergesort is an optimal merge- 
sort. 

Proof. Let n be an integer and let T be the 
merge tree associated with queue-mergesorting II 
items. From the comments preceeding the proof 
it is enough to show that w(T) G w(T’) for all 
merge trees T’ with n leaves. 

We use the fact that the weight of a merge 
tree is equal to its external path length. The 
height h(f) of a node I in a tree is the distance 
of a path from 1 to the root. The external 
path length of a tree T’ is the sum E(T’) = 
c I a leaf of d(l). 

It is known [5, 2.3.4.5-91 that w(T’) = ECT’) 
for any merge tree T’. Therefore to prove the 
theorem it suffices to prove that E(T) < ECT’) 
for all T’ with 12 leaves. This will follow directly 
from certain properties of Huffman encoding. 

Let w,, w2,. . . , w,, be n non-negative weights. 

Huffman encoding builds a binary tree with n 
leaves I,, l,, . . . , 1, such that the weighted external 
path length CiG,h(Zi)wi is minimal [l] ‘. The 
Huffman encoding algorithm works as follows: 
Start with a set of n nodes having weights 
wl, w2,. . . , w,. These nodes will be the leaves of 
the tree. Repeat the following until the set con- 
tains only one node: remove two nodes a and b 
of smallest weight from the set. Create a new 
internal node c whose children will be a and b 
and let wc = w, + wh. Insert c into the set. 

Queue-mergesort bears a resemblance to 
Huffman encoding. Think of queue-mergesort as 
building its associated merge tree from the leaves 
up. It starts with the n leaves (with weight 1) in a 
set. Each step in queue-mergesort can be thought 
of as removing two nodes (i.e. lists) from the set 
and making them the children of a third node 
(i.e. merging the lists) whose weight, exactly as in 
Huffman encoding, will be the sum of the weights 
of its children. This third node will be inserted 
into the set. When there is only one node left in 
the set, this sole survivor will be the root of the 
merge tree. 

’ We have not been able to find any explicit references to 
queue-mergesort in the existing literature. Even’s [l] queue- 
based implementation of Huffman encoding does have a 

similar flavor though. 

We claim that the merge tree T corresponding 
to queue-mergesorting n items is exactly the tree 
constructed by the Huffman algorithm when w, 

=w2= ... = 
-w,, = 1. To prove this claim it 

suffices to show that at each step of queue- 
mergesort the two lists at the front of the queue, 
i.e. the two lists to be merged, are the two small- 
est lists on the queue (see Fig. 3). We will actually 
prove something more, namely that after each 
step of the algorithm the lists in the queue are all 
sorted by non-decreasing size. 

Fix n. The proof is by induction on the num- 
ber of merges performed by the algorithm so far. 
We assume that n 2 4; the cases n < 4 can be 
examined separately. When the algorithm begins 
the lists are certainly sorted by size. After the 
first merge step all of the lists still contain only 
one item except for the last list which contains 
two items and the lists are still sorted by size. 
Now assume that we know that the lists are 
sorted by size after each of the first s steps of the 
algorithm, s > 1. To show that they are sorted 
after the (s + 1)st step it is enough to show that 
the list L,,, inserted at the tail of the queue 
after step s + 1 contains at least as many ele- 
ments as list L, inserted after step s. But L, is 
the union of the first two lists in the queue after 
step s - 1 and so by the induction hypothesis it is 
no bigger than L,,, which is the union of the 

third and fourth lists on the queue after step 
s - 1. 

Every step of queue-mergesort therefore 
merges two lists of smallest size; by reduction to 
Huffman encoding the external path length of the 
merge tree associated with the algorithm is mini- 
mal over all weighted binary trees with n leaves 
each having weight 1. Since all merge trees of n 
items are weighted binary trees with exactly n 
leaves each having weight 1 this proves that 
queue-mergesort is an optimal mergesort. 0 

4. Optimal mergesorts 

In the previous section we proved that queue- 
mergesort is an optimal mergesort. That is, 
queue-mergesort performs an optimal number of 
comparisons in the worst case. Our proof did not 



258 M.J. Golin. R. Sedgewick / Informafion Processing Letters 48 (1993) 253-259 

tell us how many comparisons that is. In this 
section we remedy that lack by quickly reviewing 
some facts about minimal external path lengths 
from [6, 5.3.11. 

Let T be a merge tree describing an optimal 
mergesort on n items. The worst-case number of 
comparisons that can be performed while execut- 
ing these merges is 

w(T) - (n - 1) =E(T) - (n - 1) 

= c h(l) -(rr - 1). (2) 
i 1 /ET 
I a leaf 

Thus a merge tree T describes an optimal merge- 
sort on rr items if and only if T has minimum 
external path length C, il ,,,,h(l). It is known that 
this occurs if and only if the following condition is 
satisfied: all of T’s leaves are located on its 
bottom two levels. For example the trees in Figs. 
4(a) and 4(b) have minimal external path lengths 
for 11 leaves while that in Fig. 4(c) does not. 

Let T be a binary tree with minimal external 
path length for n leaves where 2k <n < 2kt’. 
Then all of T’s leaves are on its bottom two 
levels, the kth level must be full and the (k + 1)st 
must contain only leaves. Let s be the number of 
leaves on the kth level of T and Y the number of 
internal (non-leaf) nodes on the kth level: s + r 
= 2k. The two children of any of the r internal 
nodes on the kth level are on the (k + 1)st level 
so these children must be leaves. Thus s + 2r = n 
and the external path length of T is 

c h(l) 
IET 
I a leaf 

=sk+2r(k+l)=nk+2(n-2k) 

= n[log,n] + 2n - 2[‘ogzn1+ ’ 

=n log,n +n[2- {log,n) -2’--(‘0gz”)], (3) 

where we define (x) =x - lx] to be the fractional 
part of X. Plugging this back into (2) we find that 
the worst-case number of comparisons performed 
by an optimal mergesort is 

f(n) =n log,n +nh(log,n) - (n - l), (4) 

where h(x) = 2 - {x} - 2’ -cw) is a continuous pe- 

riodic function with period 1, that is, for all X, 
h(x + 1) = h(x). 

In the previous two sections we have shown 
that queue-mergesort is an optimal mergesort 
and calculated the worst-case number of compar- 
isons it performs. Before concluding we would 
like to make a few general comments about opti- 
mal mergesorts. 

One can prove by induction on llog,n] that the 
merge tree T that describes top-down mergesort 
on y1 items has all of its leaves on levels [log,nl- 
1 and llog,nl. Thus, by the comments at the 
beginning of this section, T has minimum exter- 
nal path length for a tree with II leaves and 
top-down mergesort is also an optimal merge- 
sort. Note that even though queue-mergesort and 
top-down mergesort are both optimal and there- 
fore perform the same worst-case number of 
comparisons they are two very different algo- 
rithms since they have different merge trees. 
Compare for example Figs. 4(a) and 4(b). 

Another small curiosity: The worst-case num- 
ber of comparisons performed by top-down 
mergesort satisfies the recurrence 

f(n) =f( [fi/2J) +f([n/2]) + n - I, n > I, 

f(1) =o. (5) 

This recurrence is usually analyzed [3, p. 91 by 
differencing and re-summing to find f(n) = 
C, ~ .llog,il. This sum is then massaged to derive 
a closed form similar to (3) or (4). It is interesting 
to note that if one understands the underlying 
combinatorics, then the solution to (5) can be 
found “for free”. Eq. (4) describes the worst-case 
number of comparisons used by an optimal 
mergesort, top-down mergesort is an optimal 
mergesort, ergo (4) is the solution to (5). 

We should point out that there is a close 
relationship between binary representations and 
the number of comparisons required for merge- 
sort. In fact, writing f(n) as CiGn[logzil tells us 
that f(n) is the number of bits needed to write 
down the binary representations of all the inte- 
gers less than n. This relationship between 
mergesort and binary representations will be fur- 
ther developed in an upcoming paper [21 which 
will show that the cost of bottom-up mergesort is 
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also expressible as a function (albeit a more com- 
plicated one) of the binary representations of the 
integers less than II. 

We conclude with a few words an optimal 
versus non-optimal mergesorts. Not all merge- 
sorts are optimal but, sometimes, minor changes 
can transform a non-optimal one into an optimal 
one. 

Bottom-up mergesort, for example, is not op- 
timal. Fig. 4(c) shows that the merge tree that 
describes bottom-up mergesorting 11 items does 
not have minimum external path length since its 
external path length is greater than those in Figs. 
4(a) and 4(b). 

Going further it is not difficult to show that, as 
n increases, bottom-up mergesort will require 
arbitrarily more comparisons in the worst case 
than an optimal mergesort. Let n = 2k + 1. Work- 
ing through the details of (4) we find that for this 
n an optimal mergesort uses (2k + 1)k + 2 - 2k 
comparisons in the worst case. In contrast bot- 
tom-up mergesort will mergesort the first 2k 
items together and then merge this sorted list 
with the one leftover item. In total this will re- 
quire k2k + 1 comparisons in the worst case [6, 
5.2.4-141. Thus, for y1 = 2k + 1, bottom-up 
mergesort will need 2k - k - 1 = IZ - log,n more 
comparisons than an optimal mergesort such as 
top-down or queue-mergesort. 

On the other hand a simple modification makes 
bottom-up mergesort optimal. As in the standard 
bottom-up algorithm we make repeated passes 
over the lists, pairing them up, two by two. The 
modification is that, at the end of a pass - in the 
case that there are an odd number of lists - we 

do not leave the last list by itself but merge it 
with the new list that was just created when the 
second and third to last lists on that pass were 
merged. It is not difficult to show that all of the 
leaves of the merge-tree created are on its bot- 
tom two levels so this new mergesort is an opti- 
mal one. 

We end by pointing out that the “burning the 
candle at both ends” mergesort described in the 
first paragraph of this paper is easily shown to be 
non-optimal. 
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