
JOURNAL OF ALGORITHMS 7,159-173 (1986)

A New Upper Bound for Shellsort

ROBERT SEDGEWICK*

Department of Computer Science, Princeton University, Princeton, New Jersey 08544

Received October 21,1982

A direct relationship between Shellsort and the classical “problem of Frobenius”
from additive number theory is used to derive a sequence of O(log N) increments
for Shellsort for which the worst case running time is O(N413). The previous
best-known upper bound for sequences of O(log N) increments was 0(N312),
which was shown by Pratt to be tight for a large family of sequences, including
those commonly used in practice. The new upper bound is of theoretical interest
because it suggests that increment sequences might exist which admit even better
upper bounds, and of practical interest because the increment sequences which arise
outperform those common used, even for random files. 6 1986 Academic PIW. Inc.

1. INTRODUCTION

Shellsort [15] is a classical sorting algorithm which, despite its practical
utility and unusual simplicity, has yet to submit to analysis. The algorithm
may be implemented as follows:

repeat
k := h[t]; t := t - 1;
for i := k + 1 to N do

begin
u := o[i]; j := i - k;
repeat

if v 2 u[j]thengotoO;
a[j+k]:=a[j]; j:=j-k

until j < 1;
0: o[j + k] := v

end;
until k = 1;

*This research was supported in part by NSF Grant MCS-80-17579 while the author was at
Brown University, and in part while the author was visiting the Institute for Defense Analyses,
Princeton, NJ.

159
0196-6774/86 $3.00

Copyright Q 1986 by Academic Press, Inc.
All rights of reproduciion in my form reserved.

160 ROBERT SEDGEWICK

The algorithm is based on a sequence h,, h,-,, . . . , h, of increments
which are successively assigned, in decreasing order, to the variable k.
When k = 1, the method is a simple insertion sort: each element is inserted
into place among the elements to its left by moving those that are larger
right one position. We require that h, = 1 to ensure that the algorithm fully
sorts the file. When k > 1, the file becomes k-sorted: the k subfiles of
elements spaced k apart are all sorted. By successive hj-sorting passes for
decreasing hj, we hope to move elements close to their final position, each
pass improvmg things for subsequent passes. The following table shows
how a sample file is sorted by Shellsort with the increments 1,3,7,15:

2718281828459045
U-sorted 2718281828459045
7-sorted 2214280458859187
3-sorted 0112254257488889
Sorted 0112224455788889

The performance of the algorithm clearly depends on the choice of
increments, and it is natural to appeal to mathematical analysis to help
choose the best sequence of increments.

Below are listed some sequences which have been suggested for use:

1 2 4 8 ...
1 3 7 15 “’
1 3 5 9 .”
1 4 13 40 “.

2k .
2k-1 . . .
2k+ 1 “’

$(3k - 1) .

(Shell)
(Hibbard)

(Papemov-Stasevich)
(Knuth)

Typically, the sequences used are “almost” geometric sequences: geometric
sequences with a small constant added to or subtracted from each term. For
simplicity, we will work with increasing infinite sequences and assume that
all increments less than N are used, in decreasing order, to sort a file of N
elements. Then, for fixed N, t is defined to be the largest integer such that
h, < N.

Unfortunately, the algorithm has been analyzed only for some special
cases. Furthermore, these results indicate that the dependence on the choice
of increments can be dramatic. If t = 1, then Shellsort is equivalent to
insertion sort, an algorithm whose performance is well understood. For
insertion sort, the running time is known to be proportional to the number
of inversions in the input (each element must be moved past the elements
which are greater than it and to the left): the worst case running time is
0(N2) [8]. For t > 1 the running time of Shellsort is known to be 0(N312)
(on the average and in the worst case) for the special case where each
increment divides the previous increment [a]. On the other hand, Pratt [12]
gives a set of O((log N)‘) increments for which the running time is
O(N(log N)2). Between these extremes, a host of open problems remain.

SHELLSORT 161

For example, not even the asymptotic growth of the average case perfor-
mance is known, for the types of sequences used in practice, even though
empirical studies show Shellsort to be among the most efficient sorting
methods available.

In this paper, we consider upper bounds on the worst case running time.
The first results for this problem are due to Papemov and Stasevich [ll].
Their results were extended by Pratt [12], who showed that the worst case
running time is @(N 3/2) for sequences that approximate geometric progres-
sions whose common ratio is an integer, a property which holds for
sequences commonly used in practice. It turns out that this is a significant
restriction, for we are able to exhibit sequences which do not satisfy Pratt’s
property for which the worst case running time is O(N413). The method
used to prove the upper bound is an extension of the previous methods
which leads to a classical problem in number theory, the problem of
Frobenius, and results due to Selmer [13].

This result suggests that even better upper bounds might be possible
(though new results on the Frobenius problem might be needed), and it
suggests sequences of increments that perform better on the average than
those commonly used (though this can only be verified empirically).

Section 2 states Pratt’s results and describes the upper bound proof of
Papemov and Stasevich. Section 3 deals with the Frobenius problem and
Selmer’s results. Section 4 combines these to give the new upper bound
proof. Concluding remarks are offered in Section 5.

2. PREVIOUS BOUNDS

The general argument used for upper bound proofs was given in 1965 by
Papernov and Stasevich [ll]. It involves bounding the time to h/sort in two
ways, then picking the smaller bound for each j and summing on j.

The first bound is simple: when h/sorting, we are dealing with h,
independent files of about N/hi elements each. The worst case running
time for each of these files is O((N/h,)2) (this tim is required, for example,
when they are in reverse order); therefore hisorting the entire file requires
O(N2/hj) steps in the worst case.

The second bound requires more subtle reasoning. First we need the
fundamental result:

LEMMA 1. If a k-sorted file is h-sorted, it remains k-sorted.

This result goes back at least to Boemer [2]: a proof is given in [8]. 0

Lemma 1 implies that when we come to h/sort a file, it is already
hi+,-sorted and hj+2-sorted. But this means that when we come to any
particular element a[k] during the h/sort, there are many elements which

162 ROBERT SEDGEWICK

are guaranteed to be smaller, and the h/sort will require fewer exchanges.
To bound the number of such elements, we begin with the following
observation:

LEMMA 2. Zf a file is h-sorted and k-sorted, then, for each i,, a[i, - i] I
a[io] whenever i can be expressed as a linear combination with nonnegative
coefficients of h and k.

Proof If i = sh + tk, then afio] 2 a[i, - h] 2 * *. 2 a[i, - sh] since
the file is h-sorted, and a[i, - sh] 2 a[i, - sh - k] 2 * . . 2 a[i, - sh -
tk] = a[i, - i] since the file is k-sorted. •I

The key fact which limits the number of exchanges required by Shellsort
is that if h and k are relatively prime, eventually every integer can be
expressed as a linear combination of h and k. We have

LEMMA 3. Zf h and k are relatively prime, then evev integer greater
than (h - l)(k - 1) - 1 can be represented as a linear combination of h and
k with nonnegative coefficients.

ProoJ: See Knuth [8, Ex. 5.2.1-5.2.21, and discussion in Section 3. q

From these lemmas, we can now prove a second upper bound on the
worst case for hi-sorting. From Lemma 1, when we come to hj-sort a file, it
is already h j + 1- sorted and hj+*-sorted. From Lemmas 2 and 3, the elements
which are greater than any particular element i, must be among those
elements within the first (hj+2 - l)(hj+l - 1) positions to the right of i,.
But only one out of each hj of these elements are examined when hj-sort-
ing, so the time to process i, is O(hj+,hj+Jhj). This holds for 1 I i, I N,
so the total time to h,-sort the whole file is 0(Nh,, Ihj+2/hj). This is the
“second bound” that allows the derivation of 0(N 3/2) upper bounds for
many Shellsorts.

If hj+l and h/+2 are O(hj), which holds for the types of increment
sequences which have been used for Shellsort, then we have a simple
tradeoff between the “first bound” of O(N2/hj) and the “second bound”
of 0(Nhj). For example, we have

THEOREM 1 (Papemov-Stasevich). The running time of Shellsort is
0(N3/2) for the increments 1,3,7,15,31,63,127,255,. . . ,2j - 1,. . . .

Proof Let hj = 2j - 1. For hj = 0(N ‘12), use the second bound; for
large hj use the first bound. This gives a bound of

N c (2j- 1) + c N2 = O(N2”2) = O(N312).
l<j<t/2 t/l<jjlt t2j - I)

(In these formulas, we have 2’12 = O(N112) by the definition of t.) 0

SHELLSORT 163

Pratt extended this theorem to cover most “almost geometric” sequences
of the type used in practical applications. It is clear that 0(N 3/2) is the
best lower bound available using the lemmas above, because if even one
increment is O(N’i2), then the two bounds are roughly equal and the
running time for that increment is O(N312). Pratt’s result shows that the
contribution from other increments does not raise the asymptotic worst
case running time for a large class of increments.

Indeed, Pratt shows that 0(N 3/2) is the best possible upper bound for
many increment sequences:

THEOREM 2 (Pratt-Knuth). The running time of Shellsort is Q(N 3/2) for
the increments 1,3, I, 15,31,63,121,255,. . . ,2j - 1,. . . .

Proof. A construction of a permutation for which the running time is
Q(N3j2) is given in Knuth [8, Ex. 5.2.1-241. 0

Pratt [12] extended this result to cover a large family of sequences. The
most important property required of an increment sequence for the Q (N 3/2)
bound to hold is an integer ratio condition: there must exist k so that
h, = O(N’/‘) and for each j > k, there exists an integer m so that
h,j = mh, + O(1). (Besides this condition, Pratt’s proof involves certain
technical requirements on h k + 1.) This property is held by the type of
increment sequences which have been tried in practice: those which ap-
proximate geometric sequences with an integer common ratio.

The generalizations of Theorems 1 and 2 by Pratt seem to suggest that
the worst case asymptotic performance of Shellsort is O(N312) for the
increment sequences of interest. In Section 4, we show that this bound can
be improved for some sequences which violate the “integer ratio” condi-
tion. Before doing so, we need to examine extensions of Lemma 3 in some
detail.

3. THE FROBENIUS PROBLEM

Suppose that a country wishes to issue stamps in only a limited number
of denominations a,, u2,. . . , uk. What is the largest value which cannot be
achieved using only those denominations, and how many values cannot be
achieved? This problem is named after the German mathematician
Frobenius, apparently because of a comment by Brauer [3] that “Frobenius
mentioned it occasionally in his lectures”. Despite its simple formulation,
there are few results available on the problem in its general form.

To be precise, define g(a,, u2, . . . , u,J to be the largest integer which
cannot be represented as a linear combination with nonnegative integer
coefficients of a,, u2,. . . , uk, and define n(a,, (I*, . . . , uk) to be the number

164 ROBERT SEDGEWICK

of integers with no such representation. For the problem to make sense, we
assume that gcd(a,, u2,. . . , uk) = 1 (otherwise an infinite number of in-
tegers would have no representation) and that all a,, a2,. . . , uk are > 1
(otherwise all integers could be represented). Also, we assume that
Ul, q,. . . , uk are independent: that none can be represented as a linear
combination with nonnegative integer coefficients of the others (otherwise
it could be deleted from the list without affecting the result).

For k = 2, we have Lemma 3 from the previous section. Sylvester posed
this as a problem for solution in 1884: the solution as given by Curran
Sharp V41,

g(u,, u2) = (a1 - l)(u, - 1) - 1,

n(a,, 4 = $(q - l)(q - l),

for a,, u2 relatively prime.
Obviously, we could apply any results for k > 2 in the same way as we

applied Lemma 3 in the previous section to get a “second bound” on the
worst case of O(Ng(hj+i, hj+2,. . . , /~,+~)/h~) for hj-sorting. (It is tempting
to consider a more complicated argument which would involve n, but this
couldn’t improve the asymptotic result because it is known that g/2 < n I
g-)

Unfortunately, few general results are available for the Frobenius prob-
lem. A series of papers beginning with Brauer [3, 10, 51 deal chiefly with
exact formulas for g and n for various special cases, most of them not
apparently applicable to Shellsort. A complete survey of available results
along with a method which may be useful for obtaining new results is given
by Selmer [13]. Selmer does give a quite general result for k = 3:

THEOREM 3 (SELMER, 1977). Ifui,u,, u3 are independent and relatively
prime in pairs, then

da,, u2, u3) I n-m[(s - l)u, + (4 - l)u,,(r - l)u, + 44 - u,,

where s is determined by

us = su,mod a,, l<scu,

and q and r are determined by

a, = gs + r, O<r<s.

Proofi See Selmer [13] for a proof, a condition for equality, and a
formula for n(a,, u2, Us). 0

SHELLSORT 165

If the increments are not pairwise relatively prime, it is possible to
eliminate common divisors using a result of Johnson:

THEOREM 4 (Johnson, 1960). If a,, u2, a3 are independent, then

g(ul,u,,u,) =d.g(2,$,u,) + (d-l)%

where d = gcd(u,, a*).

Proof See Johnson [7]. Coupled with Theorem 3, this result can be
developed into a procedure for computing g(u,, u2, u3) whenever it is
defined. [7

These theorems open the possibility that adding a third value can
drastically decrease g. If u2 and us are O(u,) and q, s, and r in Theorem 3
or d in Theorem 4 are O(U:/~), then g(u,, u2, u3) = O(u:i2) not O(u:) as
in the previous bound. In the next section, we exhibit triples that satisfy
these conditions (and the conditions of the theorem) and use them to derive
an improved upper bound for Shellsort.

4. THE NEW UPPER BOUND

We are now ready to prove the main result of this paper. The proof
involves a particular sequence of increments that satisfies a host of condi-
tions. After the proof we will discuss how this sequence was discovered and
how others might be found.

THEOREM 5. The running time of Shellsort is O(N413) for the increments
1,8,23,77,281,1073,4193,16577,. . . ,4j+’ + 3 * 2-j + 1,. . . .

Proof: Let hj = 4 j+t + 3 . 2j + 1. Below, we use Selmer’s theorem to
show that the running time for h/sorting is 0(Nhl.12). Then, as in the proof
of Theorem 1, we can apply this bound for small h, and the 0(N2/hj)
bound for large hj; switching at hj = O(N213) when both bounds are
0(N4j3). The total running time is thus bounded by

N c (4 i+l + 3 . 2j + 1)112
1 lj<2t/3

+ c
N2

4j+l + 3 . 2j + 1
= O(N4’3).

2t/32j< t

166 ROBERT SEDGEWICK

To bound the time required for hj-sorting, we need to apply Selmer’s
theorem to hj+r, hj+Z, hj+3.

The reader may verify that

(4 * 2 j+l + 7)hj+, - (16 * 2’+l + 6)hj+r = hJ+3

so

hj+3 = (4. 2 j+l + 7)hj+,mod hj+l,

which means that we can take s = 4 . 2j+’ + 7 in Theorem 3. From this we
can calculate q and r: we have

hj+l = (4. 2j+’ + 7)(2j+’ - 1) + 8

so that we can take q = 2 j+’ - 1 and r = 8 in Theorem 3. Substituting, we
find that

g(hj+lT hj+2, hj+3) = ~389 = O(hj/*).

By the same argument as in the proof of Theorem 1, this leads to an upper
bound of O(Nh:.‘*) for the running time when hj-sorting, as desired.

Now, to complete the proof of Theorem 5, we need to show that Selmer’s
theorem applies for all increment triples: we must have hj+l, hj+z, hj+3
independent and pairwise relatively prime for 1 I j I t - 3.

The proofs of pairwise relative primeness involve a symbolic method
based on Euclid’s algorithm. For example,the following table proves that
hj+l is always relatively prime to hi+*: in each line, (u, u) from the
previous line is replaced either by (u, u - qu), where qu is the largest
multiple of u less than u or by (u, u’), where u’ is the largest divisor of u
not divisible by 2 or 3. These operations preserve common divisors of the
pair of numbers: the first is always valid as in Euclid’s algorithm; the
second is valid in this case because the original numbers are not divisible by
2 or 3 (h j = 1 mod 2 and h, = 2 mod 3 for j 2 l), so no common divisor
could be.

u V

41+3 + 3 2J+2 + 1 4J+2 + 3 .2’+’ + 1
qi+2 + 3.21+1 + 1 4J+l - 3.2J+’ - 2

4~+2 - 3.2’+’ - 2 3. 2J+2 + 3
4~+2 - 3 ~J+I - 2 2/+” + 1

2’+2 + 1 2/t’ + 1
2’+’ + 1 2’+’

z/+1 1

SHELLSORT 167

The pairs of numbers on each line of this table have the same greatest
common divisor, so we have proved that gcd(hj+i, hj+*) = 1 (and that
gCd(hj+2, hj+3) = 1) for all j. The proof for (hj+l, hj+3) is a similar table:

u V

4’+4 + 3 21+3 + 1 4J+2 + 3. 2J+’ + 1
4J+* + 3 . 2J+’ + 1 4j+2 - 33. 2’+’ - 14

4j+* - 33 2J+’ - 14 9. 2J+3 + 15
3 .4j+2 -99.2’+‘-42 3. 2j+3 + 5

3 ’ 2J+’ + 5 2J+3 + 3
2j+3 + 3 2~+3 - 1

2j+3 - 1 4
2j+3 - 1 1

In the fourth line of this table, u is replaced by 3u, which simplifies the
calculations substantially but which cannot affect the result. This completes
the proof that (h ,+i, hi+*, hi+,) are pairwise relatively prime.

To prove independence of (hj+l, hj+2, hj+3), assume that hj+3 = q,l~~+~

+ 'lhj+* for cO, ci > 0. (This is the only possibility, since hj+3 is the
largest of the three). Clearly c0 < 16 and c, < 4. Substituting and rearrang-
ing terms, we have

co(4j+2 + 3 - 2j+y + c1(4j+3 + 3 * 2j+q

-(@+4 + 3 . 2j+?) = 1 - co - cl.

All terms on the left in this equation are divisible by 2j+‘, and the right
side cannot be 0, so this implies that 2j+’ divides c0 + ci - 1. But this is
impossible for j > 3, so we must have independence for all
(hj+l, hj+2, J+3

h) with j > 3. (In fact, we do not have independence for
j = 1, since 77 = 3 . 23 + 8.)

Independence for j > 3 is sufficient to prove the asymptotic result, since
the contribution of h,, h,, and h, to the total running time is O(N). This
follows from the fact that they are relatively prime in pairs, so the “second
bound” of 0(Nhj) used in Theorem 1 applies. 0

There certainly are other increment sequences for which Shellsort is
0(N4i3), but construction of sequences which satisfy all the requisite
conditions can be difficult. The sequence of Theorem 5 was found by an
ad hoc method: we want a,, a2, and a3 to be members of a geometric
sequence; we want a2 and a3 to be O(a,); and we want q, s, r to be
0(ai12). These considerations lead directly to sequences of the form
~4~ + ~2~ + y: the coefficients w, x, and y are determined from the

168 ROBERT SEDGEWICK

conditions and constraints of Theorem 3. If we take

a, = ~4~ + ~2~ + y,

a2 = ~4~+l + ~2~+l + y,

a3 = W4k+2 + X2k+-2 + y,

then we need only find s and t of the form

s = s,2k = so,

t = t,2k = t,,

such that

sa2 - ta, = a3.

(Or, in other words, a3 = sa,mod al.) Substituting and setting coefficients
of 23k 22k 2k, and 1 equal leads to nonlinear simultaneous equations in
these iariables which are not difficult to solve. For example, it turns out
that

45yw - 6x2
so = 9yw - 2x2 *

There are similar formulas for si, to, and t,. Integer values for w, x, and y
need to be chosen to make these integers, with the additional constraints
that w, sl, and t, must be positive. For example, the choice w = 1,
x= -3, and y= 1 meets this requirement, as does the choice which is
used in Theorem 5, w = 4, x = 3, and y = 1. Finally, the sequences must
be checked for independence and relative primeness of consecutive triples.
For example, the sequence which derives from the first choice above,
4k - 3 . 2k + 1, fails to satisfy the condition that all consecutive triples
must be pairwise relatively prime. (There are occasional pairs divisible by
17.)

The same asymptotic result is also available for sequences at the other
end of the spectrum, where successive pairs have very large common
divisors.

THEOREM 6. The running time of Shellsort is 0(N413) for the increments
1,5,65,377,1769,. . - . . . ,2 4j 9 2j + 9,. . . .

Proo$ Let hi = 2 . 4j - 9 . 2j + 9. This sequence was invented by
multiplying successive terms of the sequence 1,5,13,29,61,. . . ,2j - 3, . . . :

SHELLSORT 169

we have hj = (2-j - 3)(2 j+’ - 3). This construction ensures that

gCd(hj+l, hj+,) = 2j+2 - 3

so that Theorem 4 can be applied directly. We have

= (zj+2 - 3)g 2j>i 3, 2j>: 3, hj+j) + (2j+2 - 4)hj+,
i

hj+lhj+2

< 2j+2 - 3 + (2j+2 - 4)hj+,

= O(hj”2).

The second equation follows from the fact that g(a,, u2, us) < g(a,, u2) <
u1u2 if a,, a, -C us. The rest of the proof proceeds exactly as for Theorem 5.

q

The sequences in Theorems 5 and 6 violate Pratt’s integer ratio condition
in the same way: a geometric sequence is modified by adding a slowly
growing term (but not a constant). It turns out that sequences of this type
not only lead to good upper bounds but also they lead to good average case
performance. This is discussed in more detail in the next section.

5. CONCLUSION

There is a clear possibility that increment sequences exist which lead to
an even better upper bound. The most obvious weakness in Theorem 5 is
that it only takes into account, for each increment, the effects of the
previous three increments, not all those that have been used. However,
results like Theorem 3 for more than three increments are rare. Several
results for special cases are available [13], but they seem difficult to apply in
the way that we used Theorem 3. The main difficulty is embedding the
special sequences within a sequence of @log N) increments so that a good
bound can be derived for each increment.

The connection with the Frobenius problem not only guides us in
searching for new increment sequences, it also helps us to study old ones.
Selmer gives a method which might lead to an analytic derivation for some
increment sequences, and which can be adapted to a procedure (41 that can
compute the exact value of g(hj+l,. . . , h,) for any sequence h,, . . . , h,, and
any j. This gives the best bound available using the general method of
Theorems 1 and 5. The table below shows how the various bounds are

170 ROBERT SEDGEWICK

related for the increment sequence suggested by Knuth [S], the sequence in
Theorem 5, and a more conventional sequence with values close to the
sequence of Theorem 5. For each increment hi, three bounds are given on
the number of exchanges required for h/sorting: the bound from Theorem
1, g(h,+,, h,+,)/h,, which is labeled &; the bound from Theorem 5,

gChj+l* hj+2y hji3)/hj, which is labeled P,; and g(h,+l ,..., h,+,)/h,,
which is labeled at,.

i(3’ - 1)

1 4 13 40 121 364 1093 3280 9841

i-2, 35 117 360 1089 3276 9837 29529 88569 265716
Al, 35 88 277 817 2464 7378 22147 66427 199294
i-2, 35 88 249 735 2193 6567 19689 59055 177153

4’+’ + 1

1 5 17 65 257 1025 4097 16385
0, 63 205 964 4033 16320 65472 262080 1048512

8, 63 164 780 3224 13066 52378 209675 838810
0, 63 164 734 3037 12252 49116 - -

4’+‘+3.2.‘+1
1 8 23 77 281 1073 4193 16577

0, 153 209 925 3898 15992 64759 260599 1045494
0, 153 132 359 853 1867 3909 8003 16193
h2, 153 132 359 798 1540 3044 5865 -

The numbers in the corresponding table for the sequence from Theorem 6
are undefined for the S& row and about a factor of two larger than the
corresponding numbers from the table for the sequence from Theorem 5 for
the other rows. These tables clearly indicate the dramatic reductions in the
upper bound achieved by Theorem 5, and show that some further reduction
is possible by considering more increments.

A second major weakness of the bounds of Theorems 1 and 4 is that they
ignore the fact that substantially less time is required to h/sort when the
file is already sorted in multiples of hi. For example, a file which is
24-sorted and 36-sorted can be 1Zsorted in linear time (using at most N
exchanges). (Note carefully, however,. that the time required to, say, 11-sort
a file which is 12-, 24-, and 36-sorted could be quadratic in the worst case.)
Pratt devised a sequence which exploits this property: in his sequence, twice
and thrice each increment is also in the sequence. This guarantees that the
running time is proportional to N times the number of increments, which is
O((log N)‘). It may be possible to devise a sequence for which some
elements have a low bound because of this divisibility property and others
have a low bound because of “nondivisibility” as suggested by Theorem 5.
Also, it is an interesting problem to extend the “best bound” calculation to
incorporate this divisibility property.

Simulation results show that the type of sequence suggested by Theorem
5 is of practical interest. The table below shows the number of exchanges

SHELLSORT 171

required by Knuth’s sequence and a sequence similar to the sequence of
Theorem 5, averaged over three random files, for various values of N:

1,4,13,40,121,364,1093,3280,9841,29524,. . . ,

N 1024 2048 4096 8192 16384 32768 65536

exchanges 14325 32970 75786 171472 386531 858447 1884863

1,5.19,41.109,209,505,929,2161,3905,8749,16001,36449,64769,. ,

N 1024 2048 4096 8192 16384 32768 65536
exchanges 14495 32141 72585 162078 354045 771812 1665118

The particular sequence used here is a merge of the sequences with
h,j = 4j - 3 * 2j + 1 and hj = 9 * 4j - 9 . 2j + 1. These occasionally have
triples that are not relatively prime, but the combination does better on
random inputs than the sequence of Theorem 5 because it has more smaller
increments. Of course, there is no clear relationship between average case
performance and the worst-case results being considered in this paper,
except that studying the worst case did lead us to sequences which violate
Pratt’s integer divisibility condition and which turn out to outperform
previous sequences on the average. These simulations were part of an
extensive study on a wide range of increment sequences that will be
reported on in a future paper.

Shellsort is already the method of choice in many practical situations
(especially when the number of elements to be sorted is not large), and an
increment sequence which improves the running time by, say, 50% would
have very significant practical impact. The methods of this paper show
significant promise in the search for such a sequence.

The major unsolved analytic problem in the study of Shellsort is to
determine the asymptotic behavior of the average running time for any
“almost geometric” sequence of O(log N) increments which do not neces-
sarily divide each other. The connection with the Frobenius problem
described in this paper gives a set of analytic and computational tools that
have the potential to lead to significant progress in this area.

Finally, the methods of this paper have potential applicability to one of
the major problems in the theory of sorting. How many comparators are
required in a sorting network which sorts according to a fixed preds
termined sequence of comparisons? (See, for example, Knuth [8] for a
description of this problem and its history.) The existence of a sequence of
O(log N) increments for Shellsort each with a “second upper bound” of
O(N) would imply the existence of a sorting network with 0(N(log N))
comparators. Pratt’s method with O((log A’)*) increments corresponds to a
network with 0(N(log N)*) comparators, and it was long thought that no
asymptotically network exists (see below). The machinery from the

172 ROBERT SEDGEWICK

literature of the Frobenius problem may help to shed further light on this
fundamental problem.

Nofe udded in proof. A number of related results have been developed in the interval
between original submission and final publication of this paper.

Of most significance is the paper by Ajtai, Komlos, and Szemeredi [l] which settles the
question referred to in the last paragraph: they exhibit a sorting network with just 0(N log N)
comparators. Other networks for various models are given by Leighton [9]. These results make
the search for a Shellsort-based network even more appealing, because such a network would
be far simpler (and likely to be of direct practical utility) and the existence proofs of [l] and [9]
lend credence to the conjecture that an 0(N log N) Shellsort might exist.

Incerpi and Sedgewich [6] have extended the results of this paper to show that the running
time of Shellsort can be made to be O(N’+’) for any E > 0, still using only @log N)
increments. Also, they show that this result is the best possible if only a constant number of
previous increments is taken into account in the proof, so that improved results on the
Frobenius problem in the form of extensions to Theorem 3 for four or any constant number of
increments (which seems very difficult) still could not lead to better asymptotic results for
Shellsort. The paper shows further improvements to 0(N’ +“/J’). The increment sequences
used for these results involve large common divisors in successive increments, as in Theorem 6.
However, it still seems as though the best increment sequences will involve a combination of
“Frobenius effects” (as in Theorem 5) and “large common divisor effects” (as in Theorem 6),
so new results on the Frobenius problem will be of interest, especially in developing increment
sequences for practical use.

ACKNOWLEDGMENT

Janet Incerpi’s assistance in the preparation of this paper was invaluable.

REFERENCES

1. AJTAI, KOMLOS, AND SWEREDI, “An 0(n log n) Sorting Network,” Proceedings 15th
Annual ACM Symposium of Theory of Computing, Boston, Mass., April 1983.

2. H. BOERNER, “Darstellung von Gruppen.” Springer-Verlag, Berlin, 1955.
3. A. BRAUER, On a problem of partitions, Amer. J. Muth. 64 (1942). 299-312.
4. H. GREENBERG, An algorithm for a linear diophantine equation and a problem of

Frobenius, Numer. Muth. 34 (1980). 349-352.
5. G. R. HOFMEISTER. Zu einem Problem von Frobenius, Norske Vid. Selsk. Skr. 5 (1966).

l-37.
6. J. INCERPI AND R. SEDGEWICK, Improved upper bounds on Shellsort, J. Comput. System

Sci. 31(1985), 210-224.
7. S. M. JOHNSON, A linear diophantine problem, Cunad. J. Muth. 12 (1960), 390-398.
8. D. E. KNUTH, “The Art of Computer Programming. 3. Sorting and Searching,”

Addison-Wesley, Reading, Mass., 1973.
9. T. LEIGHTON, “Tight Bounds on the Complexity of Parallel Sorting,” Proceedings 16th

Annual ACM Symposium of Theory of Computing, Washington D.C., April 1984.
10. M. LEWIN, On a linear diophantine problem, Bull. London Murh. Sot. 5 (1973). 75-78.
11. A. A. PAPERNOV AND G. V. STASEVICH, A method of information sorting in computer

memories, Problems inform. Trunsmission l(3) (1965). 63-75.

SHELLSORT 173

12. V. PRATT, “Shellsort and Sorting Networks,” Garland, New York, 1979; Originally
presented as the author’s Ph.D. thesis, Stanford University, 1971.

13. E. S. SELMER, On the linear diophantine problem of Frobenius, J. Reine Angew. Murh.

294 (1977). 1-17.
14. W. J. CURRAN SHARP, “Solution to Problem 7382 (Mathematics),” Educatiod Times,

London, 1884.
15. D. L. SHELL. A high-speed sorting procedure, Comm. Assoc. Comput. Much. 37) (1959).

30-32.

