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The running time of Shellsort, with the number of passes restricted to @log N), was 
thought for some time to be Q(N212), due to general results of Pratt. Sedgewick recently gave 
an O(N413) bound, but extensions of his method to provide better bounds seem to require new 
results on a classical problem in number theory. In this paper, we use a different approach to 
achieve 0( N ’ + “,‘ls), for any E > 0. ( 1985 Academic Press. Inc 

INTRODUCTION 

Shellsort is a  fundamental, but little-understood, sorting algorithm. A brief 
description of the algorithm is given below. It is based on  a  table h,, h2,..., of 
integers called an  increment sequence.  In practice, increment sequences are chosen 
heuristically based on  partial analytic results which have been  derived for some 
specific increment sequences. This algorithm is an  attractive candidate for detailed 
study because it is closely related to classical problems in number  theory and  
because theoretical results translate directly to practice. (A practioner can make 
immediate use of a  good  increment sequence, no  matter how intricate the analysis.) 
It is difficult to deny the existence of increment sequences that would make 
Shellsort the sorting method of choice, for most situations. Moreover, relatively few 
types of increment sequences have been  tried. Some references for Shellsort and  
some of the analysis that has been  done  are [6, 9, 10, and  111; some of this infor- 
mation is summarized below. 

The  Shellsort algorithm works as follows: given an  increment sequence h, , h2,..., 
a  file is sorted by successively h,-sorting it, for j from some integer t down to 1. An 
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array a[ l],..., a[N] is defined to be hj-sorted if a[i- hi] 6 a[i] for i from hi + 1 to 
N. The method used for /+-sorting is insertion sort: for i from hi+ 1 to N, we sort 
the sequence . . . . a[i-2hj], a[i-hi], u[i] by taking advantage of the fact that the 
sequence . . . . u[i - 2hj], a[ i - hj] is already sorted, so a[ i] can be inserted by mov- 
ing larger elements one position to the right in the sequence, then putting u[i] in 
the place vacated. 

A fundamental property of this process is that, if we h-sort a file which is k-sor- 
ted, then the file remains k-sorted. Thus, when we come to h,-sort the file during 
Shellsort, we know that it is h, + , -, hj+2-,..., h,-sorted. This ordering makes the A,- 
sort less expensive than if we were to h,-sort a randomly ordered file. 

Shellsort sorts properly whenever the increment sequence ends with h, = 1, but 
the running time of the algorithm clearly is quite dependent on the specific 
increment sequence used. Unfortunately, we have little guidance on how to pick the 
“best” increment sequences. All the results that we have relate to specific sequences 
(from a quite larger universe) and leave open the possibility of an undiscovered 
increment sequence with far better performance characteristics than those that have 
been tried to date. 

From a practical standpoint, Shellsort leads to a simple and compact sorting 
program which works well for small files and for files which are already partially 
ordered. It is the practical method of choice for files with less than several hundred 
elements, and each new increment sequence that we discover raises this bound. 
Empirical tests by several researchers indicate that there m ight exist increment 
sequences for which the average running time is O(N log N) (e.g., see [4]). 

From a theoretical standpoint, the study of increment sequences for Shellsort is 
important because of the potential for a simple constructive proof of the existence 
of an O(Nlog N) sorting network. (An increment sequence of length O(log N) for 
which each insertion requires a constant number of steps would imply this.) This 
was an open problem in the theory of sorting for some time; the existence of such a 
network was recently presented by Ajtai, Komlos, and Szemerdi [l] but their con- 
struction is hardly practical. (Further refinements have been made by Leighton [7], 
but his networks are still far more complex than a Shellsort-based network would 
be.) These results make the search for a short proof based on Shellsort even more 
appealing. Weaker results (e.g., an O(N log N) average case) are also worth pursu- 
ing because of the practical implications. 

In this paper, we are interested in worst-case bounds for the total running time of 
Shellsort for practicular increment sequences. Specifically, we are most interested in 
increment sequences of length O(log N); this would be required for an optimal 
sorting network, and such sequences are the most viable from a practical 
standpoint. Even with this restriction, the space of possible increment sequences is 
quite large. For simplicity, in this paper we assume that the sequence increases 
(although there is no particular requirement for this). Further, we make the follow- 
ing distinction: 

DEFINITION. A Shellsort implementation is said to be uniform if the increments 
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used to sort N items are all the numbers less than N (taken in decreasing order) 
from a fixed infinite increasing sequence h, , h2,... . 

A non-uniform Shellsort might use a different increment sequence for each tile 
size. Both types are used in practice, though uniform implementations have been 
studied more heavily. For example, Knuth [6] recommends using a uniform 
implementation based on the sequence 1, 4, 13, 40,..., 5(3k - l),.... On the other 
hand, in order to use a uniform sequence one must calculate an appropriate 
starting place and/or save the sequence, so some practitioners find it more con- 
venient to use non-uniform sequences such as LN/2], LLN/2_1/2 J, etc. Unless 
designed with care, non-uniform sequences are susceptible to bad worst-case perfor- 
mance for some file sizes. Consequently, uniform implementations are more widely 
used and studied. We use the terminology “uniform j(N)-sequence” to refer to an 
infinite sequence for which the number of integers less than N is f(N). 

SHELLSORT AND THE FROBENIUS PROBLEM 

To prove upper bounds on the number of steps required for Shellsort, we are 
interested specifically in the following function: 

DEFINITION. nd(ul, a2 ,...,uk) - the number of multiples of d which cannot be 
represented as linear combinations (with non-negative integer coefficients) of 
al, a2,***, ak. 

We assume that a,, Us,..., ak are > 1 (otherwise all integers could be represented) 
and that a,, u2,..., uk are independent: that none can be represented as a linear com- 
bination with non-negative integer coefficients of the others (otherwise it could be 
deleted from the list without affecting the result). More important, for 
nd(ul, a2,..., uk) to be defined, it must be the case that a,, u2,..., ak do not have a 
common factor which is not shared by d (otherwise, only those multiples of d which 
share that common factor could be represented as linear combinations of 
al 9 a2 ,*..> uk, and there are an infinite number of multiples of d which do not). 

This function is related to Shellsort by the following lemma: 

LEMMA 1. The number of steps required to h,-sort a file which is h,, , -, hjf2-,..., 
h,-sorted is 

Proof. The number of steps required to insert element u[i] is the number of 
elements among u[i - hj], u[i - 2hi],..., which are greater than a[i]. Any element 
u[i - x] with x a linear combination of h,, 1 ,..., h, must be less than u[i] since the 
file is hj+l-, hj+2-,..., h,-sorted. Thus, an upper bound on the number of steps to 
insert u[i], for 1 < i< N, is the number of multiples of h, which are not expressible 
as linear combinations of h,, 1, hj+2 ,..., h, or n,,(h,+ Ir hj+2 ,..., h,). 1 
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When d = 1, we have n, (a,, a, ,..., uk) (or just n(a,, a2 ,..., uk)) which is the num- 
ber of positive integers which cannot be represented as linear combinations with 
nonnegative coefficients of a a r, z ,..., ak. A closely related function is g(a,, a2 ,..., uk), 
the largest integer which cannot be so represented. These functions are well-studied 
in number theory [S, 11, 121: to find g(a,,..., ak) is the so-called Frobenius problem. 

The function which arises in Shellsort is related to the standard Frobenius 
function by the following lemma: 

LEMMA 2. For a,, a2 ,..., ak relatively prime, 

nd(al, a2,..., 4) < 
da,, a2,..., ak) 

d . 

Proof: (Note that g(a,, a*,..., ak) is undefined unless a,, u2,..., ak are relatively 
prime.) Every number greater than g(a a 1, 2,..., uk) can be represented as a linear 
combination of a,, a, ,..., a,; in the worst case all multiples of d less than 
da, 7 Q2,v ak) cannot. 1 

Previous upper bound proofs for Shellsort have used a combined version of these 
lemmas: 

LEMMA 3. The number of steps required to hi-sort a file which is hi, ,-, hj+2-,..., 
h,-sorted is 

Proof: Immediate from Lemmas 1 and 2. 1 

Specific bounds are obtained by solving the Frobenius problem for specific 
increment sequences. For k = 2, we have the original Frobenius problem whose 
solution dates at least to 1884: 

LEMMA 4. If al and a, are relatively prime:then g(a,, a,) = (a, - l)(a2- 1). 

Proof: See Knuth [6, Ex. 5.2.1-21, or 23. 1 

For example, this leads directly to an upper bound for h,-sorting of O(N h,) when 
hi = 2j + 1 since 

Ng(h,+,,...,h,)<Ng(hj+l,hj+2) 
hJ ’ J 

= 0 (,,:I,,, 

hi 

= O(N hj). 



214 INCERPIANDSEDGEWICK 

This is the bound of Papernov and Stasevich [8], which was generalized by Pratt 
[9] to cover a large family of “almost geometric” increment sequences. 

Upper bounds on A,-sorting for sequences with geometric growth translate to 
upper bounds on the total number of steps required by Shellsort as follows: 

LEMMA 5. Suppose that an increment sequence h,, h, ,..., is used to Shellsort a,file 
of size N, with h, = O(CC~) for some constant X. If’the number of steps for h,-sorting is 
O(N h.fl’). then the total running time for Shellsort is O(N’ + I!(‘+ ‘I). 

Proof: The increments used are h, ,..., h,, where t is the largest integer such that 
h, is less than N. We use the bound O(N2/hi) for large hj (this comes from consider- 
ing hi independent subfiles of size N/h,, each of which could require O((N/h,)‘) 
steps) and the bound O(N hj’,) for small h,, switching at hi= O(N”l(“+ I)), when 
both bounds are O(N’+ “(’ + ‘) ). The total number of steps for Shellsort is 

1 O(Nh;,“)+ c 0 
1 < , s 1,) I,, c , G f 

where t, is such that h,“= O(N”““+ ‘I). Both sums are geometric and are bounded 
by their largest term O(N’ + I’(“+‘)) in both cases. 1 

For example, Lemma 5, with c = 1, gives the O(N3j2) upper bound for Shellsort 
of Papernov and Stasevich [S] and Pratt [9]. In fact, Pratt showed this bound to 
be tight for a large family of increment sequences (encompassing most of those that 
have been proposed), where the increments are within an additive constant of a 
geometric progression. 

Sedgewick [ 1 l] used general results of Selmer [ 121 and Johnson [5] for the 
Frobenius problem for k= 3 to develop increment sequences that grow 
geometrically and the upper bound for h,-sorting is O(N h,Y2). This leads to an 
O(N4j3) upper bound for Shellsort (Lemma 5 with c = 2). (These sequences are of 
the form cr4’ + p2’ + u, not within an additive constant of a geometric progression.) 
Unfortunately, there are few available results on the Frobenius problem for k > 3, 
and such results would seem to be required to get better upper bounds using this 
approach. 

Furthermore, we can show that a bound of the type O(N’ +v(~+ I)) is the best 
that can be achieved with this approach because we have a lower bound on the 
Frobenius function: 

LEMMA 6. For a,, a, ,..., ak increasing, 

n(a,, a2 ,..., ak) = Q(a: + ‘lCkp “). 

Proof Define L(m)= {xlx=c,a,+ ... +c,a, with c,,c2,...,ck>0 and 
Cl + . . . + ck = m}. Then if x E L(m) we know that x > ma,. The cardinality of L(m) 
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is at most the number of ways to choose c 1 ,..., ck satisfying c1 + . + ck = m. This is 
precisely the number of different outcomes possible if you have an urn with k dif- 
ferent colors balls and you select m balls with replacement. There are (“‘+k- ’ ) 
possible outcomes. Thus, IL(m)\ < (“:k ; ‘). 

Now, for any constant m, b 1, we know that the number of integers which can- 
not be represented as a linear combination of a,, a*,..., ak is greater than or equal to 
the number of integers which are less than (m. + 1) a, minus the number of integers 
we know can be represented as a linear combination of a,, a,,..., ak. The number of 
such integers is certainly less than C, G m C mg IL(m)l, so 

da,, a2,..., ak)b(mo+l)al- 1 IUm)l 
I $rn<rno 

Letf(m,)=(m,+l)a,-(mo,+k ). Then differencing and setting the result equal to 
zero, we have 

This function is maximized at m, such that a, - (“,4_+/)mmok ~ ‘/(k - l)!. Thus m, is 
approximately a, . “c-‘) When this occurs we have 

4al, a2,..., ak) = qa; + Il(k - 1) 1. I 

If we only consider the effects of c + 1 increments hi+ 1 ,..., A, + (‘+ 1 when /$-sorting 
and we use the approach of Lemma 3 (the standard approach), then Lemma 6 says 
that the best bound that we can hope for for hj-sorting is O(h,“‘), which translates 
to an O(N ’ + “(‘-+ ‘I) Shellsort bound by Lemma 5. Thus, the bounds of Papernov 
and Stasevich (c = 1) and Sedgewick (c = 2) are best possible in this sense. Below, 
we show how to achieve O(N’ + ‘/(‘+ ‘) ) with (c log N)-uniform sequences for any c, 
though we do so by circumventing the standard approach of Lemma 3 and using 
Lemma 1 directly, not by developing new results on the Frobenius problem. 
Furthermore, we show how this method extends to provide even better bounds. We 
do so by turning attention to increments which have large common divisors, then 
by exploiting specific properties of the generalized Frobenius function with two 
arguments, n,(r, s). 
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GENERALIZED FROBENIUS PROBLEM 

It is possible to completely characterize the generalized Frobenius function with 
two arguments. We have: 

THEOREM 1. For any positive integers r, s, and d with gcd(d, r, s) = gcd(r, s): 

nd@, s, = nd 
r s 

gcd(d, r, s)/gcd(d, r) gcd(d, s) gcd(d, r)’ gcd(d, s) 

If d, r, and s are pairwise relatively prime, then 

nd(r, s) = n 
r+b,S (d-l)r+bdels 

r, s, - 
d ,..., d 

where bi is the unique integer between 1 and d - 1 such that ir + his - 0 (mod d). Note 
that nd(r, s) is undefined if gcd(d, r, s) # gcd(r, s). 

Proof: (See Appendix.) 
Although this characterization is not needed in its full generality for the results in 

this paper, it does indicate that divisibility properties among the increments can be 
instrumental in lowering bounds on the generalized Frobenius function. For the 
constructions of the next section, we actually use a very special case of this theorem 
which can be proved directly from the definition. 

COROLLARY 1. For integer z > 1, ndZ(rz, sz) = n,(r, s). 

This property holds for more than two arguments: we have n,(a,z, QZ,..., akz) 
= nd(al, a2,..., a,), but a full characterization such as Theorem 1 for more than two 
arguments seems complicated. 

Applying Lemmas 2 and 4 with the corollary to Theorem 1, we have n,(rz, sz) 
= n,(r, s) < rs/d (if r and s are relatively prime), which is less by a factor of z than 
the bound rzsz/dz which derives from direct application of Lemmas 2 and 4 
(although Lemma 4 could not be applied since rz and sz are not relatively prime). 

INCREMENT SEQUENCES 

Our increment sequences represent a compromise between two classical 
increment sequences that have been proposed for Shellsort. The first, proposed by 
Shell, is the geometric sequence 1, 2, 4, 8, 16 ,.... The problem with this sequence is 
that the generalized Frobenius function is always undefined, since even after the 
application of Theorem 1, hi + 1, h, + 2 ,..., have a common factor (2) which is not 
shared by hj. The practical effect of this is that the worst case is 8(N2), for example, 
for a shuffled tile with the N/2 smallest elements in the odd positions and the N/2 
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largest elements in the even positions. Because of this effect, Shellsort increment 
sequences are normally designed to have successive increments relatively prime. 

A notable exception is the sequence 1, 2, 3,4, 6, 9,..., given by Pratt, which is 
defined by appending 22 and 32 to the sequence for every element z in the sequence. 
Thus, by the corollary to Theorem 1, the running time for each increment is 
O(Nn,(2, 3)). Unfortunately, there are Q(log2 N) increments less than N, and even 
after applying tradeoffs as in Lemma 5, the running time is always O(Nlog’ N). 
Increment sequences with O(log N) increments are of more interest because in prin- 
ciple, the running time for such sequences could be O(Nlog N) on the average (or 
even in the worst case), and in practice, the large number of passes required for 
Pratt’s sequence makes it slower than typical O(log N)-pass Shellsorts. 

Thus, our goal is to design a geometrically increasing sequence in which suc- 
cessive increments have both large common factors and small relatively prime fac- 
tors. Our method for doing so is to build up increments by multiplying together 
selected terms of a “base” sequence a,, az,.... 

Given a constant c, we associate c increments with each term of the base 
sequence, each increment formed by multiplying together c terms of the base 
sequence. To simplify the discussion, we first consider explicitly the increment 
sequence formed for c = 3; the extension to larger c follows directly. Specifically, for 
c = 3, we form an increment sequence by interleaving the three sequences 

ala2a3, a2a3a4,..., aiai+,ai+2,... 

ala2a4, a2a3a5,..., aiaj+lai+3,... 

ala3a4, a2a4a5, . . . . aiai+2ai+3 ,... 

(and, of course, prepending 1). Now, each increment has exactly two “a” factors in 
common with two increments that appear later in the sequence, which leads directly 
to an application of the corollary to Theorem 1. We have 

n a,n,+~a,+*(ui+lai+2ai+3,ai+lai+2ai+4)=n,,(ai+3,ai+4) 

n n,a,+,o,+,(ai+lai+2ai+3,ai+Iai+3ai+4)=n,,(ai+2,ai+4) 

n a,a,+ta~+j(ai+lUi+2ai+3, Qi+2Ui+3ai+4)=n,(Ui+,, ai+4). 

If the elements u,+~, ai+2, ai+3, and ui+4 are all relatively prime, and if each term 
is within a constant factor of the previous, then these are all O(ai), by Lemmas 2 
and 4. Therefore, by Lemma 3, the number of steps to h-sort is O(N h’j3) for each 
increment h in this sequence. (For l-sorting, we must argue separately that the run- 
ning time is O(1) if al, a2,..., u6 are all 0( 1): the running time for l-sorting is 
O(N n(ula2u3, a4u5a6)) since those two increments are relatively prime.) Now, by 
Lemma 5, we get an O(N514) bound for this sequence. 

The extension of this argument to general c is straightforward: 
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THEOREM 2. Given a constant c, there exists a uniform (c log N)-sequence qf 
increments for which the running time of Shellsort is O(N’+ ‘I(“+ I’). 

Proof. As before, the increment sequence is 1 followed by an interleaving of the 
c sequences 

where c,, ranges from c down to 1. For example, for c = 5 we have 

al a2a3a4a63-? a;ai+ I ai+ ai+3a,+5,.- 

al a2a3a5a6y-., aial+ 1 a ,+2ar+4ai+5,-. 

ala2a4a5a6,..., ~ia,+la,+3a,+4a,+s,... 

Now, we note that each increment has exactly C- 1 factors in common with two 
increments that appear later in the sequence, which allows application of the 
corollary to Theorem 1. When 

d=- ’ n a!+k. a i + (‘0 0 < k < ( . . 

r= n a 1+1 tkl 
O<k<c 

then 

(For example, when c= 5, n o,wu3waf’ (a2a3a4a5a6, a2a3a4a6a7) = nu,(a5, a,).) This 
works except for c0 = 1, when we take s = (no, k Cc a,, 2+ k) which still gives 
nd(r, s) =n,(ai+,, ai+< + I). Again, if all a,+ ,,..., a,+(+ I are relatively prime and 
related by a constant factor then these are all O(ai) which leads to a bound of 
O(N h”‘) for each increment in this sequence. This gives a Shellsort bound of 
O(N’+ “Cc+ “) by Lemma 5, using the same argument as before for l-sorting. 

The proof is completed by exhibiting a sequence a,, a,,..., that satisfies the con- 
ditions above; this is easy because of the density of primes. For example, we can 
take ai to be the smallest prime greater than or equal to 2’, to get a geometrically 
increasing sequence of primes 1, 2, 5, 11, 17 ,..., which satisfies the conditions. 1 
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Note that the constant implied by the O-notation in Theorem 2 is exponential in 
c. This makes the increment sequences hardly of practical use. Next, we examine 
sequences built according to the same principle as those above but which have 
good practical performance and even better asymptotic bounds: 

THEOREM 3. For any E > 0, there exists a uniform (log N)-sequence for which the 
running time of Shellsort is O(N’ +cifiN). 

Proof: As above, we start with a base sequence a,, a?, a3,..., of relatively prime 
integers. In this case, we construct the sequence as follows: 

aI ala2 al a2a3 a,a2a3a4 . . . 

ala3 aI a2a4 a,a2a3a5 . . . 

aI a3a4 a,a2a4a5 . . . 

a, a3a4a5 . . . 

. . . 

The cth column in the table is formed by starting with n, <I<C a;, then multiplying 
each element in the previous column by a,.+, . This ensures that each increment 
exactly divides two increments which appear later in the sequence. The following 
table gives the upper bound for the increment appearing in the corresponding 
position in the above sequence: 

n(a2, a31 n(a,, a41 n(a4, a51 n(a5,a6) . . . 

4a2, a41 4a3, a,) n(a4, 4) . . . 

4a2, 4 n(a3, a.4 . . . 

n(a2, 4) . . . 

. . . 

If we use c columns in the table, then we use t(c’+ c) increments, all less than 
n, siGC aj with a total cost of less than N(z:, siGC ai)‘. (This bound follows quickly 
from the fact that n(r, s) < rs.) Once again, we achieve good asymptotics by proper 
choice of the base sequence. Specifically, we take a, to be the smallest prime greater 
than or equal to a’, so that 

a, = O(a’) 

, Jj< c ai = O(afcC2+ ‘)) 
. . 

I JI< c ai = O(a’). 
. . 
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Using all the increments less than N corresponds to taking c equal to the closest 
integer ,/G, we have a total cost of 

O(Na 2 d’2 b “) = O(Nl f (2 d%hm). 

with log, N increments. Given E > 0, take c1= 262’8 to obtain the stated result. m 

There is a quite simple proof of the same asymtotic result for non-uniform 
sequences, due to Chazelle [3]. This result actually motivated the search for the 
sequence of Theorem 3. 

Proof of Theorem 3 (non-uniform case [3]). Simply use Pratt’s method, starting 
with (a - 1) and a for an appropriately chosen a (instead of 2 and 3). The running 
time is bounded by N a2 for each of the O((log, N)‘) increments, for a total of 

a2 
Wg NJ2 (lg a)z. 

NOW, take a such that (lg a)* = a* lg N, or a = 2-, for a total cost of 

~gN22.pixo NT 
( 

!$N I f Z.JGl&x 

1. 

Again, proper choice of the a* gives O(N ’ + @m)) for any E ZB 0. However, E does 
affect the number of increments. There are O((lg N/lg a)*) increments. 1 

The table below shows the number of exchanges required by Knuth’s sequence, 
the uniform sequence suggested from Theorem 3 with a, = the smallest prime 
greater than or equal to 2’, and the non-uniform sequence with a* = 1, averaged 
over a few random files for various file sizes. 

10000 20000 40000 80000 

Knuth 242110 556142 1317825 2898495 
Theorem 3 (uniform) 219536 489187 1054873 2288179 
Theorem 3 (non-uniform) 242248 545801 1153723 2755272 
Pratt 473900 1018642 2177565 468869 1 

Note that, even though the best worst-case results we have been able to prove for 
Theorem 3’s increments are asymptotically worse than the O(N(log N)‘) for Pratt’s 
method, the average case appears to be significantly better. This has little relevance 
when comparing the methods as networks, but it is significance when comparing 
them as sorts on a general-purpose computer. 
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CONCLUSIONS 

Despite the substantial improvements that we have been able to make in upper 
bounds for Shellsort, the results still pertain to particular increment sequences of 
somewhat artificial construction and there seems to be room for improvement. 
Furthermore, even the bounds derived for the given sequences are not tight. For 
example, they only derive from the effects of a few of the previous passes and they 
don’t take into account obvious correlations in insertion costs of successive 
elements. 

It seems likely that better bounds can be obtained by taking such effects into 
account, and these are worth exploring because of the direct practical benefits that 
accrue. The question of whether there exists an increment sequence of O(log N) 
numbers which produces an O(Nlog* N) or O(N log N) Shellsort still remains 
open. 

APPENDIX 

Proof of Theorem 1. By definition, n,(r, s) is the number of multiples of d which 
cannot be represented as linear combinations of r and s. The following facts about 
the gcd function will prove useful later on. (It is straightforward to verify these.) 

FACT 1. For positive integers r, s, and d, ifgcd(d, r, s) = 1 then gcd(d/gcd(d, r), s) 
= gcd(d, s). 

FACT 2. For positive integers r, s, and d, 

r 
= r/gcd(d, r, s) 

d r 

gcd(d, r) gcd(d, r, s)’ gcd(d, r, s) 

Fact 2 can be rewritten, giving us the following identity for positive integers r, s, 
and d: 

gcd 
d r gcd(d, r) 

gcd(d, r, s)’ gcd(d, r, s) =gcd(d, r, s)’ 

We will first look at nd(r, s) when gcd(d, r, s) = 1 and then prove the desired result. 

Claim. Given positive integers r, s, and d such that gcd(d, r, s) = 1, 

%try d = %/gcd(d, r) (gcd;d, r)“)’ 
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Recall n,(r, s) = the number of cI such that there exists no c2, c3 30 with 
c,d= c2r + c3s. Let y = gcd(d, r), denote d/y (resp. r/y by xd (resp. x,), it is clear 
that gcd(x,, x,) = 1. Since gcd(d, r, s) = 1 we know that gcd(y, s) = 1. 

If we let C represent the condition “there exists no c2, cj 2 0 with cr d = c2 r + c3s” 
then we know that C is equivalent to the following: 

CE there exists no c2, c3 with c,xd>j = c,x,y + c3s 

E there exists no c?, c3 with c,xd= c,x,.+ (c3/y) s 

E there exists no c2, c; with c, xd= L’*x, + c; s. 

Thus, 

proving the claim stated above. Notice that this equation is symmetric in r and s. 
We could, in the same manner, have derived 

Also notice that if gcd(d, r, s) = 1 then gcd(d/gcd(d, r), r/gcd(d, r), s) = 1 as well. If 
we let D = d/gcd(d, r), R = r/gcd(d, r), and S = s then we may apply Eq. (2) again 
since gcd(D, R, S) = 1. This gives us the following: 

= n.,,cd,D, S) i R, 

By Fact 1, we know that gcd(D, S) =gcd(d/gcd(d, r), s) is simply gcd(d, s). Sub- 
stituting into the above equation, we get 

r s 
n,(rt s> = ndi’gcd(d, rJ gcd(d, .v) gcd(d, r)’ gcd(d, s) 

whenever gcd(d, r, s) = 1. 
Next we consider n,(r, s) without the gcd constraint. Let k = gcd(d, r, s) then 

d= xdkr r = x,k, and s= x,k. nd(r, s) = the number of c, such that there exists no 
c2, c,>O with cld= c2r + c3s. If we let C represent the condition “there exists no 
ca, c3 3 0 withc, d = c2 r + c3s” then we know that C is equivalent to the following: 

C = there exists no c2, c3 with c1 x,k = c2 x,k + cj x, k 

E there exists no c2, c3 with c1 xd= czx, + c~x,~. 
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So we have 

r s 
%k d = %tXr3 -d = nggcd(d, ?, s) gcd(d, r, s)’ gcd(d, r, s) 

Recall that from the definition of gcd we know that gcd(x,, x,, x,) = 1. We can now 
apply the result in equation (3) and obtain the following 

dry s, = nxd(xr, x.s) = nxd/gcd(xd,x,)gcd(xd, x,1 
x, XS 

gcd(x,, x,)’ gcdk,, x,1 

By Fact 2 we have x,/gcd(x,, x,) = r/gcd(d, r). We can apply this three times in the 
above equation, to x,, x,, and also to xd with one of the gcd’s in the denominator. 
This give us 

r s 
nd(r? d = nd/gcd(xd, xr) gcd(d, s) gcd(d, r)’ gcd(d, s) 

Finally, since gcd(x,, x,) = gcd(d/gcd(d, r, s), r/gcd(d, r, s)) we can use Eq. (1 ), 

gcdk,, x,1 = gcd(d, r) 
gcd(d, r, s)’ 

This leads to the desired result, 

r s 
%drt s) = %gcd(d , r, s)lgcd(d, r) gcd(d. s) gcd(d, r)’ gcd(d, S) 

Note that for any r, S, and d this allows us to express nd(r, s) in terms of a 
generalized Frobenius function with the three arguments pairwise relatively prime. 
The second part of this theorem allows us to express this in terms of the standard 
Frobenius function, We wish to show that if d, r, and s are pairwise relatively 
prime, then 

n,(r, s) = n 
r+b,s (d-l)r+b,-is 

r, s, -, . . . , 
d d 

where b, is the unique integer between 1 and d - 1 such that ir + his - 0 (mod d). 
Again, n,(r, S) = the number of c1 such that there exists no c2, c3 30 with 

ci d= cIr + c3s. We must show that this equals the number of integers which cannot 
be written as a linear combination of r, s, (r + b,s)/d,..., ((d- 1) r + bdp ,s)/d, where 
the numerators are congruent to 0 mod d. 

If we let C represent the condition “there exists no c2, cX 2 0 with c, d = cqr + c3s” 
then we know that C is equivalent to the following: “there exists no c2, c3 with 
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c,=(c,r+c,s)/d.“Letc,=x,d+y,andc,=x,d+y,where0~y,,y,~d,thenwe 
have the following 

C~thereexistsno~,,x,,y,,y,withc,=x,r+x~s+ Y2r +Y3s d . 

If yZr + y,s is congruent to zero mod d, then the last term above is divisible by d. 
We know since gcd(r, d) = gcd(s, d) = 1 that both r and s have inverses r’ and s’ 
such that rr’ s ss 5 1 (mod d). We can use this equivalence to show that the inverse 
must also be relatively prime to d. 

Notice that for j= l,..., d- 1 that (jr’) r-t- ((d-j) s’) s ~0 (mod d). Let i=jr’ 
mod d, then b, = (d-j) s’ mod d. But since r’ and s’ are both relatively prime to d 
we know that i and bi take on every value from the set {l,..., d- 1) if we let 
j= l,..., d- 1. These are the only times y,r + y,s=O (mod d), so we have CZ there 
exists no x2, x3, z1 ,..., zd-, with 

c,=x,r+x,s+z, 
r+b,s 
-+ ... @Z&I 

(d-l)r+bdP1s 
d d 

Thus nd(r, s)=n(r,s, (r+bls)/d,..., ((d- 1)rf bdels)/d). 1 
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