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It is proved that the running time of Shellsort using an increment sequence given 
by Sedgewick is R(N4/31 which matches the known upper bound. Extending this 
proof technique to various increment sequences leads to lower bounds that in 
general alwa s match the known upper bounds. This suggests that Shellsort runs in 

fl(N’+“’ d+ OgN) for increment sequences of practical interest and that no incre- 
ment sequence exists that would make Shellsort optimal. o 1990 Academic PRESS, IX. 

1. INTRODUCTION 

Shellsort is a simple sorting algorithm proposed by D. Shell [16] in 1959. 
For nearly sorted or mid-sized files (a few thousand elements), Shellsort 
performs as well as or better than any known algorithm, including quick- 
sort. Furthermore, it is an in-place sorting algorithm requiring little extra 
space and is easy to code. 

Shellsort uses a sequence of integers h,, ht.-i,. . . , hi and works by 
performing insertion sort on subfiles consisting of elements hi apart. We 
will call one of these sorting operations an &-sort. In an hi-sort, an 
element in position p is placed in its correct order in its subfile by 
comparing it against elements in positions p - hi, p - 2h,, etc. 

Shellsort works by performing passes consisting of an h,-sort, h,-,-sort, 
and so on, concluding with an h, = l-sort. It is both necessary and 
sufficient that some pass do a l-sort in order for the algorithm to be 
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guaranteed to sort a file. An important property of Shellsort is that if a 
k-sorted file is subsequently h-sorted, the file remains k-sorted [5, 8, 111. 
This is the property that makes Shellsort fast. As insertion sort works well 
for files that are nearly sorted, we expect that it might be fairly inexpen- 
sive to hi-sort a file if it has already been hi+l-, hi+*-, . . . , h,-sorted. 

Typically, the increment sequences used are “almost” geometric se- 
quences with h, = O(ak) for some CY, concluding with h, being the largest 
integer in this sequence less than N. This is by no means a requirement; 
however, empirically these increment sequences perform better than oth- 
ers. For increments 1,2,. . . , h, = 2k,. . . , originally proposed by Shell, 
Shellsort is quadratic in the worst case, and O(N3/*) on average [8]. At 
the other end of the spectrum, Pratt [ll] gives a set of O(log* N) 
increments, for which the running time is O(N log* N). This is the best 
known bound for Shellsort. It performs poorly in practice unless N is 
unrealistically large because this approach yields too many increments. 
Between these extremes, new results have lowered the worst-case running 
time of Shellsort to values not quite optimal, but considerably better than 
quadratic. On the other hand not even the asymptotic growth of the 
average case performance is known for the types of sequences used in 
practice, although none seem to be O(N log N). 

In this paper, we consider lower bounds on the worst-case running time. 
Pratt showed that for increment sequences of the form 1,. . . , h, = clak + 
cz,..., LY an integer, Shellsort runs in O(N 3/2) (subject to certain techni- 
cal conditions). This property is held by most of the increment sequences 
that have been tried. However Sedgewick [12] showed that if h, = 4 * 4k 
+ 3 * 2k + 1, then the running time is O(N4/3>. Our first main result in 
this paper is to prove this bound is tight, by constructing a permutation 
that takes the required time to sort. Incerpi and Sedgewick 161 have 
extended this result by providing an increment sequence which gives a 
running time of O(N ‘+&/m). Our second main result is to show that 
this bound is also tight, under the assumption that an unproven (but rather 
fundamental) conjecture is true. Moreover, it appears that if the incre- 
ments are of the form h, = @(cuk>, then the bound of Incerpi and 
Sedgewick is the best possible. 

Qpher [2] has recently shown an fi( N log2 N/log log N) lower bound 
for the size of Shellsort-based sorting networks for monotonic increment 
sequences, which seems to imply the same bound for the sequential 
Shellsort algorithm. Although our lower bound is for a less general class of 
increment sequences, this class covers virtually all of the increment se- 
quences proposed so far. Furthermore, our bound is much larger (and 
tight). 

Section 2 briefly reviews the methods used to L Gn the aforementioned 
upper bounds. In Section 3, we discuss the Frobenius pattern, and prove a 
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lemma about the number of inversions in this pattern. We use this lemma 
to prove the lower bound. In Section 4, we discuss generalizations of this 
result to other increment sequences. Open problems are discussed in 
Section 5. 

2. PREVIOUS UPPER BOUNDS 

To derive our bounds for Shellsort, we consider an old problem from 
number theory: 

Suppose that a country wishes to issue only k different types of stamps. What is the 
largest postage that cannot be placed exactly on an (infinite-sized) envelope? 

This is known as the Frobenius problem, apparently because the mathe- 
matician Frobenius mentioned it often in his classes [l]. A more formal 
definition follows: 

DEFINITION. The Frobenius number, g(a,, u2,. . . , a,) = the largest 
integer which cannot be represented as a linear combination with non- 
negative, integer coefficients, of a,, u2,. . . , uk. 

The function g( ) is called the Frobenius function. We make several 
simple observations: First, we assume a, < u2 < * * * < uk without loss of 
generality. Throughout the rest of this paper, we shall make this assump- 
tion. Now, g(1,. . . ) = 0, as all positive integers are representable; we thus 
assume a, > 1. Also, we may assume that each ui is independent of the 
other arguments (that is, it cannot be represented as a linear combination 
of the other arguments), since otherwise it could be removed without 
affecting the result. Finally, g(u,, u2, . . . , uk) is defined iff 
gcd(u,, a*, . . .) u/J = 1. 

For k = 2, the solution (due to Sharp [15]) is: 

gb,4,) = (a, - w2 - 1) - 1 (2.1) 

provided, of course, that a, and u2 are relatively prime. A formula for 
k = 3 is known [131, but is fairly complicated and no general solution is 
known for k > 3. Johnson [7] has shown that 

;,: ,..., +,uk + (d - l)u,, (2.2) 

where 

d = &(a,, u2, . . . , U&I). 
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Incerpi and Sedgewick [6] provided a lower bound for the Frobenius 
function: 

g( Ul, u2,. . . ) a/J 2 LR(ay+‘/(k-l))), (2.3) 

provided of course that a, < u2 < . . . < uk. 
Equations (2.1), (2.2) and the result for the case k = 3 are sufficient to 

prove all the known upper bounds for Shellsort. The main result is that if 
the increment sequence satisfies 

d~i,~i+1,...,W = O(K) 

then a time bound of O(N2-‘/‘) can always be proved [6, 10, 12, 171. 

3. A NEW LOWER BOUND 

In this section, we derive the main results of this paper by presenting a 
permutation that is asymptotically as bad as possible for Shellsort. 

DEFINITION. Given a file of integers represented by xi, x2,. . . , xN, an 
inversion is any pair (i, j) such that i < j and xi > xi. 

In the worst case, a file in reverse order can have O(N2> inversions. A 
file has no inversions iff it is sorted, and exchanging two adjacent elements 
that are out of sequence removes exactly one inversion. 

To facilitate our calculations, we will make the simplifying assumption 
that there are only two keys, 0 and 1 in the file to be sorted. The following 
lemma then applies: 

3.1. LEMMA (Swapping lemma). Swapping a 0 and a 1 a dhunce d 
apart in a O-l permutation removes exactly d inversions. 

Proof: The proof is simple and is omitted. q 

Remark. We can easily prove that if the elements of the permutation 
are not restricted to be 0 and 1, then the number of inversions removed 
lies between 1 and 2d - 1. 

The general idea of the proof is to construct a permutation with 
a( N*) inversions and show that no exchange can remove too many 
inversions-thus, many exchanges are required. Using O-l permutations 
instead of general permutations could only affect the constant in the time 
bound (because of the remark above). Also, although we prove our 
theorem only for a few specific permutation sixes, it is clear that we can 
always pad the input, again affecting only the constant in the time bound. 
Thus, neither of these restrictions is significant. 

The natural permutation to consider is a file in reverse order. This 
“natural” permutation is not a bad one for Shellsort (Shellsort runs in 
O(N log N) for this permutation [18]), because the early passes quickly 
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bring sortedness to the file. What we need is a permutation that is initially 
very unsorted and that is not made nearly-sorted by early passes. 

The permutation we will use is closely related to the specific increment 
sequence and the Frobenius function. In particular, we have h, = 1 and 
h, = 4*-l + 3 * 2k-2 + 1 for k > 1. For any value of k > 1, we choose 
Nk = g(h,, &+I,. . . , h,) + 1. Eventually, there will be some maximum 
h, < Nk, and thus we may write Nk = g(h,, hk+l,. . . , h,) + 1. If we store 
our permutation Pk as pa, pl,. . . , pN- i, then we define Pk as follows: 

DEFINITION. pi = 1 iff i is representable as a linear combination in 
non-negative integer coefficients of h,, hk+l,. . . , h,, and 0 otherwise. 

Remark. p,, = 1 by the above definition. We will use the term Frobe- 
nius pattern to describe P (for obvious reasons>. We will say that the index 
of any element pi is i. 

Our permutation has the following very desirable property: 

3.2. LEMMA. No exchanges are peformed by Shellsort for the increments 
h,, ht-,, . . . > h, on permutation Pk. 

Prooj For any h,, such that k I t’ I t, if a, = 1, then u~+~,, must also 
equal 1, so that the lemma follows. 0 

This lemma shows us that the early passes do no sorting work at all for 
our permutation. We now show that Pk has a lot of inversions to start 
with, so that we can expect Shellsort to run slowly on it. We need to 
estimate the number of inversions in our permutation. We start with the 
following lemma: 

3.3. LEMMA. Nk = fi(h:/‘). 

Proof We have (for k > 1) 
h 

k 
= 4k-1 + 3 . 2k-2 + 1 

h k+l = 4 . qk-’ + 6 . 2k-2 + 1 

h k+2 = 16. qk-’ + 12. 2k-2 + 1 
. . . 

Partition the permutation into lines, such that line 1 contains P~~-~),,, to 
P[,,-~. Each line contains more than 4 k-1 elements. Consider a 1 on line 
(Y = 2k-3. Its index clearly must have the form 

a! * 4k-’ + 3p * 2k-2 + y. 

Suppose that some element on line cx = 2k-3, with index ph, + qhk+l + 
rh k-+7. + Shk+3 + . . -7 is 1. Then the only possibility is 

p + 4q + 16r + 64s + 256t + * *. = (Y 

p + 2q + 4r + 8s + 16t + *. * = p 

p+q+r+s+t+..* =y. 
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These three equations imply that 0 I y I /3 I CL Thus the number of 
ones on line (Y is I( I (Y’, where ((xi, x2,. . . , xk)l denotes the 
number of ordered k-tuples (xi, x2,. . . , xk). It follows that line (Y = 2k-3 
has at most qkm3 ones. This implies that there are at least 15 . qke3 zeros 
on this line, and that the Frobenius pattern does not end prior to this line 
(since this line is not all ones). Since we have fi(2k) lines containing a(4k) 
elements per line, the total number of elements is n(sk) = CN/Z:/~). 0 

3.4. LEMMA. The number of ones in the first half of the permutation Pk is 
RW. 

Proof We partition the permutation into lines (as above) and calculate 
the number of elements in the first 2k-4 lines that are expressible as a 
linear combination (using non-negative integer coefficients) of h,, hk+l, 
and hk+2. This number is clearly a lower bound for the total number we 
need to show to establish the lemma. As in the proof of Lemma 3.3, we 
have the three equations, 

p + 4q + 16r = (Y 

p+2q+4r=j3 

p+q+r=y, 

with cy I 2k-4 and we need to lower-bound [((Y, p, r)l. Each triple 
(p, q, r) generates a unique triple (cy, j3, -y), since the three equations 
above are independent. Thus we only need to derive a lower bound for the 
number of (integral) triples (p, q, r). The equation 

p+4q=L 

clearly has about L/4 solutions, so for each 0 I r < a/16, there are 
about (cy - 16r)/4 solutions. Thus (with 0 notation implied), for each 
line ff: 

[(/Jr)1 = =gj a q16’ 
r=O 

= $ - ag4r 
r=O 

ff2 cl2 
=--- 

64 128 

a2 
=- 

128 . 
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Thus each line (Y 4 2 k-4 has about cu2/128 ones. Thus there are 

ones in the first 2k-4 lines, proving the lower bound and hence the lemma. 
q 

It is now easy to prove that this permutation has a quadratic number of 
inversions. 

3.5. LEMMA. The number of inversions in permutation Pk is MN’). 

Proof By Lemma 3.4, there are a(N) ones in the first half of P, which 
implies a(N) zeros in the second half. (See [9] for a quick proof of this.) 
Thus there are n(N*) inversions. 0 

Remark. The constant implied in this proof is quite small, because only 
the ends of Pk are considered. Empirical evidence strongly suggests that 
the number of inversions tends to N */48. Proving this would require a 
much tighter argument than the one above. 

We are now ready to prove the first main result of this paper. 

3.6. THEOREM. The running time for Shellsort ILV fl(N4’3) for the incre- 
ments 1,8,23,77,. . . , h, = qk-’ + 3 . 2k-2 + 1,. . . . 

proof: If Shellsort is run on Pk, no exchanges are performed during 
the h,-sort, h,-,-sort, . . . , hk-sort, and hence no inversions are removed 
during these passes. It follows, from the swapping lemma, that at most 
h,- r inversions can be removed during any exchange. Thus the number of 
exchanges necessary is fl(N*/h,-,>. We know that h,-, = O(N2j3), 
hence we obtain the lower bound of fl(N413), completing the proof. q 

Remark 1. If we want to prove this result for a general permutation of 
N integers, we proceed as follows: Assign the largest integers to the ones, 
and the smallest integers to the zeros. The particular order is unimportant. 
When we come to hk-l-s~rt, we still have a quadratic number of inver- 
sions, and we can remove them only twice as fast as before. Hence the 
bound still holds. 

Remark 2. For any arbitrary N we can obtain the lower bound merely 
by padding a smaller Frobenius pattern with ones, affecting only the 
constant in the bound. However, we can do better. Take the next highest 
N’ that is a Frobenius number of hj hj+l,. . . , h, and use the middle N 
elements of Pi. This sequence will have fi(N*) inversions. To see this, 
note that an extension of Lemma 3.4 is certainly true, because the number 
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of ones on a line can only increase as the line number gets bigger. Thus, 
there is a greater density of ones near the middle of the permutation than 
at the ends. Lemma 3.4 implies Lemma 3.5. Moreover, this permutation 
will also satisfy Lemma 4, so we obtain an UN413) lower bound for 
any N. 

4. MORE LOWER BOUNDS 

The general technique used in the previous section can be extended to 
prove lower bounds for other increment sequences. 

For instance, the increment sequence 1,65,. . . , h, = (2k - 3X2k+1 - 
3X2k+2 - 3) = 8 * gk - 42 * 4k + 63 . 2k - 27,. . . can be shown to make 
Shellsort run in fi(N514) in exactly the same manner as above [14, 171. 
The increment sequences of Incerpi and Sedgewick that yield O(N’+&) 
upper bounds can likewise be proven tight. This is not surprising, since the 
general form of the upper bound given at the end of Section 2 and the 
general form of the lower bound are identical. 

In general, suppose the increments h, satisfy h, = @(ak) for any (not 
necessarily integer) (Y. Suppose that h, is the largest increment and that 
we use the permutation Pk as before. In this case, we need to obtain the 
maximum value of h, to use in generating Pk. g(h,, hkfl, . . . , h,) = N - 1 
and thus the lower bound of Incerpi and Sedgewick implies that 

h;+‘/(‘-k) = o(N). 

On the other hand, it is also true that 

Combining these equations, we obtain 

which yields 

h, = O(N’-l/m). 

Thus, if P has fi( N2> inversions, we obtain a lower bound of 

R(N’+” 8- Oga N> = n(N’+“/ m> which matches the best known upper 
bound for O(log N) increment sequences. We cannot prove that P has 
a( N2) inversions, but we make the following conjecture which would be 
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sufficient to prove this result: 

4.1. Inversion Conjecture. Given a1 < a2 < . . . < uk, then the num- 
ber of inversions in the Frobenius pattern (of size N) formed from these 
integers is O(N’/k>. 

For k = 2, the conjecture is easily proven. For other values of k, 
empirical evidence strongly suggests that the conjecture is true; in fact, the 
implied constant seems to be &. Moreover, to obtain the lower bound for 
Shellsort, all we need is the following weak form of the inversion conjec- 
ture which must certainly be true: 

4.2. Weak Inversion Conjecture. Given a, < a2 < . . . < ak then the 
number of inversions in the Frobenius pattern formed from the integers is 
MN*/f(k)), with f(k) = o(2’9. 

We then have the following theorem: 

4.3. THEOREM. The running time for Shellsort is a( N l+‘/m> for 
increments h, = a(&‘> for any (Y > 1 if the weak inversion conjecture i.r 
true. 

proof: By the discussion above, if the number of inversions is 
fl(N*/f(k>), we obtain a running time of Q(N”e/~/f(\)). If 

f(k) = 0(2~), this is still fi(Nr+“‘~) for some 0 < E’ < E. q 

Remark. If the number of inversions is @(N2/2k), then we obtain the 

trivial lower bound of Q(N) because 2 - 2 k- ,=%Nl/@- 

5. CONCLUSIONS AND OPEN PROBLEMS 

We have shown tight lower bounds for Shellsort using a wide range of 
increment sequences. A similar technique can be used to show that 
Shaker-sort, which is a network sorter based on Shellsort (probably) has a 
quadratic worst case when the increments are almost geometric [19]. The 
proof of this claim depends on the (weak) inversion conjecture. 

Some interesting open problems remain. First and foremost is proving 
our inversion conjecture, or any somewhat weaker form as suggested in 
Section 4. Assuming the inversion conjecture, proving that even if on1 

? some subset of increments is @(dye), then Shellsort is fi(N’+&/ ‘qN) 
would generalize our result quite a bit. This would take care of some 
O(log N) increment sequences that do not strictly increase. It turns out 
that for many of these increment sequences, we can still prove the lower 
bound but we need a slightly different proof; a unifying concept would be 
nice. 
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