
JOUKNAL OF (‘OMPL’TEK AND SYSTEM SCIENCES 31, 21&224 (1985)

Improved Upper Bounds on Shellsort*
JANET INCERPI'

Department of Computer Science, Brown Uniuersit~: Providence, Rhode Island

AND

ROBERT SEDGEWICK~

INRIA. 78150 Rocquencourt, Francr

Received April 17. 1984; revised November 30, 1984

The running time of Shellsort, with the number of passes restricted to @log N), was
thought for some time to be Q(N212), due to general results of Pratt. Sedgewick recently gave
an O(N413) bound, but extensions of his method to provide better bounds seem to require new
results on a classical problem in number theory. In this paper, we use a different approach to
achieve 0(N ’ + “,‘ls), for any E > 0. (1985 Academic Press. Inc

INTRODUCTION

Shellsort is a fundamental, but little-understood, sorting algorithm. A brief
description of the algorithm is given below. It is based on a table h,, h2,..., of
integers called an increment sequence. In practice, increment sequences are chosen
heuristically based on partial analytic results which have been derived for some
specific increment sequences. This algorithm is an attractive candidate for detailed
study because it is closely related to classical problems in number theory and
because theoretical results translate directly to practice. (A practioner can make
immediate use of a good increment sequence, no matter how intricate the analysis.)
It is difficult to deny the existence of increment sequences that would make
Shellsort the sorting method of choice, for most situations. Moreover, relatively few
types of increment sequences have been tried. Some references for Shellsort and
some of the analysis that has been done are [6, 9, 10, and 111; some of this infor-
mation is summarized below.

The Shellsort algorithm works as follows: given an increment sequence h, , h2,...,
a file is sorted by successively h,-sorting it, for j from some integer t down to 1. An

* This research was supported in part by NSF Grant MCS83XI8806 and in part by the Office of
Naval Research and DARPA under Contract N0001483-K-O146 and ARPA Order 4786.

t Current address: INRIA, Sophia Antipolis, 06560 Valbonne, France.
f Current address: Dept. of Computer Science, Princeton University, Princeton, N.J. 08544.

210
0022-0000/85 $3.00
Copyright 0 1985 by Academic Press. Inc
All rights of reproduction in any form reserved.

IMPROVEDUPPERBOUNDSONSHELLSORT 211

array a[l],..., a[N] is defined to be hj-sorted if a[i- hi] 6 a[i] for i from hi + 1 to
N. The method used for /+-sorting is insertion sort: for i from hi+ 1 to N, we sort
the sequence a[i-2hj], a[i-hi], u[i] by taking advantage of the fact that the
sequence u[i - 2hj], a[i - hj] is already sorted, so a[i] can be inserted by mov-
ing larger elements one position to the right in the sequence, then putting u[i] in
the place vacated.

A fundamental property of this process is that, if we h-sort a file which is k-sor-
ted, then the file remains k-sorted. Thus, when we come to h,-sort the file during
Shellsort, we know that it is h, + , -, hj+2-,..., h,-sorted. This ordering makes the A,-
sort less expensive than if we were to h,-sort a randomly ordered file.

Shellsort sorts properly whenever the increment sequence ends with h, = 1, but
the running time of the algorithm clearly is quite dependent on the specific
increment sequence used. Unfortunately, we have little guidance on how to pick the
“best” increment sequences. All the results that we have relate to specific sequences
(from a quite larger universe) and leave open the possibility of an undiscovered
increment sequence with far better performance characteristics than those that have
been tried to date.

From a practical standpoint, Shellsort leads to a simple and compact sorting
program which works well for small files and for files which are already partially
ordered. It is the practical method of choice for files with less than several hundred
elements, and each new increment sequence that we discover raises this bound.
Empirical tests by several researchers indicate that there m ight exist increment
sequences for which the average running time is O(N log N) (e.g., see [4]).

From a theoretical standpoint, the study of increment sequences for Shellsort is
important because of the potential for a simple constructive proof of the existence
of an O(Nlog N) sorting network. (An increment sequence of length O(log N) for
which each insertion requires a constant number of steps would imply this.) This
was an open problem in the theory of sorting for some time; the existence of such a
network was recently presented by Ajtai, Komlos, and Szemerdi [l] but their con-
struction is hardly practical. (Further refinements have been made by Leighton [7],
but his networks are still far more complex than a Shellsort-based network would
be.) These results make the search for a short proof based on Shellsort even more
appealing. Weaker results (e.g., an O(N log N) average case) are also worth pursu-
ing because of the practical implications.

In this paper, we are interested in worst-case bounds for the total running time of
Shellsort for practicular increment sequences. Specifically, we are most interested in
increment sequences of length O(log N); this would be required for an optimal
sorting network, and such sequences are the most viable from a practical
standpoint. Even with this restriction, the space of possible increment sequences is
quite large. For simplicity, in this paper we assume that the sequence increases
(although there is no particular requirement for this). Further, we make the follow-
ing distinction:

DEFINITION. A Shellsort implementation is said to be uniform if the increments

212 INCERPI AND SEDGEWICK

used to sort N items are all the numbers less than N (taken in decreasing order)
from a fixed infinite increasing sequence h, , h2,... .

A non-uniform Shellsort might use a different increment sequence for each tile
size. Both types are used in practice, though uniform implementations have been
studied more heavily. For example, Knuth [6] recommends using a uniform
implementation based on the sequence 1, 4, 13, 40,..., 5(3k - l),.... On the other
hand, in order to use a uniform sequence one must calculate an appropriate
starting place and/or save the sequence, so some practitioners find it more con-
venient to use non-uniform sequences such as LN/2], LLN/2_1/2 J, etc. Unless
designed with care, non-uniform sequences are susceptible to bad worst-case perfor-
mance for some file sizes. Consequently, uniform implementations are more widely
used and studied. We use the terminology “uniform j(N)-sequence” to refer to an
infinite sequence for which the number of integers less than N is f(N).

SHELLSORT AND THE FROBENIUS PROBLEM

To prove upper bounds on the number of steps required for Shellsort, we are
interested specifically in the following function:

DEFINITION. nd(ul, a2 ,...,uk) - the number of multiples of d which cannot be
represented as linear combinations (with non-negative integer coefficients) of
al, a2,***, ak.

We assume that a,, Us,..., ak are > 1 (otherwise all integers could be represented)
and that a,, u2,..., uk are independent: that none can be represented as a linear com-
bination with non-negative integer coefficients of the others (otherwise it could be
deleted from the list without affecting the result). More important, for
nd(ul, a2,..., uk) to be defined, it must be the case that a,, u2,..., ak do not have a
common factor which is not shared by d (otherwise, only those multiples of d which
share that common factor could be represented as linear combinations of
al 9 a2 ,*..> uk, and there are an infinite number of multiples of d which do not).

This function is related to Shellsort by the following lemma:

LEMMA 1. The number of steps required to h,-sort a file which is h,, , -, hjf2-,...,
h,-sorted is

Proof. The number of steps required to insert element u[i] is the number of
elements among u[i - hj], u[i - 2hi],..., which are greater than a[i]. Any element
u[i - x] with x a linear combination of h,, 1 ,..., h, must be less than u[i] since the
file is hj+l-, hj+2-,..., h,-sorted. Thus, an upper bound on the number of steps to
insert u[i], for 1 < i< N, is the number of multiples of h, which are not expressible
as linear combinations of h,, 1, hj+2 ,..., h, or n,,(h,+ Ir hj+2 ,..., h,). 1

IMPROVED UPPER BOUNDS ON SHELLSORT 213

When d = 1, we have n, (a,, a, ,..., uk) (or just n(a,, a2 ,..., uk)) which is the num-
ber of positive integers which cannot be represented as linear combinations with
nonnegative coefficients of a a r, z ,..., ak. A closely related function is g(a,, a2 ,..., uk),
the largest integer which cannot be so represented. These functions are well-studied
in number theory [S, 11, 121: to find g(a,,..., ak) is the so-called Frobenius problem.

The function which arises in Shellsort is related to the standard Frobenius
function by the following lemma:

LEMMA 2. For a,, a2 ,..., ak relatively prime,

nd(al, a2,..., 4) <
da,, a2,..., ak)

d .

Proof: (Note that g(a,, a*,..., ak) is undefined unless a,, u2,..., ak are relatively
prime.) Every number greater than g(a a 1, 2,..., uk) can be represented as a linear
combination of a,, a, ,..., a,; in the worst case all multiples of d less than
da, 7 Q2,v ak) cannot. 1

Previous upper bound proofs for Shellsort have used a combined version of these
lemmas:

LEMMA 3. The number of steps required to hi-sort a file which is hi, ,-, hj+2-,...,
h,-sorted is

Proof: Immediate from Lemmas 1 and 2. 1

Specific bounds are obtained by solving the Frobenius problem for specific
increment sequences. For k = 2, we have the original Frobenius problem whose
solution dates at least to 1884:

LEMMA 4. If al and a, are relatively prime:then g(a,, a,) = (a, - l)(a2- 1).

Proof: See Knuth [6, Ex. 5.2.1-21, or 23. 1

For example, this leads directly to an upper bound for h,-sorting of O(N h,) when
hi = 2j + 1 since

Ng(h,+,,...,h,)<Ng(hj+l,hj+2)
hJ ’ J

= 0 (,,:I,,,

hi

= O(N hj).

214 INCERPIANDSEDGEWICK

This is the bound of Papernov and Stasevich [8], which was generalized by Pratt
[9] to cover a large family of “almost geometric” increment sequences.

Upper bounds on A,-sorting for sequences with geometric growth translate to
upper bounds on the total number of steps required by Shellsort as follows:

LEMMA 5. Suppose that an increment sequence h,, h, ,..., is used to Shellsort a,file
of size N, with h, = O(CC~) for some constant X. If’the number of steps for h,-sorting is
O(N h.fl’). then the total running time for Shellsort is O(N’ + I!(‘+ ‘I).

Proof: The increments used are h, ,..., h,, where t is the largest integer such that
h, is less than N. We use the bound O(N2/hi) for large hj (this comes from consider-
ing hi independent subfiles of size N/h,, each of which could require O((N/h,)‘)
steps) and the bound O(N hj’,) for small h,, switching at hi= O(N”l(“+ I)), when
both bounds are O(N’+ “(’ + ‘)). The total number of steps for Shellsort is

1 O(Nh;,“)+ c 0
1 < , s 1,) I,, c , G f

where t, is such that h,“= O(N”““+ ‘I). Both sums are geometric and are bounded
by their largest term O(N’ + I’(“+‘)) in both cases. 1

For example, Lemma 5, with c = 1, gives the O(N3j2) upper bound for Shellsort
of Papernov and Stasevich [S] and Pratt [9]. In fact, Pratt showed this bound to
be tight for a large family of increment sequences (encompassing most of those that
have been proposed), where the increments are within an additive constant of a
geometric progression.

Sedgewick [1 l] used general results of Selmer [121 and Johnson [5] for the
Frobenius problem for k= 3 to develop increment sequences that grow
geometrically and the upper bound for h,-sorting is O(N h,Y2). This leads to an
O(N4j3) upper bound for Shellsort (Lemma 5 with c = 2). (These sequences are of
the form cr4’ + p2’ + u, not within an additive constant of a geometric progression.)
Unfortunately, there are few available results on the Frobenius problem for k > 3,
and such results would seem to be required to get better upper bounds using this
approach.

Furthermore, we can show that a bound of the type O(N’ +v(~+ I)) is the best
that can be achieved with this approach because we have a lower bound on the
Frobenius function:

LEMMA 6. For a,, a, ,..., ak increasing,

n(a,, a2 ,..., ak) = Q(a: + ‘lCkp “).

Proof Define L(m)= {xlx=c,a,+ ... +c,a, with c,,c2,...,ck>0 and
Cl + . . . + ck = m}. Then if x E L(m) we know that x > ma,. The cardinality of L(m)

IMPROVED UPPER BOUNDS ON SHELLSORT 215

is at most the number of ways to choose c 1 ,..., ck satisfying c1 + . + ck = m. This is
precisely the number of different outcomes possible if you have an urn with k dif-
ferent colors balls and you select m balls with replacement. There are (“‘+k- ’)
possible outcomes. Thus, IL(m)\ < (“:k ; ‘).

Now, for any constant m, b 1, we know that the number of integers which can-
not be represented as a linear combination of a,, a*,..., ak is greater than or equal to
the number of integers which are less than (m. + 1) a, minus the number of integers
we know can be represented as a linear combination of a,, a,,..., ak. The number of
such integers is certainly less than C, G m C mg IL(m)l, so

da,, a2,..., ak)b(mo+l)al- 1 IUm)l
I $rn<rno

Letf(m,)=(m,+l)a,-(mo,+k). Then differencing and setting the result equal to
zero, we have

This function is maximized at m, such that a, - (“,4_+/)mmok ~ ‘/(k - l)!. Thus m, is
approximately a, . “c-‘) When this occurs we have

4al, a2,..., ak) = qa; + Il(k - 1) 1. I

If we only consider the effects of c + 1 increments hi+ 1 ,..., A, + (‘+ 1 when /$-sorting
and we use the approach of Lemma 3 (the standard approach), then Lemma 6 says
that the best bound that we can hope for for hj-sorting is O(h,“‘), which translates
to an O(N ’ + “(‘-+ ‘I) Shellsort bound by Lemma 5. Thus, the bounds of Papernov
and Stasevich (c = 1) and Sedgewick (c = 2) are best possible in this sense. Below,
we show how to achieve O(N’ + ‘/(‘+ ‘)) with (c log N)-uniform sequences for any c,
though we do so by circumventing the standard approach of Lemma 3 and using
Lemma 1 directly, not by developing new results on the Frobenius problem.
Furthermore, we show how this method extends to provide even better bounds. We
do so by turning attention to increments which have large common divisors, then
by exploiting specific properties of the generalized Frobenius function with two
arguments, n,(r, s).

216 INCERPI AND SEDGEWICK

GENERALIZED FROBENIUS PROBLEM

It is possible to completely characterize the generalized Frobenius function with
two arguments. We have:

THEOREM 1. For any positive integers r, s, and d with gcd(d, r, s) = gcd(r, s):

nd@, s, = nd
r s

gcd(d, r, s)/gcd(d, r) gcd(d, s) gcd(d, r)’ gcd(d, s)

If d, r, and s are pairwise relatively prime, then

nd(r, s) = n
r+b,S (d-l)r+bdels

r, s, -
d ,..., d

where bi is the unique integer between 1 and d - 1 such that ir + his - 0 (mod d). Note
that nd(r, s) is undefined if gcd(d, r, s) # gcd(r, s).

Proof: (See Appendix.)
Although this characterization is not needed in its full generality for the results in

this paper, it does indicate that divisibility properties among the increments can be
instrumental in lowering bounds on the generalized Frobenius function. For the
constructions of the next section, we actually use a very special case of this theorem
which can be proved directly from the definition.

COROLLARY 1. For integer z > 1, ndZ(rz, sz) = n,(r, s).

This property holds for more than two arguments: we have n,(a,z, QZ,..., akz)
= nd(al, a2,..., a,), but a full characterization such as Theorem 1 for more than two
arguments seems complicated.

Applying Lemmas 2 and 4 with the corollary to Theorem 1, we have n,(rz, sz)
= n,(r, s) < rs/d (if r and s are relatively prime), which is less by a factor of z than
the bound rzsz/dz which derives from direct application of Lemmas 2 and 4
(although Lemma 4 could not be applied since rz and sz are not relatively prime).

INCREMENT SEQUENCES

Our increment sequences represent a compromise between two classical
increment sequences that have been proposed for Shellsort. The first, proposed by
Shell, is the geometric sequence 1, 2, 4, 8, 16 ,.... The problem with this sequence is
that the generalized Frobenius function is always undefined, since even after the
application of Theorem 1, hi + 1, h, + 2 ,..., have a common factor (2) which is not
shared by hj. The practical effect of this is that the worst case is 8(N2), for example,
for a shuffled tile with the N/2 smallest elements in the odd positions and the N/2

IMPROVED UPPER BOUNDS ON SHELLSORT 217

largest elements in the even positions. Because of this effect, Shellsort increment
sequences are normally designed to have successive increments relatively prime.

A notable exception is the sequence 1, 2, 3,4, 6, 9,..., given by Pratt, which is
defined by appending 22 and 32 to the sequence for every element z in the sequence.
Thus, by the corollary to Theorem 1, the running time for each increment is
O(Nn,(2, 3)). Unfortunately, there are Q(log2 N) increments less than N, and even
after applying tradeoffs as in Lemma 5, the running time is always O(Nlog’ N).
Increment sequences with O(log N) increments are of more interest because in prin-
ciple, the running time for such sequences could be O(Nlog N) on the average (or
even in the worst case), and in practice, the large number of passes required for
Pratt’s sequence makes it slower than typical O(log N)-pass Shellsorts.

Thus, our goal is to design a geometrically increasing sequence in which suc-
cessive increments have both large common factors and small relatively prime fac-
tors. Our method for doing so is to build up increments by multiplying together
selected terms of a “base” sequence a,, az,....

Given a constant c, we associate c increments with each term of the base
sequence, each increment formed by multiplying together c terms of the base
sequence. To simplify the discussion, we first consider explicitly the increment
sequence formed for c = 3; the extension to larger c follows directly. Specifically, for
c = 3, we form an increment sequence by interleaving the three sequences

ala2a3, a2a3a4,..., aiai+,ai+2,...

ala2a4, a2a3a5,..., aiaj+lai+3,...

ala3a4, a2a4a5, aiai+2ai+3 ,...

(and, of course, prepending 1). Now, each increment has exactly two “a” factors in
common with two increments that appear later in the sequence, which leads directly
to an application of the corollary to Theorem 1. We have

n a,n,+~a,+*(ui+lai+2ai+3,ai+lai+2ai+4)=n,,(ai+3,ai+4)

n n,a,+,o,+,(ai+lai+2ai+3,ai+Iai+3ai+4)=n,,(ai+2,ai+4)

n a,a,+ta~+j(ai+lUi+2ai+3, Qi+2Ui+3ai+4)=n,(Ui+,, ai+4).

If the elements u,+~, ai+2, ai+3, and ui+4 are all relatively prime, and if each term
is within a constant factor of the previous, then these are all O(ai), by Lemmas 2
and 4. Therefore, by Lemma 3, the number of steps to h-sort is O(N h’j3) for each
increment h in this sequence. (For l-sorting, we must argue separately that the run-
ning time is O(1) if al, a2,..., u6 are all 0(1): the running time for l-sorting is
O(N n(ula2u3, a4u5a6)) since those two increments are relatively prime.) Now, by
Lemma 5, we get an O(N514) bound for this sequence.

The extension of this argument to general c is straightforward:

218 INCERPI AND SEDGEWICK

THEOREM 2. Given a constant c, there exists a uniform (c log N)-sequence qf
increments for which the running time of Shellsort is O(N’+ ‘I(“+ I’).

Proof. As before, the increment sequence is 1 followed by an interleaving of the
c sequences

where c,, ranges from c down to 1. For example, for c = 5 we have

al a2a3a4a63-? a;ai+ I ai+ ai+3a,+5,.-

al a2a3a5a6y-., aial+ 1 a ,+2ar+4ai+5,-.

ala2a4a5a6,..., ~ia,+la,+3a,+4a,+s,...

Now, we note that each increment has exactly C- 1 factors in common with two
increments that appear later in the sequence, which allows application of the
corollary to Theorem 1. When

d=- ’ n a!+k. a i + (‘0 0 < k < (. .

r= n a 1+1 tkl
O<k<c

then

(For example, when c= 5, n o,wu3waf’ (a2a3a4a5a6, a2a3a4a6a7) = nu,(a5, a,).) This
works except for c0 = 1, when we take s = (no, k Cc a,, 2+ k) which still gives
nd(r, s) =n,(ai+,, ai+< + I). Again, if all a,+ ,,..., a,+(+ I are relatively prime and
related by a constant factor then these are all O(ai) which leads to a bound of
O(N h”‘) for each increment in this sequence. This gives a Shellsort bound of
O(N’+ “Cc+ “) by Lemma 5, using the same argument as before for l-sorting.

The proof is completed by exhibiting a sequence a,, a,,..., that satisfies the con-
ditions above; this is easy because of the density of primes. For example, we can
take ai to be the smallest prime greater than or equal to 2’, to get a geometrically
increasing sequence of primes 1, 2, 5, 11, 17 ,..., which satisfies the conditions. 1

IMPROVED UPPER BOUNDS ON SHELLSORT 219

Note that the constant implied by the O-notation in Theorem 2 is exponential in
c. This makes the increment sequences hardly of practical use. Next, we examine
sequences built according to the same principle as those above but which have
good practical performance and even better asymptotic bounds:

THEOREM 3. For any E > 0, there exists a uniform (log N)-sequence for which the
running time of Shellsort is O(N’ +cifiN).

Proof: As above, we start with a base sequence a,, a?, a3,..., of relatively prime
integers. In this case, we construct the sequence as follows:

aI ala2 al a2a3 a,a2a3a4 . . .

ala3 aI a2a4 a,a2a3a5 . . .

aI a3a4 a,a2a4a5 . . .

a, a3a4a5 . . .

. . .

The cth column in the table is formed by starting with n, <I<C a;, then multiplying
each element in the previous column by a,.+, . This ensures that each increment
exactly divides two increments which appear later in the sequence. The following
table gives the upper bound for the increment appearing in the corresponding
position in the above sequence:

n(a2, a31 n(a,, a41 n(a4, a51 n(a5,a6) . . .

4a2, a41 4a3, a,) n(a4, 4) . . .

4a2, 4 n(a3, a.4 . . .

n(a2, 4) . . .

. . .

If we use c columns in the table, then we use t(c’+ c) increments, all less than
n, siGC aj with a total cost of less than N(z:, siGC ai)‘. (This bound follows quickly
from the fact that n(r, s) < rs.) Once again, we achieve good asymptotics by proper
choice of the base sequence. Specifically, we take a, to be the smallest prime greater
than or equal to a’, so that

a, = O(a’)

, Jj< c ai = O(afcC2+ ‘))
. .

I JI< c ai = O(a’).
. .

220 INCERPI AND SEDGEWICK

Using all the increments less than N corresponds to taking c equal to the closest
integer ,/G, we have a total cost of

O(Na 2 d’2 b “) = O(Nl f (2 d%hm).

with log, N increments. Given E > 0, take c1= 262’8 to obtain the stated result. m

There is a quite simple proof of the same asymtotic result for non-uniform
sequences, due to Chazelle [3]. This result actually motivated the search for the
sequence of Theorem 3.

Proof of Theorem 3 (non-uniform case [3]). Simply use Pratt’s method, starting
with (a - 1) and a for an appropriately chosen a (instead of 2 and 3). The running
time is bounded by N a2 for each of the O((log, N)‘) increments, for a total of

a2
Wg NJ2 (lg a)z.

NOW, take a such that (lg a)* = a* lg N, or a = 2-, for a total cost of

~gN22.pixo NT
(

!$N I f Z.JGl&x

1.

Again, proper choice of the a* gives O(N ’ + @m)) for any E ZB 0. However, E does
affect the number of increments. There are O((lg N/lg a)*) increments. 1

The table below shows the number of exchanges required by Knuth’s sequence,
the uniform sequence suggested from Theorem 3 with a, = the smallest prime
greater than or equal to 2’, and the non-uniform sequence with a* = 1, averaged
over a few random files for various file sizes.

10000 20000 40000 80000

Knuth 242110 556142 1317825 2898495
Theorem 3 (uniform) 219536 489187 1054873 2288179
Theorem 3 (non-uniform) 242248 545801 1153723 2755272
Pratt 473900 1018642 2177565 468869 1

Note that, even though the best worst-case results we have been able to prove for
Theorem 3’s increments are asymptotically worse than the O(N(log N)‘) for Pratt’s
method, the average case appears to be significantly better. This has little relevance
when comparing the methods as networks, but it is significance when comparing
them as sorts on a general-purpose computer.

IMPROVEDUPPERBOUNDSONSHELLSORT 221

CONCLUSIONS

Despite the substantial improvements that we have been able to make in upper
bounds for Shellsort, the results still pertain to particular increment sequences of
somewhat artificial construction and there seems to be room for improvement.
Furthermore, even the bounds derived for the given sequences are not tight. For
example, they only derive from the effects of a few of the previous passes and they
don’t take into account obvious correlations in insertion costs of successive
elements.

It seems likely that better bounds can be obtained by taking such effects into
account, and these are worth exploring because of the direct practical benefits that
accrue. The question of whether there exists an increment sequence of O(log N)
numbers which produces an O(Nlog* N) or O(N log N) Shellsort still remains
open.

APPENDIX

Proof of Theorem 1. By definition, n,(r, s) is the number of multiples of d which
cannot be represented as linear combinations of r and s. The following facts about
the gcd function will prove useful later on. (It is straightforward to verify these.)

FACT 1. For positive integers r, s, and d, ifgcd(d, r, s) = 1 then gcd(d/gcd(d, r), s)
= gcd(d, s).

FACT 2. For positive integers r, s, and d,

r
= r/gcd(d, r, s)

d r

gcd(d, r) gcd(d, r, s)’ gcd(d, r, s)

Fact 2 can be rewritten, giving us the following identity for positive integers r, s,
and d:

gcd
d r gcd(d, r)

gcd(d, r, s)’ gcd(d, r, s) =gcd(d, r, s)’

We will first look at nd(r, s) when gcd(d, r, s) = 1 and then prove the desired result.

Claim. Given positive integers r, s, and d such that gcd(d, r, s) = 1,

%try d = %/gcd(d, r) (gcd;d, r)“)’

222 INCERPI AND SEDGEWICK

Recall n,(r, s) = the number of cI such that there exists no c2, c3 30 with
c,d= c2r + c3s. Let y = gcd(d, r), denote d/y (resp. r/y by xd (resp. x,), it is clear
that gcd(x,, x,) = 1. Since gcd(d, r, s) = 1 we know that gcd(y, s) = 1.

If we let C represent the condition “there exists no c2, cj 2 0 with cr d = c2 r + c3s”
then we know that C is equivalent to the following:

CE there exists no c2, c3 with c,xd>j = c,x,y + c3s

E there exists no c?, c3 with c,xd= c,x,.+ (c3/y) s

E there exists no c2, c; with c, xd= L’*x, + c; s.

Thus,

proving the claim stated above. Notice that this equation is symmetric in r and s.
We could, in the same manner, have derived

Also notice that if gcd(d, r, s) = 1 then gcd(d/gcd(d, r), r/gcd(d, r), s) = 1 as well. If
we let D = d/gcd(d, r), R = r/gcd(d, r), and S = s then we may apply Eq. (2) again
since gcd(D, R, S) = 1. This gives us the following:

= n.,,cd,D, S) i R,

By Fact 1, we know that gcd(D, S) =gcd(d/gcd(d, r), s) is simply gcd(d, s). Sub-
stituting into the above equation, we get

r s
n,(rt s> = ndi’gcd(d, rJ gcd(d, .v) gcd(d, r)’ gcd(d, s)

whenever gcd(d, r, s) = 1.
Next we consider n,(r, s) without the gcd constraint. Let k = gcd(d, r, s) then

d= xdkr r = x,k, and s= x,k. nd(r, s) = the number of c, such that there exists no
c2, c,>O with cld= c2r + c3s. If we let C represent the condition “there exists no
ca, c3 3 0 withc, d = c2 r + c3s” then we know that C is equivalent to the following:

C = there exists no c2, c3 with c1 x,k = c2 x,k + cj x, k

E there exists no c2, c3 with c1 xd= czx, + c~x,~.

IMPROVED UPPER BOUNDS ON SHELLSORT 223

So we have

r s
%k d = %tXr3 -d = nggcd(d, ?, s) gcd(d, r, s)’ gcd(d, r, s)

Recall that from the definition of gcd we know that gcd(x,, x,, x,) = 1. We can now
apply the result in equation (3) and obtain the following

dry s, = nxd(xr, x.s) = nxd/gcd(xd,x,)gcd(xd, x,1
x, XS

gcd(x,, x,)’ gcdk,, x,1

By Fact 2 we have x,/gcd(x,, x,) = r/gcd(d, r). We can apply this three times in the
above equation, to x,, x,, and also to xd with one of the gcd’s in the denominator.
This give us

r s
nd(r? d = nd/gcd(xd, xr) gcd(d, s) gcd(d, r)’ gcd(d, s)

Finally, since gcd(x,, x,) = gcd(d/gcd(d, r, s), r/gcd(d, r, s)) we can use Eq. (1),

gcdk,, x,1 = gcd(d, r)
gcd(d, r, s)’

This leads to the desired result,

r s
%drt s) = %gcd(d , r, s)lgcd(d, r) gcd(d. s) gcd(d, r)’ gcd(d, S)

Note that for any r, S, and d this allows us to express nd(r, s) in terms of a
generalized Frobenius function with the three arguments pairwise relatively prime.
The second part of this theorem allows us to express this in terms of the standard
Frobenius function, We wish to show that if d, r, and s are pairwise relatively
prime, then

n,(r, s) = n
r+b,s (d-l)r+b,-is

r, s, -, . . . ,
d d

where b, is the unique integer between 1 and d - 1 such that ir + his - 0 (mod d).
Again, n,(r, S) = the number of c1 such that there exists no c2, c3 30 with

ci d= cIr + c3s. We must show that this equals the number of integers which cannot
be written as a linear combination of r, s, (r + b,s)/d,..., ((d- 1) r + bdp ,s)/d, where
the numerators are congruent to 0 mod d.

If we let C represent the condition “there exists no c2, cX 2 0 with c, d = cqr + c3s”
then we know that C is equivalent to the following: “there exists no c2, c3 with

224 INCERPI AND SEDGEWICK

c,=(c,r+c,s)/d.“Letc,=x,d+y,andc,=x,d+y,where0~y,,y,~d,thenwe
have the following

C~thereexistsno~,,x,,y,,y,withc,=x,r+x~s+ Y2r +Y3s d .

If yZr + y,s is congruent to zero mod d, then the last term above is divisible by d.
We know since gcd(r, d) = gcd(s, d) = 1 that both r and s have inverses r’ and s’
such that rr’ s ss 5 1 (mod d). We can use this equivalence to show that the inverse
must also be relatively prime to d.

Notice that for j= l,..., d- 1 that (jr’) r-t- ((d-j) s’) s ~0 (mod d). Let i=jr’
mod d, then b, = (d-j) s’ mod d. But since r’ and s’ are both relatively prime to d
we know that i and bi take on every value from the set {l,..., d- 1) if we let
j= l,..., d- 1. These are the only times y,r + y,s=O (mod d), so we have CZ there
exists no x2, x3, z1 ,..., zd-, with

c,=x,r+x,s+z,
r+b,s
-+ ... @Z&I

(d-l)r+bdP1s
d d

Thus nd(r, s)=n(r,s, (r+bls)/d,..., ((d- 1)rf bdels)/d). 1

REFERENCES

1. M. AJTAI, J. KOML,OS, AND E. SZEMERDI, An O(n log n) sorting network, in “Proceedings 15 th
Annual ACM Symposium of Theory of Computing,” April 1983, Boston, Mass.

2. W. J. CURRAN-SHARP, Solution to Problem 7382 (Mathematics), Ed. Times (London) 1 (1884).
3. B. CHAZELLE, private communication, 1983.
4. W. DOROSIEWICZ, An efficient variation of bubble sort, Inform. Process. Left. 11, No. 1 (1980), 556.
5. S. M. JOHNSON, A linear diophantine problem, Canad. J. Math. 12 (1960), 390-398.
6. D. E. KNUTH, “The Art of Computer Programming. Volume 3: Sorting and Searching,”

Addison-Wesley, Reading, Mass., 1973.
7. T. LEIGHTON, Tight bounds on the complexity of parallel sorting, in “Proceedings 16th Annual

ACM Symposium of Theory of Computing,” April 1984, Washington, D.C.
8. A. A. PAPERNOV AND G. V. STASEVICH, “A method of information sorting in computer memories,”

Probl. Inform. Transmtis. 1, No. 3 (1965), 63-75.
9. V. PRATT, “Shellsort and Sorting Networks,” Garland, New York, 1979; Ph. D. thesis, Stanford

University, 1971.
10. R. SEDGEWICK, “Algorithms,” Addison-Wesley, Reading, Mass., 1983.
11. R. SEDGEWICK, A new upper bound for Shellsort, J. Algorithms, in press.
12. E. S. SELMER, On the linear diophantine problem of Frobenius, J. Reine Angew. Math. 294 (1977),

1-17.
13. D. L. SHELL, A high-speed sorting procedure, Comm. ACM2, No. 7 (1959), 30-32.

