
Information
Processing
Letters

Information Processing Letters 48 (1993) 253-259

Queue-mergesort

Mordecai J. Golin *)a, Robert Sedgewick **,b
a Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

’ Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

Communicated by L. Kott
Received 20 May 1992

Revised 3 May 1993

Abstract

Mergesort is one of the oldest and most venerable sorting algorithms and exists in many different flavors. In this
short note we present yet another mergesort variant, queue-mergesort. We show that, like top-down mergesort but
unlike bottom-up mergesort, this new variant performs an optimal number of comparisons in the worst case.

Key words: Algorithms; Mergesort; Huffman encoding; Binary trees

1. Introduction

Mergesort is one of the oldest and most vener-
able sorting algorithms known to computer sci-
ence. The idea of sorting a set by partitioning it
into two subsets, sorting each of the subsets sepa-
rately and then merging the two now sorted sub-
sets back together again is a very natural one. In
fact it is thought that Mergesort was the first
sorting algorithm to have been programmed into
a computer [4]. Since those early days many varia-
tions on the original theme have sprung up, dif-

* Corresponding author. This research was performed while
the author was at Princeton University. It was supported by
National Science Foundation grant DCR-8605962 and Office
of Naval Research grant N00014-87-K-0460.
* * This research was supported by National Science Founda-
tion grant DCR-8605962 and Office of Naval Research grant
N00014-87-K-0460.

fering mainly in the method of partitioning the
set. The best known variant is probably top-down
mergesort in which the sizes of the two sets differ
by at most one element. This variant, usually
implemented recursively, runs particularly well
on arrays. There is a bottom-up mergesort which
is well suited to sorting elements in a singly
linked list. There is another variant which runs
slightly better on linked lists but requires that the
lists be doubly and not singly linked. This variant
has been picturesquely described [6] as “burning
the candle at both ends”. Knuth [61 and Sedgewick
171 provide descriptions and implementations of
these variants.

In this note we will describe yet another vari-
ant of Mergesort and analyze how well it com-
pares with some of the existing versions. We
name this new variant queue-mergesort for rea-
sons soon to become obvious. It is particularly
well suited for sorting elements in a linked list. In

Elsevier Science Publishers B.V.
SSDI 0020-0190(93)E0171-F

254 M.J. Golin, R. Sedgewick / Information Processing Leiters 48 (1993) 2X-259

queue-mergesort(

while (Qsize! = 1) do

Q.put(Merge(Q.get, Q.get))

Fig. 1. Pseudo-code for queue-mergesort.

Section 2 we present queue-mergesort. In Section
3 we prove that, as mergesorts go, this new vari-
ant performs an optimal number of comparisons.
This will follow directly from some well-known
facts about trees and Huffman encoding. We
conclude in Section 4 by comparing the perfor-
mance of this new variant with those of some of
the older variants.

9'

Ml F D

Fig. 2. A worked example of queue-mergesort that sorts the keys C, F, D, A, E, B. Figs. (a)-(e) show the state of the queue at each
step of the algorithm. The number at the top of each list is the number of elements contained in that list. Compare to Fig. 3(a).

M.J. Golin, R. Sedgewick / Information Processing Letters 48 (1993) 253-259 255

2. The algorithm

It is very easy to merge two lists L, and L,
which are already sorted by increasing value. This
is done by repeating the following operation until
one of the lists is empty: compare the minimal
element in L, to the minimal element in L, and
remove the smaller of these two elements from its
corresponding list. Conclude by taking, in order,
all of the elements remaining in the non-empty
list. If the sizes of L, and L, are respectively n1
and n2 then merging the two lists will require, in
the worst case, 11, + n2 - 1 comparisons.
Merge(L,, L,) will be a function that takes point-
ers to two sorted lists and returns a pointer to the
sorted merged list.

To merge II items our algorithm will start with
each item in its own list, these n lists linked
together to form a queue. A queue, Q, is a linked
list with head and tail pointers pointing to its
first and last elements. In our case the elements
in the queue will be sorted lists. The queue Q is
accessed through the operations Q.get which re-
turns a pointer to the list which was at the head
of Q while removing the list from Q and
Q.put(p) which puts the list pointed to by p at
the tail of Q. The function Q.&e will return the
number of lists in Q

We now present queue-mergesort. Start with
each of the items to be sorted in its own unique
list and store the lists in the queue Q. Repeat the
following until only one list remains in Q: get the
first two lists from the head of the queue, merge
them, and puf the merged list at the tail of the
queue. When the algorithm terminates the single
list remaining in the queue will contain all of the
items in sorted order. We present pseudo-code in
Fig. 1 and a worked example in Fig. 2.

It is quite simple to prove correctness of the
algorithm. Notice that at each step the number of
lists in the queue decreases by one so the algo-
rithm must terminate. Notice too that the follow-
ing invariant is true after each step; each list in
the queue is internally sorted and together all
lists contain the original n items. Consequen-
tially, when the algorithm terminates the one list
remaining in the queue will contain all of the
items in sorted order.

(a) 1 1 1 1 1 1

11112

1122

2 2 2

2 4

(b) 1 1 1 I 1 1 1 1 1 1 1

lllli11112

111111122

11111222

1112222

122222

2 2 2 2 3

2 2 3 4

3 4 4

4 7

Fig. 3. The merge patterns for (a) 6 and (b) 11 items. The ith

row of each pattern contains the number of items in each the
lists stored in the queue immediately before the ith merge

occurs: the lists appear in the order that they appear in the
queues. Notice that the lists appear in the queue sorted by

non-decreasing size.

We point out that the number of items in a list
at any given time depends only upon the number
of items to be sorted and not upon the items
themselves. In Fig. 3 we show the sizes of the lists
in the queue at each step for the cases of 6 and
11 inputs. Notice that at any given time the lists
appear in the queue in non-decreasing order of
size.

3. Analysis

In this section we will prove that queue-
mergesort is an optimal mergesort. By this we
mean that for every IZ the worst-case number of
comparisons performed by queue-mergesort is no
more than that performed by any other merge-
sort. In order for this last statement to have any
meaning we must first define what we mean by a
mergesort.

A mergesort is an algorithm which sorts by
merging. Such an algorithm maintains a collec-
tion of lists, each of which is internally sorted.

256 M.J. Golin, R. Sedgewick / Information Processing Letters 48 (1993) 253-259

The algorithm starts with each item to be sorted
in a separate list. At each stage of the algorithm
two lists are removed from the collection and
merged together to form a new list. This new list
is added back to the collection. The algorithm
terminates when the collection contains only one
list. This list will in turn contain all of the input
items in sorted order. Variants of mergesort dif-
fer in how they choose the lists to be merged. A
convenient way of describing a mergesort is by
drawing its merge tree [5, 2.3.4.51. The leaves
(external nodes) of the tree represent the original
items to be sorted. The internal nodes represent
the lists formed by the merges. The two children
of the internal node corresponding to a list L are
the nodes corresponding to the two lists that were
merged to form L.

When drawing the tree we associate a weight
w(i) with each node i. This weight will be the
number of items in the list that that particular
node corresponds to, e.g. all leaves have weight 1
and the root, representing the fully sorted list,
has weight n.

Fig. 4(a) is the merge tree for queue-mergesort
run on 11 elements. Fig. 4(b) is the merge tree for
top-down mergesort run on 11 elements. Top-
down (recursive) mergesort always splits a set of
n elements into two sets of size [n/2] and [n/21.
Fig. 4(c) is the merge tree for bottom-up merge-
sort run on 11 elements. Bottom-up mergesort
starts with every item in its own list. It merges the

lists in passes. In each pass it pairs up the current
lists, ignoring the last list if there are an odd
number of them, and merges the paired lists. It
continues doing this until only one list remains.

It is now easy to see how many comparisons a
mergesort will perform in the worst case. Let T

be the tree associated with a mergesort on y1
items, i.e. T has n leaves. As mentioned at the
beginning of Section 2 merging two lists of size n,
and n2 requires n1 + n2 - 1 comparisons in the
worst case. Put another way, merging two lists
which together contain m items requires m - 1
comparisons in the worst case. A binary tree with
n leaves has n - 1 internal nodes. Thus the total
number of comparisons performed by the merge-
sort in the worst case will be

C [w(l%) - l] =
I’ t T

I’ internal 1 1 C w(c) -(n- 1). 1’~ T
I’ internal

(1)

We define the weight of T to be w(T) =

c /, t T, i, interna,~(~t), where the sum is over all in-
ternal nodes of the tree. The tree in Fig. 4(a) has
w(T) = 39, the tree in Fig. 4(b) also has w(T) = 39
while the tree in Fig. 4(c) has w(T) = 40.

Eq. (1) tells us that a mergesort with associ-
ated merge tree T will be an optimal mergesort if
w(T) G w(T’) for all merge trees T’ with n leaves.
We use this fact to prove the following:

(b)

Fig. 4. These trees represent three different methods for mergesorting 11 elements. The number in each node is its weight. (a) is

queue-mergesort, (b) is top-down mergesort and (c) is bottom-up mergesort. Notice that even though (a) and (b) are very different

trees they have the same external path length 5 * 3 + 6 * 4 = 39. (c) has external path length 1 * 2 + 2 * 3 + 8 * 4 = 40.

M.J. Go&, R. Sedgewick /Information Processing Letters 48 (1993) 253-259 257

Theorem 1. Queue-mergesort is an optimal merge-
sort.

Proof. Let n be an integer and let T be the
merge tree associated with queue-mergesorting II
items. From the comments preceeding the proof
it is enough to show that w(T) G w(T’) for all
merge trees T’ with n leaves.

We use the fact that the weight of a merge
tree is equal to its external path length. The
height h(f) of a node I in a tree is the distance
of a path from 1 to the root. The external
path length of a tree T’ is the sum E(T’) =
c I a leaf of d(l).

It is known [5, 2.3.4.5-91 that w(T’) = ECT’)
for any merge tree T’. Therefore to prove the
theorem it suffices to prove that E(T) < ECT’)
for all T’ with 12 leaves. This will follow directly
from certain properties of Huffman encoding.

Let w,, w2,. . . , w,, be n non-negative weights.

Huffman encoding builds a binary tree with n
leaves I,, l,, . . . , 1, such that the weighted external
path length CiG,h(Zi)wi is minimal [l] ‘. The
Huffman encoding algorithm works as follows:
Start with a set of n nodes having weights
wl, w2,. . . , w,. These nodes will be the leaves of
the tree. Repeat the following until the set con-
tains only one node: remove two nodes a and b
of smallest weight from the set. Create a new
internal node c whose children will be a and b
and let wc = w, + wh. Insert c into the set.

Queue-mergesort bears a resemblance to
Huffman encoding. Think of queue-mergesort as
building its associated merge tree from the leaves
up. It starts with the n leaves (with weight 1) in a
set. Each step in queue-mergesort can be thought
of as removing two nodes (i.e. lists) from the set
and making them the children of a third node
(i.e. merging the lists) whose weight, exactly as in
Huffman encoding, will be the sum of the weights
of its children. This third node will be inserted
into the set. When there is only one node left in
the set, this sole survivor will be the root of the
merge tree.

’ We have not been able to find any explicit references to
queue-mergesort in the existing literature. Even’s [l] queue-
based implementation of Huffman encoding does have a

similar flavor though.

We claim that the merge tree T corresponding
to queue-mergesorting n items is exactly the tree
constructed by the Huffman algorithm when w,

=w2= ... =
-w,, = 1. To prove this claim it

suffices to show that at each step of queue-
mergesort the two lists at the front of the queue,
i.e. the two lists to be merged, are the two small-
est lists on the queue (see Fig. 3). We will actually
prove something more, namely that after each
step of the algorithm the lists in the queue are all
sorted by non-decreasing size.

Fix n. The proof is by induction on the num-
ber of merges performed by the algorithm so far.
We assume that n 2 4; the cases n < 4 can be
examined separately. When the algorithm begins
the lists are certainly sorted by size. After the
first merge step all of the lists still contain only
one item except for the last list which contains
two items and the lists are still sorted by size.
Now assume that we know that the lists are
sorted by size after each of the first s steps of the
algorithm, s > 1. To show that they are sorted
after the (s + 1)st step it is enough to show that
the list L,,, inserted at the tail of the queue
after step s + 1 contains at least as many ele-
ments as list L, inserted after step s. But L, is
the union of the first two lists in the queue after
step s - 1 and so by the induction hypothesis it is
no bigger than L,,, which is the union of the

third and fourth lists on the queue after step
s - 1.

Every step of queue-mergesort therefore
merges two lists of smallest size; by reduction to
Huffman encoding the external path length of the
merge tree associated with the algorithm is mini-
mal over all weighted binary trees with n leaves
each having weight 1. Since all merge trees of n
items are weighted binary trees with exactly n
leaves each having weight 1 this proves that
queue-mergesort is an optimal mergesort. 0

4. Optimal mergesorts

In the previous section we proved that queue-
mergesort is an optimal mergesort. That is,
queue-mergesort performs an optimal number of
comparisons in the worst case. Our proof did not

258 M.J. Golin. R. Sedgewick / Informafion Processing Letters 48 (1993) 253-259

tell us how many comparisons that is. In this
section we remedy that lack by quickly reviewing
some facts about minimal external path lengths
from [6, 5.3.11.

Let T be a merge tree describing an optimal
mergesort on n items. The worst-case number of
comparisons that can be performed while execut-
ing these merges is

w(T) - (n - 1) =E(T) - (n - 1)

= c h(l) -(rr - 1). (2)
i 1 /ET
I a leaf

Thus a merge tree T describes an optimal merge-
sort on rr items if and only if T has minimum
external path length C, il ,,,,h(l). It is known that
this occurs if and only if the following condition is
satisfied: all of T’s leaves are located on its
bottom two levels. For example the trees in Figs.
4(a) and 4(b) have minimal external path lengths
for 11 leaves while that in Fig. 4(c) does not.

Let T be a binary tree with minimal external
path length for n leaves where 2k <n < 2kt’.
Then all of T’s leaves are on its bottom two
levels, the kth level must be full and the (k + 1)st
must contain only leaves. Let s be the number of
leaves on the kth level of T and Y the number of
internal (non-leaf) nodes on the kth level: s + r
= 2k. The two children of any of the r internal
nodes on the kth level are on the (k + 1)st level
so these children must be leaves. Thus s + 2r = n
and the external path length of T is

c h(l)
IET
I a leaf

=sk+2r(k+l)=nk+2(n-2k)

= n[log,n] + 2n - 2[‘ogzn1+ ’

=n log,n +n[2- {log,n) -2’--(‘0gz”)], (3)

where we define (x) =x - lx] to be the fractional
part of X. Plugging this back into (2) we find that
the worst-case number of comparisons performed
by an optimal mergesort is

f(n) =n log,n +nh(log,n) - (n - l), (4)

where h(x) = 2 - {x} - 2’ -cw) is a continuous pe-

riodic function with period 1, that is, for all X,
h(x + 1) = h(x).

In the previous two sections we have shown
that queue-mergesort is an optimal mergesort
and calculated the worst-case number of compar-
isons it performs. Before concluding we would
like to make a few general comments about opti-
mal mergesorts.

One can prove by induction on llog,n] that the
merge tree T that describes top-down mergesort
on y1 items has all of its leaves on levels [log,nl-
1 and llog,nl. Thus, by the comments at the
beginning of this section, T has minimum exter-
nal path length for a tree with II leaves and
top-down mergesort is also an optimal merge-
sort. Note that even though queue-mergesort and
top-down mergesort are both optimal and there-
fore perform the same worst-case number of
comparisons they are two very different algo-
rithms since they have different merge trees.
Compare for example Figs. 4(a) and 4(b).

Another small curiosity: The worst-case num-
ber of comparisons performed by top-down
mergesort satisfies the recurrence

f(n) =f([fi/2J) +f([n/2]) + n - I, n > I,

f(1) =o. (5)

This recurrence is usually analyzed [3, p. 91 by
differencing and re-summing to find f(n) =
C, ~ .llog,il. This sum is then massaged to derive
a closed form similar to (3) or (4). It is interesting
to note that if one understands the underlying
combinatorics, then the solution to (5) can be
found “for free”. Eq. (4) describes the worst-case
number of comparisons used by an optimal
mergesort, top-down mergesort is an optimal
mergesort, ergo (4) is the solution to (5).

We should point out that there is a close
relationship between binary representations and
the number of comparisons required for merge-
sort. In fact, writing f(n) as CiGn[logzil tells us
that f(n) is the number of bits needed to write
down the binary representations of all the inte-
gers less than n. This relationship between
mergesort and binary representations will be fur-
ther developed in an upcoming paper [21 which
will show that the cost of bottom-up mergesort is

M.J. Go&n, R. Sedgewick /Information Processing Letters 48 (1993) 253-259 259

also expressible as a function (albeit a more com-
plicated one) of the binary representations of the
integers less than II.

We conclude with a few words an optimal
versus non-optimal mergesorts. Not all merge-
sorts are optimal but, sometimes, minor changes
can transform a non-optimal one into an optimal
one.

Bottom-up mergesort, for example, is not op-
timal. Fig. 4(c) shows that the merge tree that
describes bottom-up mergesorting 11 items does
not have minimum external path length since its
external path length is greater than those in Figs.
4(a) and 4(b).

Going further it is not difficult to show that, as
n increases, bottom-up mergesort will require
arbitrarily more comparisons in the worst case
than an optimal mergesort. Let n = 2k + 1. Work-
ing through the details of (4) we find that for this
n an optimal mergesort uses (2k + 1)k + 2 - 2k
comparisons in the worst case. In contrast bot-
tom-up mergesort will mergesort the first 2k
items together and then merge this sorted list
with the one leftover item. In total this will re-
quire k2k + 1 comparisons in the worst case [6,
5.2.4-141. Thus, for y1 = 2k + 1, bottom-up
mergesort will need 2k - k - 1 = IZ - log,n more
comparisons than an optimal mergesort such as
top-down or queue-mergesort.

On the other hand a simple modification makes
bottom-up mergesort optimal. As in the standard
bottom-up algorithm we make repeated passes
over the lists, pairing them up, two by two. The
modification is that, at the end of a pass - in the
case that there are an odd number of lists - we

do not leave the last list by itself but merge it
with the new list that was just created when the
second and third to last lists on that pass were
merged. It is not difficult to show that all of the
leaves of the merge-tree created are on its bot-
tom two levels so this new mergesort is an opti-
mal one.

We end by pointing out that the “burning the
candle at both ends” mergesort described in the
first paragraph of this paper is easily shown to be
non-optimal.

Acknowledgement

The authors would like to thank the unknown
referee who suggested the modification that
makes bottom-up mergesort optimal.

References

[l] S. Even, Graph Algorithms (Computer Science Press,

Rockville, MD, 1979).

[2] M. Golin and R. Sedgewick, Mergesort and digital sums,

In preparation.

[3] R. Graham, D. Knuth and 0. Patashnik, Concrefe Mathe-
matics: A Foundation For Computer Science (Addison-

[41

El

[61

Wesley, Reading, MA, 1988).

D.E. Knuth, Von Neumann’s first computer program,

Computing Surlieys 2 (4) (1970) 247-260.
D.E. Knuth, The Art of Computer Programming: Vol. I.
Fundamental Algorithms, (Addison-Wesley, Reading, MA,

2nd ed., 1973).

D.E. Knuth, The Art of Computer Programming: Vol. III.
Sorting and Searching (Addison-Wesley, Reading, MA,

1973).

