
Algorithmica (1986) 1:31-48 Algorithmica
�9 1986 Springer-Verlag New York lnc

Shortest Paths in Euclidean Graphs

Robert Sedgewick 1"2 and Jeffrey Scott Vitter 1'2

Abstract. We analyze a simple method for finding shortest paths in Euclidean graphs (where vertices
are points in a Euclidean space and edge weights are Euclidean distances between points). For many
graph models, the average running time of the algorithm to find the shortest path between a specified
pair of vertices in a graph with V vertices and E edges is shown to be O(V) as compared with
O(E + V log V) required by the classical algorithm due to Dijkstra.

Key Words. Analysis of Algorithms, Graph algorithm, Shortest path, Euclidean, Heuristic, Dijkstra's
algorithm, Priority queue

1. Introduction. It has long been known that the efficiency of search procedures
in graphs can be improved by using global information to evaluate partial
solutions and so direct the search (see [Hart, Nilsson, and Raphael, 68]). This
technique has mostly been applied to develop heuristics for finding partial or
approximate solutions to difficult or intractable search problems, but it can be
used to improve elementary search algorithms on important classes of graphs. For
the particular problem of finding the shortest path between two graph vertices, we
are able to characterize the precise improvement for a variety of random graph
models through average-case analysis.

Specifically, we are interested in Euclidean graphs, where each vertex corre-
sponds to a point in the d-dimensional Euclidean space 9t d and where the weight
of an edge is proportional to the Euclidean straightline distance between the
points it connects. Such graphs can model many real situations (airline route map,
some circuit layout applications, etc.). Typically, the inherent geometric informa-
tion in such graphs is ignored and the classical traversal algorithms for general
graphs are used. Euclidean graphs do arise indirectly in the solution of some
geometric problems, though it is still typical to separate geometric considerations
from graph processing. For example, one technique for finding the minimum
spanning tree of a set of vertices in Euclidean space is to build a sparse subgraph
S of the complete graph induced by the vertices, with the property that S is

Department of Computer Science, Brown University, Providence, RI 02912, USA
2Support for the first author was provided in part by NSF Grant MCS-83-08806. Support for the
second author was provided in part by NSF Grants MCS-81-05324 and DCR-84-03613, an NSF
Presidential Young Investigator Award, an IBM research contract, and an IBM Faculty Development
Award. Support for this research was also provided in part by an ONR and DARPA under Contract
N00014-83-K-0146 and ARPA Order No. 4786. Equipment support was provided by NSF Grant
MCS-81-218106.

Received: April 4, 1985: revised August 5, 1985, Communicated by C. K. Wong.

32 Sedgewick and Vitter

guaranteed to contain the minimum spanning tree; then an algorithm for general
graphs is used to compute the minimum spanning tree of S ([Yao, 82]). The
underlying theme of this paper is that it is possible to gain efficiency by making
use of the geometric information directly within the graph traversal algorithm.

Classical graph traversal algorithms can be developed according to the follow-
ing general schema: Initially, one distinguished start vertex is placed into a
priority queue, and a spanning tree is made empty. Then the while-loop given
below is executed; each iteration removes one vertex from the priority queue and
adds it to the spanning tree.

while not done do
begin
Remove the highest priority vertex v from the priority queue;
for each neighbor w of v in the graph do

if w ~ priority queue then
Reevaluate the priority of w

else if w q~ spanning tree then
Insert w into the priority queue;

Add v to the spanning tree, as a child of the vertex that set v's priority
end;

The loop halts when the priority queue is empty or when the appropriate stopping
condition arises. Graph traversal methods differ in the way in which the priorities
are updated and in the way in which the priority queue is implemented. (See
[Sedgewick, 83] or [Tarjan, 83] for more details and examples.) An end product of
the traversal is a spanning tree of some portion of the graph.

It is convenient to think of the vertices as being divided into three classes
during the execution of the algorithm: spanning tree vertices (which have been
removed from the priority queue and added to the spanning tree); unseen vertices
(which have not been encountered at all); and fringe vertices (those in the
priority queue: these are adjacent to spanning tree vertices but have not yet been
visited). The problem we consider in this paper is to find the shortest path
between two designated vertices, the start vertex s and the destination vertex t.
The length of a path is the sum of the weights of all the edges along the path.

The classical shortest path algorithm due to Dijkstra ([Dijkstra, 59]) results
from assigning to each fringe vertex x a value equal to the shortest distance from
the start vertex s to x, among all paths consisting of spanning tree edges followed
by a single edge in the graph from the tree to x. The highest priority fringe vertex
is the one with the lowest value. To find the shortest path from s to t, we assign a
low value (high priority) to s at the beginning in order to make it the start vertex,
then stop the algorithm when the destination vertex t is encountered. The
resulting spanning tree is a "shortest path tree," which defines the shortest path in
the graph from s to every vertex that is closer to s than t is. The left side of
Figure I pictures the spanning tree, fringe, and unseen vertices at different stages
during the execution of Dijkstra's algorithm on a typical graph.

Shortest Paths in Euclidean Graphs 33

The priority queue can be implemented as a Fibonacci heap ([Fredman and
Tarjan, 84]) for a total running time of O(E + V log V), where E and V are the
numbers of edges and vertices, respectively, in the graph. Of course, the time
required for input of a graph with E edges is ~ (E) , so-Dijkstra's algorithm is
optimal or near-optimal when input time is included. However, if shortest paths
are to be found for several pairs of vertices in the same graph, or if the graph is
already represented in memory for some other reason, which is typical in
applications, then algorithms that run in o(E) steps are of interest.

The basic idea ([Hart, Nilsson, and Raphael, 68]) for improving the perfor-
mance of Dijkstra's algorithm when run on Euclidean graphs is simple: to build
the spanning tree, we use the above method, but assign to each fringe vertex x a
value equal to the distance through the tree from s to x (as before) plus the
Euclidean distance from x to t. Thus, we use global information about the graph
to guide the search. To formalize this, we define Eucl_dist(x, y) to be the
Euclidean (l 2-norm) distance between vertices v 1 and v 2, and we define dist (v 1, u2)
to be the length of the shortest path in the graph from v 1 to v 2. The length of a
path is equal to the sum of the weights of the edges along the path; the weight of
edge (v 1, v2) is defined to be Eucl_dist(v 1, v2). Each fringe vertex x is assigned
the following value:

minw(dist(s, w) + Eucl_dist(w, x)} + Eucl_dist(x, t).

The minimum is taken over all w such that w ~ spanning tree and (w, x) ~ graph.
The resulting algorithm, which we call the Euclidean heuristic, runs much faster
than the standard graph algorithms on typical graphs, for two main reasons: (1)
the spanning tree tends to grow in the direction of t, and (2) the search for the
shortest path can be terminated as soon as t is added to the spanning tree. The
correctness of (2) follows easily from the fact that the Eucl_dist(x, t) term gives a
lower bound on dist(x, t). As with the standard graph algorithms, the shortest
path from s to t can be output in reverse order, by storing back pointers at each
spanning tree node.

To simplify discussion, we shall assume that t is the farthest vertex from s, so
that Dijkstra's algorithm must examine every vertex and edge in the graph. The
Euclidean heuristic could do the same, so there is no improvement in worst-case
performance (although obviously the heuristic can never examine more vertices
and edges than does Dijkstra's algorithm). On the other hand, it seems that for
many graphs encountered in practice the actual shortest path can be discovered
long before every vertex is encountered. A typical case is illustrated in Figure 1.
In this paper, we consider the question of determining exactly how much might be
saved with the Euclidean heuristic.

To properly model Euclidean graphs for purposes of analysis, it is necessary to
consider not only the connections among vertices, but also the point set place-
ments (which specify exactly where the vertices are). We typically assume that the
vertices are independently and uniformly distributed points in the unit d-dimen-
sional cube, for some d >_ 2, and that s and t are situated at the corners

S

34 Sedgewick and Vitter

!

Fig. I. The pictures on the left show the decomposition of the vertices of a typical graph into spanning
tree, fringe, and unseen vertices at various stages of Dijkstra's algorithm. The pictures on the right
show" the decomposition during the Euclidean heuristic. The start vertex s is in the top left-hand
corner, and the destination vertex t is in the bottom right-hand comer. The solid boxes represent the
spanning tree vertices; the heavy edges are the edges in the spanning tree. The unfilled boxes are the
vertices in the fringe and are connected to the spanning tree via dashed lines. The small dots show
the unseen vertices. For this graph, the Euclidean heuristic examines far fewer vertices and edges than
does Dijkstra's algorithm. As the bottom pictures show, Dijkstra's algorithm is far from finished when
the Euclidean heuristic terminates.

s = (0 , 0) a n d t = (1 1). W e m a k e t the fa r thes t ve r t ex in the g r a p h f r o m

s in o r d e r to m a x i m i z e the r u n n i n g t i m e of the E u c l i d e a n heur is t ic . W e c o n s i d e r

v a r i o u s m o d e l s for ass ign ing edges to the ver t ices . Surpr is ingly , for m a n y na tu r a l

g r a p h m o d e l s , the ac tua l p o i n t set p l a c e m e n t is no t pa r t i cu l a r ly r e l evan t to the
ana lys i s . S e c t i o n 2 gives de ta i l s on such m o d e l s a n d a gene ra l resu l t w h i c h

Shortest Paths in Euclidean Graphs 35

establishes an O (V) bound on the average running time. For other models, which
are perhaps more realistic, the point placement plays a crucial role. We have had
some success establishing specific results for such models and have identified
several techniques which seem germane to the analysis. More details on this are
given in Section 3. Conclusions, generalizations to metrics other than the Euclidean
distance, and open problems are discussed in Section 4.

2. Analysis for Random Graphs. In this section we shall investigate the perfor-
mance of the Euclidean heuristic for six models of random graphs on V vertices.
Each model has a parameter that determines the expected density of the edges in
the graph. The surprising result is that the average running time for each model is
O(V), independent of the expected density, the placement of the vertices, and the
dimension d. This represents a significant savings over the classical algorithms for
general graphs.

DEFINITION 1. The six models of random graphs on V vertices that we consider
in this section are defined as follows. The start and end vertices are s = (0 0)
and t = (1 1). The remaining V - 2 vertices can be placed in the unit
d-dimensional cube in any way, since their locations do not affect the running
time of the Euclidean heuristic.

1. The graph is undirected. Each of the V(V - 1)/2 possible edges appear in the
graph with probability p(V) , independent of all the other edges.

2. The graph is undirected. The graph has E (V) edges, with each of the

(v (v ,)/2) sets of E edges equally likely.

3. The graph is directed. Each of the V(V - 1) possible directed edges appear in
the graph with probability p (V) , independent of all the other edges.

4. The graph is directed and has E(V)edges , with each of the (v(~7 1))sets of
/

E edges equally likely.
5. The graph is directed. Each vertex has in-degree k (V) , with each of the (v ; 1)

k]

sets of k in-edges equally likely.
6. The graph is directed. Each vertex has out-degree k (V) , with each of the (v ; l)

sets of k out-edges equally likely.

The expected density for the graph model is the expected percentage of edges
present: the expected number of edges divided by V(V - 1)/2 for the undirected
case, by V(V - 1) for the directed case.

The expected densities for the six models are, respectively, p, 2 E / (V (V - 1)),
p, E / (V (V - 1)), k / (V - 1), and k / (V - 1). The expected number of edges for
the six models is p V (V - 1)/2, E, p V (V - 1), E, kV, and kV, which we assume
is ~2(V log V) in order to make the graph connected with high probability. Recall
once again that the classical algorithms examine each edge in the graph, so that
these expressions give lower bounds on the running time for the classical
methods.

The average running time of the fastest known algorithm for general non-
Euclidean graphs ranges from O(V 2) for dense graphs (for which the expected

36 Sedgewick and Vitter

t

m 2 . . ~

t

Fig. 2. The final result of Dijkstra's algorithm (on the left) and the Euclidean heuristic (on the right) on
a random graph. The same remarks as in Figure 1 apply. The spanning tree constructed in each case is
pictured below the graph. The Euclidean heuristic products a "skinnier" spanning tree than does
Dijkstra's algorithm, reflecting the fact that its search for the shortest path is more focused. The
Euclidean heuristic runs in O(V) time, on the average, independent of the expected density of the
graph, the placement of the vertices, and the dimension.

density is a constant) to O(V log V) for sparse graphs (for which the expected
density is O((log V)/V)). The Euclidean heuristic results in significant savings, as
illustrated in Figure 2.

THEOREM 1. The average running time of the Euclidean heuristic for each of the
six models of random graphs given above is O(V). The coefficient implicit in the
O(V) bound can be chosen independently of the expected density, the placement
of the vertices, and the dimension d.

A lower bound on the expected running time of the Euclidean heuristic is the
average number of edges examined. A priority queue is used to store the vertices
on the fringe. Normally the overhead of maintaining the priority queue would
introduce an extra log V term into the running time, which would make the
running time ~2((ave. # edges examined)log V).

However, we can reduce the average running time by implementing the priority
queue as a Fibonacci heap ([Fredman and Tarjan, 84]). Selecting the highest
priority vertex and deleting it from the priority queue costs O(log V) time, but
insertions of new vertices and updates in which the priority is increased can be
done in only constant time. This gives us the time bound

O((spanning tree size)log V + (# edges processed))

for the Euclidean heuristic. For the graph models we consider in Theorems 1 and

Shortest Paths in Euclidean Graphs 37

2, we have

(ave. # edges processed) = (ave. spanning tree size)

• (expected density) x V;

(1) (expected density) = f2 (~__).log V

Formula (1) follows from Wald's Lemma (see [Lo+ve, 77]). Substituting these two
expressions into the above time bound, we find that the average running time of
the Euclidean heuristic is O(ave. # edges processed), which can be computed via
(1). In Theorems 1 and 2, we bound the expected running time by obtaining a
bound on the average spanning tree size (or equivalently on the average number
of iterations).

PROOF OF THEOREM 1. First we consider model 3. The Euclidean heuristic will
find the optimum path during the next iteration if and only if the fringe vertex
that is added to the spanning tree during the current iteration is connected to t
via a directed edge. The probability of this happening is p. Hence, we can model
the number of iterations I (and the final spanning tree size) by a geometrically
distributed random variable with mean 1/p. This model actually gives an upper
bound on the average number of iterations L because the algorithm can halt
prematurely if s and t are not in the same connected component. By (1), the
average running time of the Euclidean heuristic is O(IpV) = O(V).

The other models can be handled similarly. The analysis of model 5 involves
the distribution of the skip random variable S discussed in [Vitter, 83]: the
number of iterations I can be modeled by the minimum of k random integers
picked without replacement from the V - 1 integers {0, 1, 2 , V - 2}. The
average value is (V - k - 1) / (k + 1), which is approximately the inverse of the
expected density. The rest of the analysis proceeds as before. �9

An alternative to using a Fibonacci heap as the priority queue is to use a
mergeable heap with duplicate entries. Whenever a vertex is moved from the fringe
to the spanning tree, an entry is added to the heap for the cost of each of the
vertex's neighbors that is not already in the tree and that does not have a
higher-priority entry already in the heap. Inserting t items into the heap can be
done in a batched bottom-up manner in O(t + log V) steps, as follows: First, an
auxiliary 2-3 heap of the t items is formed in O(t) time using the standard
heapify algorithm. Then it is merged with the main 2-3 heap in O(log V) time,
using the algorithm given in [Aho, Hopcroft, and Ullman, 74]. The average
number of inserted items t is bounded by pV. By reasoning similar to (1), the
total cost of such insertions over the course of the algorithm is O(ipV + [log V)
= O(V), on the average. There may be multiple entries in the heap for the same
vertex; the heap contains (possibly duplicate) entries for the fringe vertices as well
as some duplicate entries for vertices that have already been put in the spanning

38 Sedgewick and Vitter

tree. Thus, when the highest priority fringe vertex must be selected, several
duplicate entries might first have to be removed from the top of the heap. The
analysis in [Gonnet, 81] shows that the maximum number of duplicate entries of
the same vertex, on the average, is asymptotically log(IpV)/ loglog(IpV)=
O(logV/loglogV). By Wald's Lemma, we can bound the total number of
duplicate entries that come to the top of the heap by O (i log V/log log V). The
average total cost of selections is thus O(l(log V/loglog V)log V) = O(V), when
p = ~2((log V)2 / (V loglog V)). We conjecture that the O(V) bound also holds
for smaller p.

It is certainly somewhat counterintuitive that the average case performance for
the Euclidean heuristic should be independent of the expected density, the node
placement, and the dimension. This is partly due to characteristics of the models,
but also it is indicative of the general applicability of the method. Some
alternative models are described in the next section.

3. More Graph Models and Techniques. It can be argued that certain of the
models above might be appropriate for studying certain specific applications
areas, but not at all for others. For example, models 5 or 6 might be appropriate
for studying airline route maps, but none of the models are entirely satisfactory
for studying integrated circuits or railroad route maps, which are likely to lead to
graphs which are near-planar and have few long edges. Some possibilities for
modeling such situations are indicated below. In each case, the start and end
vertices are s = (0, 0) and t = (1, 1); the remaining V - 2 vertices are assumed to
be independently and uniformly distributed in the unit square.

7. Each vertex is connected to all the vertices within a radius of r(V).
8. Each vertex is connected to its k(V) nearest neighbors.
9. The edges are taken from the Delauney triangulation or one of its generali-

zations.
10. The edges form a "random" triangulation (if that can be made precise).

In this section, we introduce several useful approaches to the analysis of models
like the ones above. The first approach we discuss shows that the average running
time for model 7 is O(V) and is independent of the radius r. This model is
frequently used in the average-case analysis of heuristics for the travelling
salesman problem.

For model 8 with k = O(1) and for models 9-10, the number of edges in the
graph is O(V), so the classical algorithms would seem to perform quite well.
However, it appears that the running time for the Euclidean heuristic on such
graphs is sublinear. Research on this question is in progress.

Before we begin discussion of analysis techniques, let us mention one lemma
that is central to all the techniques.

LEMMA 1. At the end of the Euclidean heuristic algorithm, the spanning tree
consists of all those points x such that

dist (s, x) + Eucl_dist (x, t) < dist (s, t) .

Shortest Paths in Euclidean Graphs 39

The points x for which equality holds are also in the spanning tree, in the worst
case.

PROOF. Straightforward from an examination of the algorithm. �9

Channels. The first approach we shall study considers paths that lie entirely within
narrow confines we call channels. We show that with high probability such a path
exists. This implies a certain bound on the expected spanning tree size.

For our first example, we apply this technique toward the analysis of random
graph model 1 in the last section for dimension d = 2, with the additional
assumption that the vertices are independently uniformly distributed in the unit
square. For the simple case, the channels are in the shape of ellipses. Consider the
ellipse A (r) defined by the set of all points x such that

Eucl_dist (s , x) + E .c l_d is t (x, t) _< r.

We denote the number of vertices in the ellipse A by [IA[[. We set r to the
minimum value r > v~- so that A(r) contains a vertex x that is connected
directly to both s and t. For a given vertex x, the probability that the edges
~s, x) and ~x, t) are both present is p2. Hence, we have [[A][= 2 +] /p2 , on the
average.

By Lemma 1, we know that the only points that can appear in the spanning tree
are the vertices in A. By (1), the average running time is O([[A[[pV) = O(V/p).
For the dense case p(V) = ~(1), the average running time is O(v~) .

?

Fig. 3. The final result of Dijkstra's algorithm (on the left) and the Euclidean heuristic (on the right)
for a typical graph in model 7, in which the vertices are randomly placed and two vertices are
connected by an edge iff they are within a radius r (V) from one another. The same remarks as in
Figure 1 apply. The spanning trees constructed by both algorithms are pictured below; as in Figure 2,
the spanning tree constructed by the Euclidean heuristic contains significantly fewer nodes. The
Euclidean heuristic runs in O(V) time, on the average, independent of the radius r(V).

40 Sedgewick and Vitter

t=CJ,i)

RT, o(h)

,o (h)

o(h)

s=(O,O)

Fig. 4. A path in the channel, defined on the diagonal coordinate system used in the proof of Theorem
2. for the case n = 7. Each rectangle has length / and height h.

We can use channels in a more powerful way to analyze the performance of the
Euclidean heuristic for graph model 7, in which the vertices are independently
and uniformly distributed in the unit square and each pair of vertices within a
distance r f rom one another are connected via an edge. Figure 3 compares the
performances of the Euclidean heuristic and Dijkstra's algorithm for a typical
graph of model 7.

THEOREM 2. The average running time of the Euclidean heuristic for model 7 is
O(V). The coefficient implicit in the O(V) bound can be chosen independently of
the expected density of the graph.

PROOF. In this proof we make use of two types of channels. The first channel
consists of disjoint rectangles aligned parallel to the diagonal from s to t. The
second channel is the ellipse discussed above.

Shortest Paths in Euclidean Graphs 41

The average number of edges E in the graph is O(r2) . As in Theorem 1, we
assume that E = a (V l o g V) , which implies that r = ~2(~/(logV)/V). Let us
divide the diagonal from s to t into segments of length l > 0, where l is as large
as possible a real number such that f 2 / l --- 1 (mod 4) and l < r/4. In particular,
we have l = O(r) . We shall use a "diagonal" coordinate system, in which each
point x is represented by a distance da(x) from s along the diagonal from s to t
and by a distance d z (x) perpendicular to the diagonal. Let n = �89 + 1). We
define the rectangle Ri, i(h), for 1 < i < n, - (n - 1) /2 < j _< (n - 1) /2 ,0 <
h < (ln V)/(IV), to be the set of points x in the unit square such that (2i - 2)l <
dl(x) <_ (2i - 1)l and (j - �89 < dz(x) G (j + �89 Each R, j (h) is a rectan-
gle parallel to the diagonal with length l and height h = O(l). We have s
Rl,o(h) and t ~ R,,,o(h).

From the above definitions, it is easy to show that when V is large enough
every point in Ri, i(h) is within a radius of r of every point in R,+l,j+l(h); thus,
every pair of vertices in Ri, j(h) and R~+l,i+l(h) is connected by an edge.

We shall say that there is a path in the channel from s to t if there is a
sequence of rectangles Rl, jl(h), R2,i2(h) R,,,i,,(h) such that each rectangle
contains at least one vertex and such that Ja = 0 and Jk+l =Jk -+ 1, for 1 _< k <
n. This is illustrated in Figure 4. The path in the channel from s to t consists of
n - 1 edges with total length < V~- + 0(h2/12). When there is a path in the
channel, we can use Lemma 1 to bound the spanning tree size by the number
vertices in the ellipse B(~/2 + 0(h2/12)), which on the average is O(h V/l).

Let us use P(h) to denote the probability that there is a path in the channel
from s to t. Taking conditional expectations, we can bound the average spanning
tree size by

By the product rule, this becomes

(2)
lnV 1 + o (+

We will now show that we can bound P(h) by

(3) P(h) > 1 - 2 ~_, (k + 1)k5kq k+l,
l <k <_ n / 2

where q < (1 - hl) v-z < e -h/(V-2) is the probability that a given rectangle
R i, j (h) contains no vertices (other than possibly s or t). We derive (3) as follows:
If there is no path from s to t in the channel, then there must be an "ant ipath" of

42 Sedgewick and Vitter

empty rectangles that separate s from t. Let k, where 1 < k < n - 1, be the
number of nonempty rectangles in the longest contiguous chain of nonempty
rectangles in the channel starting at s. Let us consider the case k < n/2. There
are k choices for the last nonempty rectangle in the chain. The antipath must
contain at least k + 1 empty rectangles. At least one of the empty rectangles in
the antipath must be adjacent to the last nonempty rectangle in the chain. The
next k rectangles in the antipath can be chosen iteratively in < k5 k ways. The
probability of a given set of k + 1 rectangles being empty is bounded by qk+~.
(The bound is strict when k > 1.) Hence, the probability that there is no path in
the channel from s to t and that the longest chain of nonempty rectangles in the
channel contains k nonempty rectangles, for 1 < k < n/2, is bounded by
(k + 1)k5~q k+l. Summing up on k and by symmetry for the k in the range
n/2 < k < n - 1, we find that the probability of no path in the channel from s
to t is < 2El~k<,,/2(k + 1)k5kq k+l. This proves (3).

By (3) we have

In V] 1 _

and

JO "2~(IV)

lnV 2 2f(lnv)/(w) E (k + 1)k5kq k+ldh. > - -

- IV IV ~'2/(lV) l_<k<n/2

We can bound the integral by

(k + 1)kSk f (1~ v)/(W)q k+l dh
"2 / (lV) 1 <k<_n/2

k (l nV) / (lV) (k+l)h l (V 2)
= 2 (k + 1)k5 f e dh

1 < k < n /2 2 / (lV)

<
e - 2(k + l) (V- 2) / v

s (k + 1)kS*
1<_k<_,,/2 l (V - 2)(k + 1)

= o (1)

Shortest Paths in Euclidean Graphs 43

Substituting our bounds into (2), we can bound the average spanning tree size
by

0 IV lV
_ _ +

The expected density is O(r2). By (1), the average running time for the
Euclidean heuristic is bounded by

1 2 O(r �9

Sizing Up the Spanning Tree. Another approach for analyzing the running time of
the Euclidean heuristic is to use properties of the graph model to characterize the
number of points in the spanning tree. Let us denote the average length of the
shortest path by l. Our intuition is that the average spanning tree size at the end
of the algorithm will be the expected number of points x for which the inequality
in Lemma 1 holds, with the right-hand side replaced by l.

We can get estimates on the number of points in the spanning tree by first
determining the relative length of dist(x, y) vs. Eucl_dist(x, y). Suppose we can
show that for all vertices x the average distance from s to x is roughly

dist(s, x) -- r (V) X EucLdist(s, x),

where r (V) > 1. Substituting this approximation into Lemma 1, we get an
"approximate characterization" of the spanning tree at the end of the Euclidean
heuristic as consisting of those vertices x such that

r (V) X Eucl_dist(s, x) + Eucl_dist(x, t) < r (V) X Eucl_dist(s, t).

We can then apply (1) to bound the running time.
To make this more rigorous, we need to specify the rate at which the

approximation becomes "good," by showing convergence in probability (see
[Lo6ve, 77]). We will bound the ratio of dist to Eucl_dist by rl(n) from above and
r2(n) from below.

THEOREM 3. Suppose that the graph is a random instance of a graph from some
model in which the locations of the V vertices are independently and uniformly
distributed. We define an "upper" bound rl(V) and a "lower" bound r2(V) with
1 _< r2(V) _< rl(V) _< c, for some constant c. We also have a function h(V) in the
range 0 _< h(V) _< 1 such that l i m z _ ~ h (V) = 0. Suppose that

Pr { dist (s, x) <_ rl (V) x Eucl_dist (s, x)) > 1 - h (V) ,

Pr{ dis t (s ,x) >_ r2(V) x Eucl_dist(s ,x)} > 1 - h (V) ,

44 Sedgewick and Vitter

where the probabilities are averaged over all vertices x =g t and over all valid
instances of the graph in the model. Suppose the same inequalities also hold for
the case x = t. Then the expected size of the spanning tree at the end of the
Euclidean heuristic can be bounded by

0((1 - h (m)) g ~ / r l (g) - 1 + h (V)V)

and

~ ((1 - h(V))V (r 2 (V) - 1)2
(r ,(V) - 1) 3/2)"

PROOF. Let us prove the upper bound first. Consider a random instance of a
graph. With probability 1 - h(V), we have

dist(s, x) < q (V) • Eucl_dist(s, x),

di,,(~, x) >__ r~(V) • Uu~l_di,,(~, x),

for all x = t and for some fraction 1 - O(h(V)) of the values x r t. Combining
this with Lemma 1, we can bound the expected spanning tree size by

(1 - h(V))VIA I + h(V)V,

where IA[is the area of the region A that consists of the points x in the unit
square satisfying

r 2 (V) • Eucl_dist(s, x) + Eucl_dist(x, t) < r 1 (V) • Eucl_dist(s, t).

We can enclose A by the region A' defined by the inequality

eud_ai , t(, , x) + Eua_di ,4 x, t) <_ r~ (V) • Eud_dist(s, t).

Let us convert to a "diagonal" coordinate system, in which each point x in the
unit square is described by its distance dl(x) from s along the diagonal and by its
height d2(x) perpendicular to the diagonal. By some algebraic manipulation, we
can show that each x ~ A' satisfies dz(x) < ~/(q(V) - 1) / 2 . Hence, we have

[A'] < 2~rl(V) - 1, which proves the upper bound.
The lower bound is more interesting. By the same reasoning as above, we can

bound from below the average number of vertices in the spanning tree by

(1 - h(V))VIBI + h (V) x 0,

Shortest Paths in Euclidean Graphs

where B is the region consisting of the points x in the unit square satisfying

r l (V) X Eucl_dist(s, x) + Eucl_dist(x, t) <_ r2(V) • Eucl_dist(s, t).

45

By algebraic manipulation, we can show that each x ~ B satisfies dl(x) =
O((rz(V) - 1) / (r x (V) - 1)) . For a constant fraction of points in this
range, d2(x) can be f~((r2(V) - 1) / ~ r l (V) - 1) . Hence, we have [B]
= a((r2(V) - 1)2 / (q(V) - 1)3/2). The lower bound follows. �9

Theorem 3 provides a fairly detailed statement about the average spanning tree
size of the Euclidean heuristic in terms of basic properties of the graph model. In
particular, the average spanning tree size is o(E) if and only if there exists a
function rl(V) such that limv~oorl(V) = 1. This seems to be a promising
approach (e.g. the function ra(V) --) 1 exists for models 1-7, but it is still open
whether rl(V) ~ 1 for graph models 8-10.

Worst-Case Graph Models. Complete grids are worst-case graphs for the Euclidean
heuristic, because all paths from s to t have the same length, namely, 2.

11. We assume that V is a perfect square. The V vertices are arranged in a V~
by ~ array. Each vertex can be connected only to its horizontal or vertical
neighbors. (We refer to this as a "grid graph.")

If all 2v/V(v/V- 1) edges are present, then we say that the graph is a
"complete grid." By Lemma 1, the spanning tree will consist of all V vertices, so
the entire graph will be processed. If we break the grid restriction and add the
V - 2~/V + 1 SW-NE diagonals into the graph, then the Euclidean heuristic will
proceed directly along the shortest path (the main diagonal) from s to t. The
spanning tree size will be O(v~). But if we remove a constant fraction of the
diagonals from the graph, at random locations, we can show that the spanning
tree size will again be worst-case O(V).

In grid graphs it is more appropriate to use the/l-metric (Manhattan distance)
in place of Eucl_dist, since it provides a closer lower bound for dist. If we break
ties in the priority queue by picking the vertex that was most recently modified
among all those with the highest priority, then the heuristic will perform quite
well.

The case of complete grid networks with diagonal edges, where s = (0, 0) and t
is an arbitrary gridpoint in the unit square, is studied in [Golden and Ball, 78].
The size of the spanning tree for the Euclidean heuristic is shown to be roughly an
order of magnitude smaller than that for Dijkstra's algorithm.

4. Conclusions and Open Problems. A simple heuristic has been presented which
allows shortest paths to be found in Euclidean graphs in significantly fewer steps
than required by classical algorithms. For a large class of random graph models,
the average running time is O(V), rather than O(E + V log V), as is the case for

46 Sedgewick and Vitter

the classical algorithms. Many other types of graph models might be considered,
specifically those in which the placement of the points plays a more important
role. We have presented techniques which might be useful in the analysis of such
models.

The shortest Paths problem can be studied in more general terms. For example,
the term Eucl_dist(x, t) is just one means of giving a lower bound on dist(x, t).
Artificial intelligence researchers have studied the problem of designing heuristics
for finding shortest paths, under the assumption that lower bounds for dist(x, t)
can be computed efficiently. (See [Hart, Nilsson, and Raphael, 68], for example.)
The analysis for random graph models given in Theorem 1 holds if any lower
bound for dist(x, t) is used, not just the Euclidean distance. Theorems 2 and 3
can also be generalized. For example, Theorem 2 also holds if we use the
/~176 (maximum of the scalar distances in each dimension) or the/P-metric,
for p > 2, to give a lower bound for dist(x, t). If the edges of the graph are
constrained to be horizontal or vertical, then the P-metric (Manhattan distance)
can be used to give a lower bound; the precise improvement for this heuristic has
not been studied.

Our results hold even for entirely different metrics on 9t d. Theorem 1 is true
regardless of what metric is used to define the weights of the edges in the graph,
as long as the same metric is used to compute the lower bound for dist(x, t)
needed for the algorithm. Theorem 2 and a version of Theorem 3 are true for the
/P-metric, for 1 < p < ~ , for example.

Another interesting problem deals with relaxing the requirement that a lower
bound to dist(x, t) must be used. Instead we can look at a heuristic that uses an
approximation to dist(x, t). As before, the heuristic terminates when the destina-
tion vertex t is added to the spanning tree. The resulting heuristic might not find
the shortest path, but it usually finds one close to optimum. There is a tradeoff
between the running time of the heuristic and how close the answer is to
optimum. Using the approach taken in Theorem 3, suppose we have a graph
model for which r I and r 2 approach a limit r > 1. An open problem is to study
the performance of the heuristic in which we use r x Eucl_dist(x, t) as an
approximation for dist(x, t). For example, using a multiple r = ~/2 makes the
running time for the complete grid graph O(~/V log V) rather than O(V log V).
Other heuristics, such as minimizing the number of " turns" in the path from s to
t, where s and t are points on a street map, have been studied in [Elliott and
Lesk, 82].

The work of [Lawler, Luby, and Parker, 83] has focused on reducing combina-
torial problems to search problems, to which methods like the Euclidean heuristic
can be applied. Perhaps our several approaches to the analysis of the Euclidean
heuristic can shed light on these more general problems.

The results of this paper suggest that it might be useful to study other problems
dealing with Euclidean graphs. For example, it might be possible to compute a
minimum spanning tree for a Euclidean graph in O(E) time, on the average,
assuming a random graph model in which the vertices are independently and
uniformly distributed in the unit square. The best time bound for minimum
spanning tree algorithms for general graphs is O(E log log* V), via a complicated

Shortest Paths in Euclidean Graphs 47

algorithm in [Gabow, Galil, and Spencer, 84]. Also, approximation algorithms or
algorithms with good average-case performance for the traveling salesman prob-
lem and other intractable problems would seem to be somewhat easier to develop
for Euclidean graphs than for general graphs, Euclidean point sets, planar graphs,
or other types of graphs.

The analysis of Model 7 in Section 3 introduces an interesting theoretical
question. By translation, we can consider channels as being paths in the two-
dimensional directed lattice, restricted to the first quadrant. That is, each point
(i, j) , for 0 < i, j, is connected via a directed edge to (i + 1, j) and (i, j + 1).
We can assume that each lattice point is "passable" independently with probabil-
ity p. The problem is to compute the probability that there is a directed path from
(0, 0) to (1, 1) in the lattice involving only passable points. Inequality (3) gives a
lower bound that is asymptotically equal to 1 when p = 1 - q is very close to 1.
The general question for other values of p (for example, constant values of p) is
an interesting problem. It seems closely related to oriented percolation theory (see
[Durrett, 84], for example), where similar questions are asked for the case in
which the directed edges, not the points, are passable independently with prob-
ability p.

Acknowledgements. We would like to thank Bob Tarjan and Nick Pippenger for
providing references to past work, and the referees for several helpful comments.

References

1. A. V. Aho, J. E. t-Iopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA (1974).

2. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerishe Mathematik, 1
(1959).

3. R. Durrett. Oriented Percolation in Two Dimensions. The Annals of Probability, 12, 4 (December
1984), 999-1040.

4~ R. J. Elliott and M. E. Lesk. Route Finding in Street Maps by Computers and People. Proc.
AAA 1-82 Natl. Conference in Artificial Intelligence, Pittsburgh, PA (August 1982), 258-261.

5. M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms. Proc. 25th Annual Symposium on Foundations of Computer Science, West
Palm Beach, FL (October 1984), 338-346. The longer version of the paper will appear in Journal of
the A CM.

6. H. N. Gabow, Z. Galil, and T. H. Spencer. Efficient Implementation of Graph Algorithms Using
Contraction. Proc. 25th Annual Symposium on Foundations of Computer Science, West Palm Beach,
FL (October 1984), 347-357.

7. B. L. Golden and M. Ball. Shortest Paths with Euclidean Distances: An Explanatory Model.
Networks, 8 (1978), 297-314.

8. G. H. Gonnet. Expected Length of the Longest Probe Sequence in Hash Code Searching. Journal
of the ACM, 28, 2 (April 1981), 28%304.

9. P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4, 2 (July 1968),
100-107.

10. E. L. Lawler, M. G. Luby, and B. Parker. Finding Shortest Paths in Very Large Networks. Proc.
WG '83 h~tl. Workshop on Graphtheoretic Concepts in Computer Science, Osnabr~ck, West
Germany (June 1983), 184-199.

48 Sedgewick and Vitter

11. M. Lobve. Probability Theol. Volume I. Graduate Texts in Mathematics, Springer-Verlag, New
York (fourth edition 1977).

12. R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA (1983).
13. R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied

Mathematics, Philadelphia, PA (1983).
14. J. S. Vitter. Faster Methods for Random Sampling. Communications of the ACM, 27, 7 (July 1984),

703-718.
15. A. C. Yao. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related

Problems. SIAM Journal on Computing, 11, 4 (November 1982), 721-736.

