
Commuticated by David Gries
Received 10 December 1987
Revised 18 February 1988

Keywfm&: Shekwt, sorting, shakewzort

1. Introduction

Shellsort is a sorting algorithm provost by
Shell in 1959 [SJ. Using a sequence of integers h,,
h r-1,. . . , hl, Shellsort works by performing inser-

tion sort on subfiles consisting of elements hi
apart. We call this an hi-sort. Shellsort works by
performing an h,-sort, an hr_l-sort, and so on
untilanh,=t Lwrt. Typically, the increment se-
quence is ‘almost’ geometric, so there are O&g N)
increments (or passes). Its worst-case time is more
than O(N log N), and its average case appears, at
least empirically, to be more than 0(N log N),
too*

Recently, Ineerpi and Sedgewick [l] proposed a
new variant of Shellsort called ‘73halcer-sort”. Like
Shellsort, Shaker-sort uses an increment sequence
(although the ~go~~s do not seem to share
‘best’ increment sequences), but it fixes the work
done in each pass to be linear. At the end of the
algorithm, there is a final insertion sort, which we
call the ~o~-~~ phase. If an O(log N) increment
sequence is used and the mop-up requires less than
O(N log N) time, then this algorithm runs in
O(N log N). Furthermore, Shaker-sort translates
directly into a sorting network, so if Shaker-sort
were indeed O(N log N), we would have a simple
solution to the optimal sorting network problem.

Incerpi and Sedgewick tried various increment
sequences on random permutations and found
that, for some sequences, the mop-up time was
always zero (empirically). This Ied to the conjec-
ture that Shakermsort was O(N log N) for certain
increment sequences. By using a method similar to
that for lows-bo~~g Shellsort [4], we obtain
permutations for which Shaker-sort takes quadra-
tic time using the ~crements suggested in [l]. We
also examine v~ations of these increments, but
these variations also seem to yield a quadratic
Shaker-sort.

2. The Shaker-sort algorithm

Shaker-sort performs k-dukes on a permuta-
tion. A k~sh~k~ consists of moving through the
file from left to right, comparing xi and xi+ k and
exchx:ging if necessary, and then mo~ng from
right to left, comparing xi and xi _ k and exchang-
ing if n~ess~. Thus, the time to k-sake is
2(N- k).

Shaker-sort uses an increment sequence h,,
h r_l,. . ., hl = 1 and performs an h,-shake, h,_I-
shake, *. . , f-sbzke, Sine the file is not gL~~~teed
to be sorted, we continue using as many l-shakes
as required to finish the sort. Since each l-shake

For ~~~~~D~~~ cm#z good ~~ferne~t seqprence
(determined empticalIy by Werpi and Sedgetick
[I]) seems tu be 1,2, 395, l 1. ,fl.7ij,. . t e (I.7 can be
replaced by srn~~er numbers such as I& but this
increases the number of comparisons required.
Some choices also prudum increment sequ@~~
with several consecutive even numbers; these per-
fcsrxn p~r~y.~ For this set of increments, Incerpi
and Sedgewick were unable to fiid any permuta-
tions r~q~~g even one ad~~un~ I-siTrtrkt?* Our
own exhaustive tests confirm that, for N < 32,
Shaker-sort always sorts using this increment se-
quence. ‘in fact, for N < 11, the sequence (f,Z 3)
suffices, fclr N G 23, the sequence (1,2, 3,s)
suffices and, for N 6 32, {l, 253, 5,93 suffices.

We use techniques similar to those used to

lower-botmd Shellsort to show that Shaker-sort is
not Q(N log N) for any af the increment se-
quences surety. FCX each, we exptain hoxv to
~~nst~~t a bad p~~utati~~, sketch the reasons
why it will produce quadratic running time, and
present the ernpi~~~ rest&s of ~g Shaker-sort
on it, The reader interested in the mathematics
details can consult 141.

First, since Shaker-sort is directly ~~~ern~nted
as a surt~ng netwxxk, we have the f&owing wd-

~~~ theorem thag atlows us to simp~fy the 
prubiem (see [Z, pa 2241 for the proof). 

The perxUatiOn we use, from [4”jV depends on 
me ~~r~rnen~ used. Assuajne that the increments 
are la,, h,,.... Pick some increment h, and store 

1% 

the pe~uta~~n P as pe, pjr,. . . , pN_ Ia Then our 
p~~utati~n is defined as fsl!ows, 

ft is 8 we&k.amm fact fmm number theory 
that event&y every pi wili be 1 if h,, Jz~+~~ - *. 

satisfy a few tactical! conditions (which they do), 
and thus we take N - 1 to be the krgat integer 
that Cabot be represented. As an example, if 
h,= 2k - 1, then, for k = 3, P = ~~~~~~~ since 
the representable numbers are 0,5,7,9,1O,Pl, 12, 
13, M,.,. 

This pe~uta~~~ is bad hause it has many 
i~ue~~io~s that cannot be removed quickly. (Recall 
that an mversi0n in a permutation P is a pair of? 
indices i, j such that pi <pi and i Q) The per- 
mutation genera&xi by the above deacon seems 
to have ~~~2~ ~versiuns~ ~~~u~ we CXMO~ 
prove this for all eases fcif. A ssrted fiIe has no 
inversions, and inversions are removed from the 
reputation as fotiaws. 

Proof- For 0-l permutations, observe that a l- 
shake merely swaps the leftmost I with the right- 
must 0. For a k-~~Qk~~ 2n each of the k subfiles, 
the Ieftmust 1 is swapped with the rightmost 0. 
For each of these k swaps possible, at most N 
inversions can be removed bxause that is as far 
apart as two elements can be in a fife of size M. 
Hence, at most kN inversions can be removed. LJ 

We also know &t aI\ the subfiles spaced h,, 
tt k + lr. * l are ~tia~y sorted because af the way the 
~e~~~ti~n has been ~nst~~t~, Thus, the maxe 
~mum number of in+e:rsisns that can be removed 
can be expressed as Z,F:$ J = ~~~~~ because 



Volume 28, Nwuber 3 iNFORMATION PROCESSI _ETTERS 4 duly 1988 

the increments are geometric. It turns out that h, 
is less than O(N); its exact value is unimportant 
because this fact implie; that Shaker-sort cannot 
remove a quadratic number of inversions befcre 
mop-up passes are used. Since we start out with a 
quadratic number of inversions, there wiIl still be 
a quadratic number of inversions left when the 
n~o~-up passes start, so the mop-up phase will 
require quadratic time. 

4. EmpIri& resuI& 

We use the method described in the previous 
section to generate bad permutations for Shaker- 
sort. First we attempt to find the smallest permu- 
tation for which Shaker-sort requires one mop-up 
pass, since it may be that Shaker-sort will always 
work for quite reasonable sizes even though we 
expect it eventually to deteriorate. Using the [I?] 
increments, we know that Shaker-sort will always 
work for N < 32, since an exhaustive search has 
been run. We do not know the largest value of N 
for which no extra l-shakes are required, but it is 
certainly at most 56. The following permutation, 
which requires a :nok-up pass, is obtained by 
replacing the zeros by the numbers l-34 and the 
ones by the numbers 35-57 in the start of the O-l 
permutation generated with hk = 9: 

57, 30, 18, 34, 29, 17, 33, 28, 16, 56,27, 15, 32, 26, 
14, 55, 25, 13, 54, 24, 12, 31, 23, 11, 53, 52, 10, 51, 
22, 9, 50, 21, 8,49,48, 7,47, 20, 6,46,45, 5,44, 
43,4,42, 19, 3,41,40, 39, 38, 37, 2, 36, 35, 1. 

Next, we run Shaker-sort using the 11.7’1 incre- 
ments on the O-l permutation, P. For N = 734702 
(which corresponds to hk = 8273), 35 956 mop-up 
1-slzukes are required to complete the sort. It is 
clear that Shaker-sort 1s not 0( N log N) for these 
increments, since the number of mop-up l-shakes 
is linear in the permutation size. 

One can use several variations of Shaker-sort to 
try to force the large hi-shakes to do some work 
(since this is the cause of the quadratic running 

time). Table 1 summarizes the tests run on some 
of these alternative algorithms. All these tests were 
run on the same permutation as above, even though 
one might try to construct new permc ,ations espe- 

iv Mop-up 1 -Sk&es 

Original A B c D 

83 0 2 74 0 
564 233 292 554 25 
818 392 406 867 14 

1293 483 480 1281 69 
2299 888 907 2286 136 
4286 1878 1917 4272 301 
8233 4140 4262 8218 780 

23473 16516 16547 23457 2103 
35 956 24142 24165 35 939 5029 
63522 43425 43460 63504 751s 

L4XO ‘39 114561 80400 80437 114542 13617 

designed to make the modified increment 
ces perform badly. Variation A runs 

Shaker-sort twice before doing the mop-up. The 
hope is that after the first pass is done, the file will 
be scrambled enough so that the large shakes in 
the second Shaker-sort will not be neutralized. 
Variation B uses (k - 2)shakes in the second 
pass instead of k-shakes. Variation C intersperses 
l-shakes between the original shakes and variation 
D intersperses ( hk - 1)shakes between the origi- 
nal shakes (recall that the h,-shake is by defini- 
tion the largest to do no work using the original 
increments). None of these changes seem to re- 
duce the number of mop-up passes below linear. 

5. summaIy 

By example, we have shown that Shaker-sort is 
quadratic in the worst case for the specific incre- 
ments suggested by Incerpi and Sedgewick and 
that simple variations of these increment se- 
quences do not do significantly better. For the 
same reason that Shellsort is not likely to be 
0( N log N) in the worst case [4], Shaker-sort is 
not likely to be any better than 0( N 2, in the 
worst case, for any O(log N) increment sequence. 
While the average case of Shaker-sort certainly 
does not appear to suffer this problem, Shaker-sort 
does not seem to be significantly faster than Shell- 
sort for any file size, especislly when good incre- 
ment sequences are used for Shellsort. Shaker- 
sort’s primary use would have been as a simple 

135 



Volume 28, Number 3 INFORMATION PROCESSING LETTERS 

network sorter, but its quadratic worst-case pre- References 

4 July 1988 

eludes that possibility. 
Whether Shaker-sort can be useful as a prob- 

abilistic network sorter remains an interesting open 
question. We have yet to randomly generate a 
permutation of smaller than 100000 elements that 
required extra passes to sort; O(log N) passes are 
allowed so there is still quite a cushion for sorting 
files in this size range. 

PI 

PI 

[31 

VI 

J. Incerpi and R. Sedgewick, Practical variations on SheIl- 
sort, Inform. Process. Lett. 26 (1987) 37-43. 
D.E. Knuth, The Art of Computer Programming, Vol. 3: 
Sorting and Searching (Addison-Wesley, Reading, MA, 
1973). 
D.L. Shell, A high-speed sorting procedure, Comm. ACM 2 
(7) (1959) 30-32. 
M.A. Weiss and R. Sedgewick, Tight Lower Bounds For 
Shellsort, Tech. Rept. #CS-T&137-88, Dept. of Computer 
Science, Princeton Univ., 1988. 

136 


