Information Processing Letters 28 (1988) 133-136
North-Holland

BAD CASES FOR SHAKER-SORT

Mark Allen WEISS

4 July 1988

School of Computer Science, Florida International University, University Park, Miami, FL 33199, U.S.A.

Robert SEDGEWICK

Department of Computer Science, Princeton University, Princeton, NJ 08540, U.S.A.

Communicated by David Gries
Received 10 December 1987
Revised 18 February 1988

Keywords: Shellsort, sorting, shaker-sort

1. Introduction

Shellsort is a sorting algorithm proposed by
Shell in 1959 [3]. Using a sequence of integers 4,,
hi—1,-.., hy, Shellsort works by performing inser-
tion sort on subfiles consisting of elements h;
apart. We call this an A;-sort. Shellsort works by
performing an h,-sort, an h,_,-sort, and so on
until an A, = 1-sort. Typically, the increment se-
quence is ‘almost’ geometric, so there are O(log N)
increments (or passes). Its worst-case time is more
than O(N log N), and its average case appears, at
least empirically, to be more than O(N log N),
too.
Recently, Incerpi and Sedgewick [1] proposed a
new variant of Shellsort called “Shaker-sort”. Like
Shellsort, Shaker-sort uses an increment sequence
(although the algorithms do not seem to share
‘best’ increment sequences), but it fixes the work
done in each pass to be linear. At the end of the
algorithm, there is a final insertion sort, which we
call the mop-up phase. If an O(log N) increment
sequence is used and the mop-up requires less than
O(N log N) time, then this algorithm runs in
O(N log N). Furthermore, Shaker-sort translates
directly into a sorting network, so if Shaker-sort
were indeed O(N log N), we would have a simple
solution to the optimal sorting network problem.

Incerpi and Sedgewick tried various increment
sequences on random permutations and found
that, for some sequences, the mop-up time was
always zero (empirically). This led to the conjec-
ture that Shaker-sort was O(N log N) for certain
increment sequences. By using a method similar to
that for lower-bounding Shellsort [4], we obtain
permutations for which Shaker-sort takes quadra-
tic time using the increments suggested in [1]. We
also examine variations of these increments, but
these variations also seem to yield a quadratic
Shaker-sort.

2. The Shaker-sort algorithm

Shaker-sort performs k-shakes on a permuta-
tion. A k-shake consists of moving through the
file from left to right, comparing x; and x,, , and
excharging if necessary, and then moving from
right to left, comparing x; and x;_, and exchang-
ing if necessary. Thus, the time to k-shake is
2(N - k).

Shaker-sort uses an increment sequence h,,
h,_1..., hy =1 and performs an h-shake, h,_;-
shake,...,1-shake. Sin. - the file is not guaranteed
to be sorted, we continue using as many 1-shakes
as required to finish the sort. Since each 1-shake

0020-0190,/88 /$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 133



Volume 28, Number 3

requires linear time, at most O(log N) mop-up
1-shakes can be used while retaining optimality. If
the increment sequence is O(log N) in size, and
O(log N) 1-shakes guarantee a sort, then the al-
gorithm runs in O(N log N).

For Shaker-sort, one good increment sequence
(determined empirically by Incerpi and Sedgewick
[ID)seemstobel, 2,3,5,...,[1.7,.... (1.7 can be
replaced by smaller numbers such as 1.6, but this
increases the number of comparisons required.
Some choices also produce increment sequences
with several consecutive even numbers; these per-
form poorly.) For this set of increments, Incerpi
and Sedgewick were unable to find any permuta-
tions requiring even one additional 1-shake. Our
own exhaustive tests confirm that, for N <32,
Shaker-sort always sorts using this increment se-
quence. In fact, for N < 11, the sequence {1, 2, 3}
suffices, for N <23, the sequence {1, 2, 3,35}
suffices and, for N < 32, {1, 2, 3, 5, 9} suffices.

3. Lower-bounding Shaker-sort

We use techniques similar to those used to
lower-bound Shellsort to show that Shaker-sort is
not O(N log N) for any of the increment se-
quences suggested. For each, we explain how to
construct a bad permutation, sketch the reasons
why it will produce quadratic running time, and
present the empirical results of running Shaker-sort
on it. The reader interested in the mathematical
details can consult [4].

First, since Shaker-sort is directly implemented
as a sorting network, we have the following well-
known theorem that allows us to simplify the
problem (see {2, p. 224] for the proof).

3.1. Theorem (0-1 principle). If a network with N
input lines sorts all 2V sequences of O's and 1’s into
nondecreasing order, it sorts any arbitrary sequence
of N numbers into nondecreasing order.

Thus we can restrict our attention to 0-1 per-
mutations.

The permutation we use, from [4], depends on
the increments used. Assurne that the increments
are hy, h,,.... Pick some increment 4, and store

134

INFORMATION PROCESSING LETTERS

4 July 1988

the permutation P as py, py,..., py—;- Then our
permutation is defined as follows.

3.2. Definition. p,=1 iff i is representable as a
linear combination of nonnegative integer coeffi-
cients of &, hy.y,..., hy and =0 otherwise.

It is a well-known fact from number theory
that eventually every p, will be 1 if h,, A, ,,,...
satisfy a few technical conditions (which they do),
and thus we take N —1 to be the largest integer
that cannot be represented. As an example, if
h, =2k — 1, then, for k = 3, P = 100001010, since
the representable numbers are 0, 5, 7, 9, 10, 11, 12,
13, 14....

This permutation is bad because it has many
inversions that cannot be removed quickly. (Recall
that an inversion in a permutation P is a pair of
indices ¢, j such that p, <p; and i>j.) The per-
mutation generated by the above definition seems
to have 2(N?) inversions, although we cannot
prove this for all cases [4]. A sorted file has no
inversions, and inversions are removed from the
permutation as follows.

3.3. Lemma. Swapping a 0 and a 1 a distance d
apart in a 0-1 permutation removes exactly d inver-
sions.

For the proof, see [4].

3.4. Lemma. A k-shake removes at most kN inver-
sions from a 0-1 permutation of size N.

Proof. For 0-1 permutations, observe that a 1-
shake merely swaps the leftmost 1 with the right-
most 0. For a k-shake, in each of the k subfiles,
the leftmost 1 is swapped with the rightmost 0.
For each of these k swaps possible, at most N
inversions can be removed because that is as far
apart as two elements can be in a file of size N.
Hence, at most kN inversions can be removed. [

We also know that all the subfiles spaced 4,,
hy 15 are initially sorted because of the way the
permutation has been constructed. Thus, the max-
imum number of inversions that can be removed
can be expressed as X¥_'4,N = O(Nh,) because



Volume 28, Number 3

the increments are geometric. It turns out that 4,
is less than O(N); its exact value is unimportant
because this fact implies that Shaker-sort cannot
remove a quadratic number of inversions befcre
mop-up passes are used. Since we start out with a
quadratic number of inversions, there will still be
a quadratic number of inversions left when the
nop-up passes start, so the mop-up phase will
require quadratic time.

4. Empmcal results

We use the method described in the previous
section to generate bad permutations for Shaker-
sort. First we attempt to find the smallest permu-
tation for which Shaker-sort requires one mop-up
pass, since it may be that Shaker-sort wiil always
work for quite rersonable sizes even though we
expect it evenwually to deteriorate. Using the [1.7°]
increments, we know that Shaker-sort will always
work for N < 32, since an exhaustive search has
been run. We do not know the largest value of N
for which no extra 1-shakes are required, but it is
certainly at most 56. The following permutation,
which requires a :mop-up pass, is obtained by
replacing the zeros by the numbers 1-34 and the
ones by the numbers 35-57 in the start of the 0-1
permutation generated with h, =9:

57, 30, 18, 34, 29, 17, 33, 28, 16, 56, 27, 15, 32, 26,
14, 55, 25, 13, 54, 24, 12, 31, 23, 11, 53, 52, 10, 51,
22,9, 50, 21, 8, 49, 48, 7, 47, 20, 6, 46, 45, 5, 44,
43, 4,42, 19, 3, 41, 40, 39, 38, 37, 2, 36, 35, 1.

Next, we run Shaker-sort using the [1.7'] incre-
ments on the 0-1 permutation, P. For N = 734702
(which corresponds to i, = 8273), 35956 mop-up
1-shakes are required to complete the sort. It is
clear that Shaker-sort 1s not O(N log N) for these
increments, since the number of mop-up 1-shakes
is linear in the permutation size.

One can use several variations of Shaker-sort to
try to force the large h;-shakes to do some work
(since this is the cause of the quadratic running
time). Table 1 summarizes the tests run on some
of these aiternative algorithms. All these tests were
run on the same permutation as above, even though
one might try to construct new permu .ations espe-

INFORMATION PROCESSING LETTERS

4 July 1988
Table !
N Mop-up 1-shakes
Original A4 B C D
2638 83 0 2 74 0
8749 564 277 292 554 25
15530 878 392 406 867 14
27993 1293 483 480 1281 69

49774 2299 888 907 2286 136
96626 4286 1878 1917 4272 K1)
184706 8233 4140 4262 8218 780
417449 23473 16516 16547 23457 2103
734702 35956 24142 24165 35939 5029
1360732 63522 43425 43460 63504 7515
2480:.39 114561 80400 80437 114542 13617

ciallv designed to make the modified increment
sequences perform badly. Variation A4 runs
Shaker-sort twice before doing the mop-up. The
hope is that after the first pass is done, the file will
be scrambled enough so that the large shakes in
the second Shaker-sort will not be neutralized.
Variation B uses (k — 2)-shakes in the second
pass instead of k-shakes. Variation C intersperses
1-shakes between the original shakes and variation
D intersperses (h, — 1)-shakes between the origi-
nal shakes (recal! that the h,-shake is by defini-
tion the largest to do no work using the original
increizents). None of these changes seem to re-
duce the nuiaber of mop-up passes below linear.

5. Summary

By example, we have shown that Shaker-sort is
quadratic in the worst case for the specific incre-
ments suggested by Incerpi and Sedgewick and
that simple variations of these increment se-
quences do not do significantly better. For the
same reason that Shellsort is not likely to be
O(N log N) in the worst case [4], Shaker-sort is
not likely to be any better than O(N?) in the
worst case, for any O(log N ) increment sequence.
While the average case of Shaker-sort certainly
does not appear to suffer this problem, Shaker-sort
does not seem to be significantly faster than Shell-
sort for any file size, especially when good incre-
ment sequences are used for Shelisort. Shaker-
sort’s primary use would have been as a simple

135



network sorter, but its quadratic worst-case pre-
cludes that possibility.

Whether Shaker-sort can be useful as a prob-
abilistic neiwork sorter remains an interesting open

Wa hava vat ta randamlu ocanarata a
“uw CANEL. YWw LA Vw J we WA u.ll\lvul-l_’ év.lvl “Gilw o

permutation of smaller than 100000 elements that
required extra passes to sort; O(log N) passes are
allowed so there is still quite a cushion for sorting

files in this size range.

[
w
[}

ROCESSING LETTERS 4 July 1988

References

[1] J. Incerpi and R. Sedgewick, Practical variations on Shell-
sort, Inform. Process. Lett. 26 (1987) 37-43.

i2] D.E. Knuih, The Ari of Compuier Programming, Voi. 3:
Sorting and Searching (Addison-Wesley, Reading, MA,
1973).

[3] D.L. Shell, A high-speed sorting procedure, Comm. ACM 2
(N (1050) 3022

\iJ\ar7P7) Su=Da.

[4] M.A. Weiss and R. Sedgewick, Tight Lower Bounds For
Shellsort, Tech. Rept. # CS-TR-137-88, Dept. of Computer

PRSPII , WL,

Q- TT_: . 1000
SUICHCE, ITHICCLOI VIV, 1700.



