
Information Processing Letters 34 (1990) 267-270

North-Holland

7 May 1990

MORE ON SHELLSORT INCREMENT SEQUENCES

Mark Allen WEISS *

School of Computer Snence, Florida International University, University park, Miami, FL 33199, USA

Robert SEDGEWICK * *

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA

Communicated by D. Gries

Received 19 June 1989

Keywords: Shellsort, sorting

1. Introduction

Shellsort is a sorting algorithm proposed by
Shell [9] in 1959. Using a sequence of integers
h,, h,, _. . , h,, Shellsort works by performing in-
sertion sort on subfiles consisting of elements h,
apart. We call this an h,-sort. Shellsort works by
performing an h ,-sort, an h,_ ,-sort, and SO on
until an h, = l-sort. Typically the increment se-
quence is “almost” geometric, so there are
O(log N) increments (or passes).

nonuniform increment sequence was presented,
but we will not deal with it here). In proving these
bounds, Incerpi and Sedgewick developed a “gen-
eralized Frobenius function”, thus circumventing
the usual Frobenius function used for all previous
proofs.

For some time, the best known bound for the
worst-case running time of Shellsort with O(log N)
increments was due to Pratt [6] who showed that if
h, = c. a’ + d for some integer (Y (i.e., the incre-
ments were within an additive constant of geomet-
ric), then the running time of Shellsort is bounded
by 0(N3/*). Sedgewick [7] provided two sets of
O(log N) increments each with worst-case bound
0(N413); this bound was proven tight by Weiss
and Sedgewick [lo].

Incerpi and Sedgewick [4] subsequently (al-
though their paper appeared earlier) provided two
families of increment sequences, and proved an
O(N ‘+‘/(‘+i)) bound for the first family and an

O(N l+r/m) bound for the second (a third

Section 2 reviews previous results on the
Frobenius problem and their use in bounding
Shellsort’s running time. Section 3 presents sim-
pler proofs of the bounds obtained by Incerpi and
Sedgewick. Our proofs use Johnson’s classic result
on the Frobenius problem. Although our results
do not improve the bounds, they extend the bound
to cover more increment sequences and show that
the bounds for all known increment sequences can
be proven using a standard Frobenius argument.
There are many sequences that satisfy the condi-
tions required in the proof and only one was
actually tried in the original paper. Thus, there
was a real possibility that a sequence of this form
existed that would give a major improvement in
the running time of Shellsort in practice. We have
tried the possibilities of interest and Section 4
details the results of our empirical studies. Section
5 offers conclusions and open problems.

* Supported by an FIU Foundation Summer Research Grant. 2. Previous bounds

** Supported by National Science Foundation Grant DCR-

8605962.

Central to proving the upper bounds in the
Frobenius number defined as follows:

0020-0190/90/$3.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 267

Volume 34, Number 5 INFORMATION PROCESSING LETTERS 7 May 1990

Definition 2.1. g(a,, u2,. . . , ak) = the largest in-
teger which cannot be represented as a linear
combination, with nonnegative integer coeffi-
cients, of a,, a2,. . . , ak.

The Frobenius number is defined if and only if
gcd(a,, u2,. . ., uk) = 1. We will need two well-
known results on the Frobenius problem:

Lemma 2.2 (Curran-Sharp, 1884). 1fgcd(a,, a2) =
1, then g(q, a2) = (a, - l)(u, - 1) - 1.

Proof. See [2]. 0

Lemma 2.3 (Johnson, 1960). If g is defined and

d = gcd(a,, a2,. . . , ak _1), then

g(a,, a2,..., ak)

=d.g
ak-l

$2 ,..., d,a,

Proof. See [5]. q

One way to prove the upper bounds for Shell-
sort, is to determine (or at least bound) the func-
tion

Ndhk+,, hk+2,..., &)

hk
(2.1)

for each increment h,. By using this bound for
“small” increments and the obvious O(N2/hk)

bound for “large” increments, the running time is
bounded (apparently tightly) [lo].

Incerpi and Sedgewick defined the “generalized
Frobenius function” as follows:

Definition 2.4. n,(u,, a2,. . .,a,) = the number of
multiples of d which cannot be represented as a
linear combination (with nonnegative integer coef-
ficients) of a,, u2,.. ., uk.

Using the generalized Frobenius function, they
replaced (2.1) with

N-n,#,+,,h,+,,..., h,). (2.2)

We will show that for the uniform increments in
[4], we obtain the same value for (2.1) that was

268

obtained by Incerpi and Sedgewick for (2.2),
thereby proving their bounds in the more standard
manner. These results are rather surprising since
although the “generalized” Frobenius function
seems to be a much more accurate bound we are
not only able to obtain identical bounds, but are
able to obtain them for a far greater range of
sequences.

3. Alternative proofs

In this section we prove upper bounds for the
uniform increment sequences suggested by Incerpi
and Sedgewick. Our two proofs are similar in that
they are by induction and use Johnson’s formula
for removing common divisors.

Theorem 3.1. Let a,, a2,. . . be a sequence of pair-
wise relatively prime integers (with a, = l), and let

c be a fixed constant. Let h, = n,“,‘iIF a, for
k > 2. Then

g(h,+,, hk+2,..., hk+c > =@(l~@I~luj).

Proof (By induction). The basis c = 1 is trivial.
Assume the theorem is true for c - 1. Then John-
son’s formula applies because hk+ 2, h,, 3,. . . ,
h k+c+l all share a common factor, uktc, that
h k+l doesn’t and furthermore, g is defined be-
cause its arguments are relatively prime. Thus,

h
h hk+3 k+2 hk+r+l

= ak+cg k+l,- -
ak+c ‘a k+c ‘--” ak+c

+ bk+c - l)hk+l.

Since h k+1=akfhk+2/ak+c), hk+l can be rem

moved. Furthermore

h
k+i+c-2

k+r
-= n aj

uk+c j=k+i-1
j#k+c

and thus by the induction hypothesis,

g
h hk+3 hk+c+, k-c2

- - ak+c ‘a k+c ‘...’

Volume 34, Number 5 INFORMATION PROCESSING LETTERS 7 May 1990

The result

g(h k+l, hk+2,..., hk+c+l

is immediate. q

If follows that if a,, a*,. . . , ak are all within a
constant factor of each other, then equation (2.1)
evaluates to O(N . hi”). This result is used to
bound Shellsort’s running time. As in the original
proof, the result for equation (2.1) and hence the
final Shellsort bound hides a constant that is
exponential in c.

Incerpi and Sedgewick’s sequence was a merge
of sequences like the one above and thus their
sequence and proof was unnecessarily com-
plicated. This new proof provides an enormous set
of increment sequences that are possibly better on
average than any known. For example, one might
try increment sequences of the form hi = akcik +

ak-lC
i(k-1) + . . . + a,,. Selmer [S] has indepen-

dently obtained this result by using a formula due
to Brauer [l].

Theorem 3.2. Let a,, a*, . . . be a sequence of pair-
wise relatively prime integers (with a, = l), let c > 2
be an integer and let x, = H;_,,j+,Pi,l aj. Then

dXb x2 ,.-., x,_~>+-l>~a,.
j=l

Proof (by induction). The basic c = 3 is true be-
cause g(a,a,, alaJ = g(a,, a3) < a1a2a3. Assume
thetheoremistrueforc-1. gcd(xz, x~,...,x,_~)
= a, and g is defined so Johnson’s formula can
be applied, yielding

g(x,, %,...,XC)

i

x2 x3
=a,g ~~,a,-,..., a

c a,
s + (a,- 1)x,.

c 1

Proceeding as in Theorem 3.1, we can use the
inductive hypothesis to replace the Frobenius
function on the left with (c - 2)nfIt ai, and the
required result follows immediately. q

For any increment h, which is a product of the
first c terms of the base sequence except for one
term, up, bound (2.1) becomes O(cN. upuc+i). If
the base sequence has a, = O(a’), as in [4], then
for any e > 0 we can choose OL < 2r2/8 and obtain
the O(N ‘+“m) bound. Note that our bound
(2.1) has an extra factor of c that is not found in
bound (2.2). We have thus chosen (Y < 2r2/8 in-
stead of the original choice 1y = 2r2/8.

The third increment sequence, due to Chazelle,
can also be bounded using this technique. We
don’t include it here because our proof seems
more complicated than the original.

4. Practical applications

Unspecified in the proofs above is the actual
base increment sequence a,, a2, The only re-
quirement is that this sequence is increasing at
most geometrically and has terms that are pairwise
relatively prime. For the first set of increments,
there is no good choice for this sequence because
the first few increments are too large. For in-
stance, if c = 4 and a, = 2, a2 = 3, a3 = 5 and
u5 = 7, then the first increment is 210. It is still
possible however to adjust some of the first few
increments to make the algorithm better in prac-
tice, but the upper bounds might not hold.

For the second set of increments, Incerpi and
Sedgewick took a,+l = smallest prime 2 2’ =
(1, 2, 5, 11,. . . } obtaining sorts on 20000 elements
that required 489000 comparisons on average.
(Comparisons are directly proportional to actual
running time.) We have found that better choices
for the base sequence are possible, leading to
slight improvements in actual performance. If we
are interested in file sizes for which Shellsort is
practical, we need consider only the first few
terms of the base sequence. For sorting 20000
elements, Incerpi and Sedgewick needed only the
first six terms of the base sequence; only
(1, 2, 5, 11, 17, 37) are used. The most important
factor seems to be avoiding a2 = 2. Both a,+, =
smallest prime > (Y~ with 2 < a < 3 and a,,, =
largest prime < (Y’ + ’ with fi < (Y < 2 satisfy this
property. It turns out to be easy (computationally)

269

Volume 34, Number 5 INFORMATION PROCESSING LETTERS 7 May 1990

to generate all the sequences defined above and
run Shellsort using each implied increment se-
quence on 20000 elements because we are round-
ing up (or down) to a prime and many different
values of (Y generate the same base sequence (for
example (IL = 2.003 and a = 2.004). For 531/6 <(Y
< 29ij5, using the second alternative, a base se-
quence of (1, 3, 7, 13, 23, 53,. _ . } is obtained re-
quiring 465255 comparisons on average. This rep-
resents a 5% improvement over the original choice.
Similar results (within i%) are obtained if the
base sequence starts with (1, 3, 7, 13}, regardless
of what the next term is.

Another possibility is to exhaustively generate
all base sequences with five non-one terms all
pairwise relatively prime and determine the best
choice as above. To make this calculation run in
reasonable time (8 days), we eliminated certain
base sequences that had little chance of being
good even though the relative primeness condition
was satisfied (for instance, the sixth term of the
base sequence had to be at least 1.4 times as large
as the fifth term). It is unlikely that this assump-
tion caused the loss of a good sequence because all
of the sequences on the “fringe” were themselves
poor. This method yields an additional 1% im-
provement for several choices. One such choice is
(1, 4, 9, 17, 23.. . } which required 460948 com-
parisons on average for the 200 random permuta-
tions tested. Choosing 4 as the second term in the
base sequence seems to be best in general.

the standard Frobenius function argument. We
conjecture that all upper bounds can be derived in
the same manner and that the upper bound for
O(log N) increment sequences cannot be im-
proved. Lower bound arguments supporting this
conjecture can be found in [lo].

We have also obtained slightly better perfor-
mance for the Incerp-Sedgewick increment se-
quences, but this must be considered a negative
result in that none of the increment sequences
represent a major improvement in the running
time of Shellsort and are in fact slower than some
previously known sequences [7]. It is not likely
that these types of sequences can be made any
better in practice, since we have tried almost all
possibilities.

Acknowledgment

Erich Hentschel wrote the code and ran the
tests described in Section 4, producing several
hundred pages of output.

References

[l] A. Brauer, On a problem of partitions, Amer. J. Math. 64
(1942) 299-312.

A third possibility is to not insist that the
relative primeness condition always hold (sacrific-
ing the theoretical upper bound), but it turns out
that this does not work well because eventually all
sufficiently large terms will share a common fac-

tor.

[2] W.J. Curran Sharp, Solution to Problem 7382 (Mathe-
matics), Educational Times, London (1884).

[3] J. Incerpi, A study of the worst-case of shellsort, Ph. D.
Thesis, Brown University, Providence, RI (1985).

[4] J. Incerpi and R. Sedgewick, Improved upper bounds on
Shellsort, J. Comput. System Sci. 31 (2) (1985) 210-224.

[5] S.M. Johnson, A linear diophantine problem, Canad. J.

Math. 12 (1960) 390-398.
[6] V. Pratt, Shellsort and Sorting Networks (Garland, New

York, 1979).

5. Summary

[7] R. Sedgewick, A new upper bound for Shellsort, J. Al-

gorithms 2 (1986) 159-173.
[8] E.S. Selmer, On Shellsort and the Frobenius problem,

BIT 1 (1989) 37-41.
[9] D.L. Shell, A high-speed sorting procedure, &mm. ACM

2 (7) (1959) 30-32.
We have shown that upper bounds using com- [lo] M.A. Weiss, Tight lower bounds for Shellsort, J. Al-

plicated increment sequences can be proven using gorithms, to appear.

270

