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1. Introduction 

Shellsort is a sorting algorithm proposed by 
Shell [9] in 1959. Using a sequence of integers 
h,, h,, _. . , h,, Shellsort works by performing in- 
sertion sort on subfiles consisting of elements h, 
apart. We call this an h,-sort. Shellsort works by 
performing an h ,-sort, an h,_ ,-sort, and SO on 
until an h, = l-sort. Typically the increment se- 
quence is “almost” geometric, so there are 
O(log N) increments (or passes). 

nonuniform increment sequence was presented, 
but we will not deal with it here). In proving these 
bounds, Incerpi and Sedgewick developed a “gen- 
eralized Frobenius function”, thus circumventing 
the usual Frobenius function used for all previous 
proofs. 

For some time, the best known bound for the 
worst-case running time of Shellsort with O(log N) 
increments was due to Pratt [6] who showed that if 
h, = c. a’ + d for some integer (Y (i.e., the incre- 
ments were within an additive constant of geomet- 
ric), then the running time of Shellsort is bounded 
by 0(N3/*). Sedgewick [7] provided two sets of 
O(log N) increments each with worst-case bound 
0(N413); this bound was proven tight by Weiss 
and Sedgewick [lo]. 

Incerpi and Sedgewick [4] subsequently (al- 
though their paper appeared earlier) provided two 
families of increment sequences, and proved an 
O(N ‘+‘/(‘+i)) bound for the first family and an 

O(N l+r/m) bound for the second (a third 

Section 2 reviews previous results on the 
Frobenius problem and their use in bounding 
Shellsort’s running time. Section 3 presents sim- 
pler proofs of the bounds obtained by Incerpi and 
Sedgewick. Our proofs use Johnson’s classic result 
on the Frobenius problem. Although our results 
do not improve the bounds, they extend the bound 
to cover more increment sequences and show that 
the bounds for all known increment sequences can 
be proven using a standard Frobenius argument. 
There are many sequences that satisfy the condi- 
tions required in the proof and only one was 
actually tried in the original paper. Thus, there 
was a real possibility that a sequence of this form 
existed that would give a major improvement in 
the running time of Shellsort in practice. We have 
tried the possibilities of interest and Section 4 
details the results of our empirical studies. Section 
5 offers conclusions and open problems. 

* Supported by an FIU Foundation Summer Research Grant. 2. Previous bounds 

** Supported by National Science Foundation Grant DCR- 
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Central to proving the upper bounds in the 
Frobenius number defined as follows: 
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Definition 2.1. g(a,, u2,. . . , ak) = the largest in- 
teger which cannot be represented as a linear 
combination, with nonnegative integer coeffi- 
cients, of a,, a2,. . . , ak. 

The Frobenius number is defined if and only if 
gcd(a,, u2,. . ., uk) = 1. We will need two well- 
known results on the Frobenius problem: 

Lemma 2.2 (Curran-Sharp, 1884). 1fgcd(a,, a2) = 
1, then g(q, a2) = (a, - l)(u, - 1) - 1. 

Proof. See [2]. 0 

Lemma 2.3 (Johnson, 1960). If g is defined and 

d = gcd(a,, a2,. . . , ak _1), then 

g(a,, a2,..., ak) 

=d.g 
ak-l 

$2 ,..., d,a, 

Proof. See [5]. q 

One way to prove the upper bounds for Shell- 
sort, is to determine (or at least bound) the func- 
tion 

Ndhk+,, hk+2,..., &) 

hk 
(2.1) 

for each increment h,. By using this bound for 
“small” increments and the obvious O(N2/hk) 

bound for “large” increments, the running time is 
bounded (apparently tightly) [lo]. 

Incerpi and Sedgewick defined the “generalized 
Frobenius function” as follows: 

Definition 2.4. n,(u,, a2,. . .,a,) = the number of 
multiples of d which cannot be represented as a 
linear combination (with nonnegative integer coef- 
ficients) of a,, u2,.. ., uk. 

Using the generalized Frobenius function, they 
replaced (2.1) with 

N-n,#,+,,h,+,,..., h,). (2.2) 

We will show that for the uniform increments in 
[4], we obtain the same value for (2.1) that was 
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obtained by Incerpi and Sedgewick for (2.2), 
thereby proving their bounds in the more standard 
manner. These results are rather surprising since 
although the “generalized” Frobenius function 
seems to be a much more accurate bound we are 
not only able to obtain identical bounds, but are 
able to obtain them for a far greater range of 
sequences. 

3. Alternative proofs 

In this section we prove upper bounds for the 
uniform increment sequences suggested by Incerpi 
and Sedgewick. Our two proofs are similar in that 
they are by induction and use Johnson’s formula 
for removing common divisors. 

Theorem 3.1. Let a,, a2,. . . be a sequence of pair- 
wise relatively prime integers (with a, = l), and let 

c be a fixed constant. Let h, = n,“,‘iIF a, for 
k > 2. Then 

g(h,+,, hk+2,..., hk+c > =@( l~@I~luj). 

Proof (By induction). The basis c = 1 is trivial. 
Assume the theorem is true for c - 1. Then John- 
son’s formula applies because hk+ 2, h,, 3,. . . , 
h k+c+l all share a common factor, uktc, that 
h k+l doesn’t and furthermore, g is defined be- 
cause its arguments are relatively prime. Thus, 

h 
h hk+3 k+2 hk+r+l 

= ak+cg k+l,- - 
ak+c ‘a k+c ‘--” ak+c 

+ bk+c - l)hk+l. 

Since h k+1=akfhk+2/ak+c), hk+l can be rem 

moved. Furthermore 

h 
k+i+c-2 

k+r 
-= n aj 

uk+c j=k+i-1 
j#k+c 

and thus by the induction hypothesis, 

g 
h hk+3 hk+c+, k-c2 

- - ak+c ‘a k+c ‘...’ 
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The result 

g(h k+l, hk+2,..., hk+c+l 

is immediate. q 

If follows that if a,, a*,. . . , ak are all within a 
constant factor of each other, then equation (2.1) 
evaluates to O(N . hi”). This result is used to 
bound Shellsort’s running time. As in the original 
proof, the result for equation (2.1) and hence the 
final Shellsort bound hides a constant that is 
exponential in c. 

Incerpi and Sedgewick’s sequence was a merge 
of sequences like the one above and thus their 
sequence and proof was unnecessarily com- 
plicated. This new proof provides an enormous set 
of increment sequences that are possibly better on 
average than any known. For example, one might 
try increment sequences of the form hi = akcik + 

ak-lC 
i(k-1) + . . . + a,,. Selmer [S] has indepen- 

dently obtained this result by using a formula due 
to Brauer [l]. 

Theorem 3.2. Let a,, a*, . . . be a sequence of pair- 
wise relatively prime integers (with a, = l), let c > 2 
be an integer and let x, = H;_,,j+,Pi,l aj. Then 

dXb x2 ,.-., x,_~>+-l>~a,. 
j=l 

Proof (by induction). The basic c = 3 is true be- 
cause g(a,a,, alaJ = g(a,, a3) < a1a2a3. Assume 
thetheoremistrueforc-1. gcd(xz, x~,...,x,_~) 
= a, and g is defined so Johnson’s formula can 
be applied, yielding 

g(x,, %,...,XC) 

i 

x2 x3 
=a,g ~~,a,-,..., a 

c a, 
s + (a,- 1)x,. 

c 1 

Proceeding as in Theorem 3.1, we can use the 
inductive hypothesis to replace the Frobenius 
function on the left with (c - 2)nfIt ai, and the 
required result follows immediately. q 

For any increment h, which is a product of the 
first c terms of the base sequence except for one 
term, up, bound (2.1) becomes O(cN. upuc+i). If 
the base sequence has a, = O(a’), as in [4], then 
for any e > 0 we can choose OL < 2r2/8 and obtain 
the O(N ‘+“m) bound. Note that our bound 
(2.1) has an extra factor of c that is not found in 
bound (2.2). We have thus chosen (Y < 2r2/8 in- 
stead of the original choice 1y = 2r2/8. 

The third increment sequence, due to Chazelle, 
can also be bounded using this technique. We 
don’t include it here because our proof seems 
more complicated than the original. 

4. Practical applications 

Unspecified in the proofs above is the actual 
base increment sequence a,, a2, . . . . The only re- 
quirement is that this sequence is increasing at 
most geometrically and has terms that are pairwise 
relatively prime. For the first set of increments, 
there is no good choice for this sequence because 
the first few increments are too large. For in- 
stance, if c = 4 and a, = 2, a2 = 3, a3 = 5 and 
u5 = 7, then the first increment is 210. It is still 
possible however to adjust some of the first few 
increments to make the algorithm better in prac- 
tice, but the upper bounds might not hold. 

For the second set of increments, Incerpi and 
Sedgewick took a,+l = smallest prime 2 2’ = 
(1, 2, 5, 11,. . . } obtaining sorts on 20000 elements 
that required 489000 comparisons on average. 
(Comparisons are directly proportional to actual 
running time.) We have found that better choices 
for the base sequence are possible, leading to 
slight improvements in actual performance. If we 
are interested in file sizes for which Shellsort is 
practical, we need consider only the first few 
terms of the base sequence. For sorting 20000 
elements, Incerpi and Sedgewick needed only the 
first six terms of the base sequence; only 
(1, 2, 5, 11, 17, 37) are used. The most important 
factor seems to be avoiding a2 = 2. Both a,+, = 
smallest prime > (Y~ with 2 < a < 3 and a,,, = 
largest prime < (Y’ + ’ with fi < (Y < 2 satisfy this 
property. It turns out to be easy (computationally) 
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to generate all the sequences defined above and 
run Shellsort using each implied increment se- 
quence on 20000 elements because we are round- 
ing up (or down) to a prime and many different 
values of (Y generate the same base sequence (for 
example (IL = 2.003 and a = 2.004). For 531/6 <(Y 
< 29ij5, using the second alternative, a base se- 
quence of (1, 3, 7, 13, 23, 53,. _ . } is obtained re- 
quiring 465255 comparisons on average. This rep- 
resents a 5% improvement over the original choice. 
Similar results (within i%) are obtained if the 
base sequence starts with (1, 3, 7, 13}, regardless 
of what the next term is. 

Another possibility is to exhaustively generate 
all base sequences with five non-one terms all 
pairwise relatively prime and determine the best 
choice as above. To make this calculation run in 
reasonable time (8 days), we eliminated certain 
base sequences that had little chance of being 
good even though the relative primeness condition 
was satisfied (for instance, the sixth term of the 
base sequence had to be at least 1.4 times as large 
as the fifth term). It is unlikely that this assump- 
tion caused the loss of a good sequence because all 
of the sequences on the “fringe” were themselves 
poor. This method yields an additional 1% im- 
provement for several choices. One such choice is 
(1, 4, 9, 17, 23.. . } which required 460948 com- 
parisons on average for the 200 random permuta- 
tions tested. Choosing 4 as the second term in the 
base sequence seems to be best in general. 

the standard Frobenius function argument. We 
conjecture that all upper bounds can be derived in 
the same manner and that the upper bound for 
O(log N) increment sequences cannot be im- 
proved. Lower bound arguments supporting this 
conjecture can be found in [lo]. 

We have also obtained slightly better perfor- 
mance for the Incerp-Sedgewick increment se- 
quences, but this must be considered a negative 
result in that none of the increment sequences 
represent a major improvement in the running 
time of Shellsort and are in fact slower than some 
previously known sequences [7]. It is not likely 
that these types of sequences can be made any 
better in practice, since we have tried almost all 
possibilities. 
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