
Computer Graphics Volume 18, Number 3 July 1984

A System for Algorithm Animationt

Mare H. Brown
Robert Seclgewick

Dept . of C o m p u t e r Science
Brown University

Providence, RI 02912

Abstract: A software environment is described which provides facilities at a variety of levels for ~animating"
algorithms: exposing properties of programs by displaying multiple dynamic views of the program and associated
data structures. The system is operational on a network of graphics-based, personal workstations and has been used
successfully in several applications for teaching and research in computer science and mathematics. In this paper,
we outline the conceptual framework that we have developed for animating algorithms, describe the system that we
have implemented, and give several examples drawn from the host of algorithms that we have animated.

Introduct ion
C o m p u t e r p rog rams in execu t ion are com p l ex objec ts w h o s e

proper t ies c an be difficult to f a t h o m . Our cen t ra l thes i s is
t h a t i t is possible to expose t h e f u n d a m e n t a l cha rac te r i s t i c s of
a b road va r i e ty of p r o g r a m s t h r o u g h t h e use of d y n a m i c (real-
t ime) graphic displays a n d t h a t such a lgo r i t hm a n i m a t i o n has
t he po ten t i a l to be qui te useful in several con tex t s . In t h i s
paper , we descr ibe a sys tem w h i c h we have bu i l t ba sed o n
th i s thes is and de ta i l some of our exper iences in us ing it over
t he pas t year.

One obvious app l i ca t ion is c o m p u t e r science educa t ion .
A t Brown Univers i ty , we have a l a b o r a t o r y / l e c t u r e hall con-
t a in ing 60 h igh -pe r fo rmance scientific works t a t i ons (Apollos)
w i t h b i t m a p graphic displays , connec t ed t o g e t h e r on a h igh-
b a n d w i d t h resource-shar ing local a rea ne twork . Courses
in i n t r o d u c t o r y p r o g r a m m i n g , a lgor i thms a n d d a t a s t ruc-
tures , different ial equa t ions , and assembly l anguage have b e e n

t a u g h t in t he lab us ing t he software e n v i r o n m e n t descr ibed
in th i s paper as t h e p r inc ipa l m e d i u m of commun ica t i on .
R a t h e r t h a n exp la in a concep t us ing a b l a c k b o a r d or a
v i ewgraph pro jec tor , i n s t ruc to r s in these courses have been
able to use d y n a m i c g raph ic p resen ta t ions .

A second app l i ca t ion is in research in t h e des ign a n d
analysis of a lgor i thms . T h e courseware t h a t we have
developed for t e ach ing t h e a lgor i thms and d a t a s t ruc tu res
course provides a firm basis to allow our sof tware envi ron-
m e n t to be used for a d v a n c e d research in a va r ie ty of areas.
The r eady avai labi l i ty of d y n a m i c g raph ic displays e x h i b i t i n g
var ious p roper t i es of a lgo r i thms in execu t ion has t h e po ten-

tSupport for thim research was provided by the E x x o n Education
Foundation, and by the ONR Lnd DARPA under Contract NO0014-S3-
K-014e ~nd ARPA Order No. 4786. Equipment support was provided by
NSF Gr~nt SER80-04974 and by Apollo Computer, Inc. Support for the
second author w~s provided in part by NSF Gr~nt MCS-83-ose06.

Figure 1. An iconic table of contents for some BALSA
animations. This may be thought of as an "index" to a
"dynamic book." Selecting an icon with a mouse causes
a 10-15 minute dynamic simulation of the corresponding
topic to be run, with pauses at key images, after which
the "reader" can interact with the algorithms and
images. These particular icons represent animations on
mathematical algorithms (top row, left to right: Euclid's
GCD Algorithm, 3/4 Recursion, Random Numbers,
Curve Fitting), sorting (Insertion Sort, Quicksort, Radix
Sort, Priority Queues, Mergesort, External Sorting), and
searching (bottom row: Sequential Search, Balanced
Trees, Hashing, Radix Searching). Several are described
in more detail in following figures. The reader must bear
in mind that these figures are static "snapshots" from
real-time simulations, the essence of many is in their
dynamic character.

One of the primary applications of the BALSA
environment has been for instruction in an "Electronic
Classroom" in the Dept. of Computer Science at Brown
(see Fig. 10). Two exemplary courses which integrated
the dynamic simulations into lectures were the first
semester introductory Pascal programming course (see
Fig. 3) and the third semester algorithms and data
structures course (see Fig. 4).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0 - 8 9 7 9 1 - 1 3 8 - 5 / 8 4 / 0 0 7 / 0 1 7 7 $00 .75

177

@SIGGRAPH'84

Figure 2. The image above shows top-down recursive
mergesort; the image below shows bottom-up

non-recursive mergesort. The large window in both
images is a "horizontal bars with history" view: the

array being processed is at the leftmost column (bottom
to top) with lengths of bars corresponding to values

of elements. The contents of the array during various
stages in the algorithms are displayed in successive

columns. The small window in both images is a "dots"
view: each element of the array is portrayed as a dot

whose x coordinate corresponds to its position in
the array, and y coordinate corresponds to its value.

In the algorithms and data structures course, a typical
lecture would consist of each student's workstation

displaying a previously created animation script of the
material from the corresponding chapter of the textbook.

Rather than using a viewgraph or blackboard, diagrams
such as those shown here would be presented through

BALSA. Moreover, the BALSA diagrams are dynamic,
which better models the true nature of the material and
thus allows fuller explanations of more complex material

than is available using other modes of communication.
The facilities were available to students during non-class

hours for completing programming assignments,
replaying classroom scripts, and experimenting.

tial to significantly impact advanced research in this area.
A third application is in advanced debugging and sys-

tems programming. To date, we have done little specific
work in this area, but we believe our work on techniques for
visualizing properties of fundamental data structures to be
of central importance in such applications. We plan to ex-
plore interfaces to performance monitors, debuggers, program
development environments and other software systems in fu-
ture research.

These applications illustrate that "algorithm animation ~
can involve a variety of different types of users and thus
requires support on a variety of different levels. In this
paper, we describe the technical aspects of BALSA (Brown
ALgorithm Simulator and Animator), the software system we
have developed to support these activities, and give examples

illustrating various modes of utilization.
Certainly it is a fundamental axiom of computer

graphics that visualization of abstract concepts is invaluable,
and many researchers have considered the natural question
of applying this principle to better understand tools of their
own trade (algorithms and data structures). Some previous
examples m a y be f o u n d in [i], [2], [3], [5], [7], [9], and [I0].
Discuss ion of some work r e l a t i ng to m o n i t o r i n g p rog rams in
execu t ion a n d to visualizing t h e ope ra t i on of large sys t ems
p rog rams m a y be f o u n d in [11] and [S], respect ively. Also
re levant (t hough no t d i rec t ly re la ted) is t h e excel lent t r e a t -
m e n t of visual displays in [14]. M a n y of these efforts involved
cons iderable expense of t ime and m o n e y (for the use of ex-
pensive rea l - t ime sys tems or for t he p r o d u c t i o n of movies) ,
b u t t hey do d e m o n s t r a t e t h e po t en t i a l of the concept , espe-
cial ly [2].

The avai labi l i ty of h igh -pe r fo rmance scientific works ta -
t ions has made it possible for us to more fully realize that
potential. We have developed a software environment which
makes real-time simulations of programs (as opposed to
movies) using high-resolution graphics readily available to
students and researchers. The BALSA system has been in
production use by over 450 students and a dozen researchers
since September 1983. We have gained extensive experience
in actually using the system to animate scores of algorithms.
Moreover, it has allowed a dynamic graphic interface to be-
come a natural mode of interaction for a large number of
students, teachers, and researchers.

The next section describes our general conceptual frame-
work for animating algorithms. Following that, we describe
in more detail what is involved in the implementations. The
final section offers concluding comments and outlines some
future plans. Illustrations of images from animations that we
have implemented are included throughout the paper, with
detailed commentary and discussion of some of the applica-
tions included in the figure captions.

178

Computer Graphics Volume 18, Number 3 July 1984

U s e r P e r s p e c t i v e

M a n y of t he facil i t ies p rov ided b y B A L S A are p resen t in
s t a t e -o f - the -a r t g r aph ic s -based ob jec t -o r i en ted p r o g r a m m i n g
systems such as Smal l t a lk I6]. T he m a i n reason t h a t we chose
to bui ld a t a i lo red specia l -purpose sys tem is t h a t t he real-
t i m e dynamics of t he p r o g r a m s in ope ra t ion is of f u n d a m e n -
t a l impor t ance : we were no t p r e p a r e d to pay the pe r fo rmance
penal t ies i n h e r e n t in t h e use of a genera l -purpose sys tem.
Essential ly, B A L S A m a y be t h o u g h t of as a l a b o r a t o r y for
e x p e r i m e n t a t i o n w i t h d y n a m i c rea l - t ime r ep re sen ta t ions of
a lgor i thms. As will become a p p a r a n t below, our exper ience
w i t h t he sys tem has uncovered a var ie ty of f u n d a m e n t a l
issues concern ing process ing such objects , wh ich we hope
will be of re levance in cons ider ing t h e poss ibi l i ty of suppor t -
ing BALSA- type opera t ions w i t h accep tab le pe r fo rmance in
genera l -purpose sys tems of the fu ture .

The figures in th i s pape r are on ly r ep resen ta t ive of t h e
scores of a lgor i thms t h a t we have a n i m a t e d . In pr inciple , we
could make any of t he se a n i m a t i o n s avai lable for any type of
user at any t ime. A m a j o r goal of our research is to con t inue

deve lopmen t of high-level facili t ies wh ich m i g h t allow th i s
as well as to integrate and assimilate generally useful views
and algorithms into BALSA. We fully expect our various
system =users" to be using higher level graphic and dynamic
primitives as the system matures. Several different types of
people can make effective use of the BALSA system, and we
have found it convenient to use specific descriptive terms for
each mode of use.

User8

We use the term user to describe a person who is interested in
watching algorithms in execution, using BALSA's interactive
facilities. This person does not write code/rather he invokes
code written by others. He might be thought of as a "reader"
of a dynamic book.

A scriptwriter is a person who prepares material for
users, using BALSA's high level facilities. This person does
not write code in the ordinary sense either, but he may
make sophisticated use of interactive facilities and store away
material for users. He might be thought of as an "author" of
a dynamic book, using raw material developed by others.

An algorithm designer in BALSA jargon is a program-
mer who is interested in using BALSA's facilities to get a
dynamic graphical display of his program in execution, so
that it might be more easily understood. If the domain of
operation of his program is close to something that has al-
ready been animated, he may use a previous implementation,
and therefore not have to worry about low-level graphics. We
have animated algorithms from a variety of domains, so we
expect this case to be typical.

An animator is a person who designs and implements
programs which actually display programs in execution, us-
ing BALSA's low-level facilities. This involves two types
of programs: those implementing algorithms, which often
come from some other source, and those involving the actual

(A*B*AC)D

i l l i : : i : i :~: l l l l l l l l l II II I I I I I I I I I I I
i f p [j] = ' (' then i:i::::-::::::::~
b°g,. ili::i::i::i::i::i
j ; =j + t ; :i i!i!i:i ii
expression; ii~:i:iil fill
If p [j]= ') ' then j : = j + l °1 i::i::~::~::!::!::~

en, i!iii::iiiii!ilil ~
tho. J,=i*l; i::i:i:i:i:ili !

: : : : : : :
: : : : : : :

Figure 3. These two images illustrate how a generalized
regular expression pattern marcher (grep) works. The
image above is a recursive descent compiler. In the
code view at the left, the current line is highlighted
and each procedure is displayed in its own overlapping
subwindow. The views on the right show the regular
expression, the scanning of the expression, and the parse
tree. Note the correspondence between the recursive
procedure invocations and the parse tree. The image
below shows the workings of the non-deterministic finite
state automaton built from the compiler above as it
determines whether a text string can be generated by
a regular expression. The views at the right show the
primary data structure - a "deque." Each element in
the deque is a state of the FSA, which can be identified
by the tabs. The letter inside the state indicates what
input character (if any) must be scanned to advance to
that state.

In the introductory Pascal programming course, the
principal mode of communication was for each student's
machine to mimic what the instructor was doing in
the BALSA environment on his machine. Students
could also run programs on their own and supply data
and answers in response to prompts. (Note that there
are no CAI-like facilities for "response judging" in
BALSA.) The animations in this course emphasized
single-stepping of source code, often simultaneously
with multiple levels of pseudo-code, and watching
the corresponding effect on the variables and data
structures. The style of overlapping subwindows for
procedure invocation illustrated above proved to be a
very effective method for tee:ching recursion.

179

@SIGGRAPH'84

i iiiiiiiiiii !i!i! ! !iii!iiiiiii!i!i i! !i iiiiiiiiiiiiiiiiiiiii!i!i i!!i ii!!! i i
ii~i~i~iii!!~i~i!iiii!i~!~i~i~i~!~!~i!~i!~!i~:~!~i!i~!i~i~ii~!!i!i~i!iii~iiiii!iiiiiiiiiiii~iiii~iiii~ii~i~ii!ii!!~iii~iii~i~!~i!i! ... ~ - ~

Figure 4. The image above shows the construction of
a 2D tree used for range searching. The views are of

the tree, the planar subdivisions induced by the tree,
and a "history" of the planar subdivisions after each

point is inserted. The image below shows a much larger
data set (about 75 points). The dark rectangle in the

planar view indicates the query range (i.e., the algorithm
returns all points which fall in that area). The state of
each node indicates the result of the search algorithm:

circular nodes have not been accessed; hollow square
nodes have been searched and found not to be in the

range; filled squares are those points searched and found
in the range. The view above the planar view is a 1D

representation of the points: each point is drawn with a
vertical bar above it corresponding to its x coordinate and
the vertical bar below it corresponding to its y coordinate.

BALSA provides facilities for displaying multiple views
of a data structure, all of which are updated

simultaneously during program execution to give a
motion picture of the program in action. Note that the

representation of nodes in all views is consistent; this
serves to unite the views and make a more effective total

picture. Note also how the nodes are drawn in different
sizes and with various levels of detail depending on

both the size of the data set and the size of window in
which the view is displayed. The user is able to "zoom"

in or out of any view to any level of detail, as well as
"scroll" the image in the window both horizontally and

vertically. For studying small cases (and introducing
material to students), a "history" view proved to be very

useful as did using examples directly from the textbook
- with textual data. For large cases, the dynamics
of the algorithm in action with abstract graphical

representations of the data was the most important aspect.

graphic orders to d raw pic tures .

Facilities
As s t a t e d above, our genera l sys tem ph i losophy is to p rov ide
dynamic views of algorithms in execu t ion . To s u p p o r t th is ,
t h e "user" of t he B A L S A sys tem has t h r e e different types of
capabi l i t ies : interpretive, for cont ro l l ing t h e execu t ion of t he
a lgor i thms; display, for m a n i p u l a t i n g t h e p r e s e n t a t i o n of t he
views; a n d shell, for h igher- level cont ro l of B A L S A pr imi t ives .

The display pr imi t ives of B A L S A allow t h e user to
create , size a n d pos i t ion "a lgo r i thm windows" wh ich c o n t a i n
"view windows." For example , t he screen images in Fig. 4
each show one a l g o r i t h m window con ta in ing th ree different
view windows, whi le t h e second image in Fig. 8 shows two
a lgo r i thm windows each con ta in ing t h r e e view windows. One
possible v iew is a "code" v iew w h i c h shows t h e code be ing
execu ted (see Fig. 3). T h e user has full f lexibi l i ty in bu i ld ing
his screen e n v i r o n m e n t , sub jec t only to t h e choice of algo-
r i t h m s a n d views left t o h im b y t he a l g o r i t h m des igner a n d
an ima to r . C o m m a n d s are invoked b y us ing a mouse on pop-
up menus , and inc lude create , delete, size, move, a n d o t h e r
s t a n d a r d window opera t ions . Zooming , p a n n i n g , a n d over-
lapping windows are also suppor ted .

The i n t e rp r e t i ve p r imi t ives of B A L S A allow t h e user to
s ta r t , stop, slow down, or even r u n a n a lgo r i t hm backwards .
Break-points a n d s t epp ing are suppor ted , in un i t s mean ing -
ful to t he a lgor i thm. It is possible to d isable a lgo r i thms a n d
views or to r u n several s imul taneous ly . Af te r an a l g o r i t h m
has r u n once, an ent i re h i s to ry of t h a t r u n is saved by t h e sys-
t em, so i t c an be r e r u n (pe rhaps for c o m p a r i s o n w i t h a n o t h e r
a lgor i thm) ef~cient ly a n d easily. In no sense is th i s p a r t of t h e
sys tem i n t e n d e d to be a genera l -purpose in t e rp re t e r : r a t h e r i t
is a set of facilities to allow control of execution of algorithms,
tailored to facilitate animation.

The shell primitives of BALSA allow the user to save or
restore window configurations and to save or invoke scripts
consisting of sequences of BALSA primitive operations, which
are typically quite long. For example, Fig. 8 shows snapshots
from two scripts on the same algorithms and views: one that
was developed for use in the classroom in an introductory
lecture on graph algorithms, the other that was developed
for use in research on graph algorithms. Both scripts use the
same algorithms and views. Normally, the algorithm designer
or the animator will leave a set of window configurations for
the user and the scriptwriter will leave a script which loads

these configurations and invokes the interpretive facilities of
BALSA so as to tell the story of the algo.rithms. Or, the user
may build and save his own window configurations and scripts
for later use. Additional utilities such as screen hardcopy and
communications with other BALSA users are also supported.

180

Computer Graphics Volume 18, Number 3 July 1984

A n i m a t i n g an A l g o r i t h m
The following sequence of events would typical ly be involved
to animate a "new" algor i thm (unlike any tha t has ever been
done before) in BALSA. First , the a lgori thm designer imple-
ments a "clean" version of the algori thms to be an ima ted
(for most of the examples in this paper, we s tar ted wi th the
Pascal implementa t ions in [13]), along wi th programs which
provide various types of input to the algori thm. Next , the
animator and a lgor i thm designer agree on a general plan for
various visualizat ions of the algori thms, mainly for the pur-
pose of identifying the interest ing events in the a lgor i thm
which should lead to changes in the image being displayed.
T h e n the animator writes the software which mainta ins the
image (changing it in response to interest ing events} and the
designer adds interest ing event signals to the a lgor i thm to
pass requisite informat ion to the graphics software. This
results in a set of algorithms and views which are accessible
to the user and to the scriptwriter. T h e n either the user could
invoke the BALSA interpre ter and window manager direct ly
to create dynamic images of the type described below, or he
could invoke scripts consisting of sequences of BALSA primi-
tive operations previously created by the scriptwriter. More
details on the creation of algorithms, views and scripts are
given below, and in Figs. 6 and 7.

The Algorithm

The pr imary role of the algorithm designer is to take an algo-
r i thm and to prepare it for animation. If a similar a lgori thm
has already been prepared for BALSA animat ion, he need
only augment the a lgor i thm wi th interest ing event "signals"
and inform BALSA which views and inputs are valid for the
part icular algori thm, using a configuration file. The views
and inputs can be from the BALSA library, or tai lored to
the part icular a lgor i thm or the part icular genre of a lgori thm
(e.g., graph algorithms, or sorting algori thms, or convex hull
algorithms, etc.}.

At the conceptual level, the v/ew paradigm is t ha t of a
"monitor" during the execut ion of an algori thm. As the al-
gor i thm executes and d a t a structures are modified, the views
update their graphical displays appropriately, based on infor-
mat ion from interest ing event signals. As ment ioned above,
we prefer this to the a l ternat ive of having the view react to
general moni tors on the algori thm da ta structures, because
the needs of the view may or may not correspond direct ly
to specific changes in the algori thm's da ta structures. The
interest ing event signals are implemented simply as proce-
dure calls to the B A L S A / E - m a n a g e r ; the parameters are the
name of the interest ing event followed by algorithm-specific
entities. When the user causes BALSA to start normal ex-
ecution of the algorithm, the algorithm will call the BALSA
IE-manager for each interesting event. The IE-manager will
then call all of the "active" views (i. e., those views that
the user has opened on the screen}. The view updates itself
graphically, based on the interesting events.

Another modification that must be made to the al-

I

.......... 'I" ..
: : : i o I - l o lo t o

_ " ° e l ° l " ° l
' .:..:,!. i o.° . . o , . , . o . . o,o,. o

. 0 • • .L~O0

PROCtou~[s i ~ l e x :
vA~ p .q , t: inleger;

PROCEDUR[p l v o t ~ p , q : lhttgee);
~ [c j .k . t 9,r.

for j:=e to N do
for k:=M*l d o . t o t do

i t (jop} and (kOq) the~
a[j.k]:~a[j .k I alp, kJaal J, q}/aIp, q];

for J:=O to N do
i f j<)p tl~n aij.q]:=8:

~; r@r k;=l to Htl do
if k{>q th~h aip,k];~a[p,k]/aip,q]:
~qh =t

Figure 5. These images illustrate the Simplex method
for solving linear programming. The image above shows
the tableaux in the upper left view, an iconic version
of the tableaux, the code, and the 3D object formed by
plotting the system of linear equations. The algorithm is
currently in the "pivot" phase, and the effect of previous
pivots can be seen by tracing the object edges along the
labelled vertices. The image below shows four different
wire frame pictures of an object corresponding, to a
different set of linear constraints. The views (from
left to right) are the object from the front, top, side,
and finally, with some perspective (actually, it uses
a "shearing" transformation). The dotted row in the
iconic tableaux indicates a probe to find an appropriate
row for the pivot operation, and the solid row is the
current choice.

BALSA has been used in a number of non-computer
disciplines to model physical experiments, as well as
abstract material such as differential equations and
differential geometry. These images, for example, are
wen-suited for a course in operations research or linear
algebra. These images also illustrate a use of icons:
what is important in the tableaux is not the value of
the elements, but whether the element is zero (a bullet),
negative (dark dot), or positive (hollow dot). Note also
that the top row (which represents the condition we are
solving) is displayed differently from the others (each of
which represents a given constraint).

181

@SIGGRAPH'84

now:=O;
for k:=1 to V do

begin val[k]:=unseen; dad[k]:=O end;
pqconstruct;
r e p e a t

k:=pqremove;
i f v a l [k] = u n s e e n t h e n

begin
IE[IEaddlringe, dad/k/,k, val/k]/;
va l [k] :=O;
now:=now+l;
end

IS (IEaddtree, dad/k],k, val /k]} ;
t : = a d j [k] ;
while t<>z do

begin
if val[tr.v]=unseen then now:=now+l;
if onpq(tT.v) and (val[tT.v]>now) then

begin
IE (1E addf ringe, k, tT . v, now};
pqehange(t~.v.now);
d a d [t T . v] : = k
end;

t:=tT.next
end

until pqempty;

F i g u r e 6. Shown above is a fragment from a typical
algorithm after it has been augmented with interesting

event markers (shown in italics). This algorithm was used
to generate the breadth-first graph traversal images in

Figs. 8 and lO, and is taken directly from the textbook.

Shown below is an excerpt from the configuration file
that the algorithm designer uses to inform BALSA

which views and inputs are valid for a given algorithm.
The algorithm in this example is a routine called

B r e a d t h F i r s t (see excerpt above). When the user is
prompted with a popup menu of possible algorithms,

BALSA will use the label BFS. The algorithm
designer has specified that this algorithm has two
possible input routines and three different views.

I - ALfl0RITHNS =>
BreadthFirst =BFS"

INPUTS: GKAPHinputFile GRAPHinputRandom
VIEWS: GKAPHviewPlane GKAPHviewFringe

gorithm is the I/O routines. Calls to conventional input
routines (e.g., r e ad ln in Pascal and scan~ in C) must be
replaced by calls to a BALSA input-manager, which in turn
calls the input module which the user has selected. Tools
from the window manager/user interface package are avail-
able for the implementation of input modules, so that inter-
action can be arranged. However, the identity of the input
module which is actually in use is transparent to the algo-
rithm. The effect of calls to output routines (e.g., w r i t e l n
and p r i n t I) are not visible in the BALSA environment per
se; however, the user can see conventional, textual output
by linking an ~output-view" using interesting events with
parameters analogous to output statements. For teaching in-
troductory programming, this type of view (and also a view
of the input stream) has proven very helpful.

BALSA can take this modified algorithm and generate
a code view, a "pretty-printed" version (with uniform inden-
tation, interesting event calls removed, and I /O statements
restored) with special interesting event calls inserted at each
line of code (see Fig. 3). These interesting events are fielded
by the BALSA library code view routine, so that the user can
see each line of his program highlighted as it is exectued, etc.

V{ew8

The primary role of the animator is to implement the graphics
commands that actually produce images, in response to in-
teresting events signals.

Our experience has been that sophisticated views can
require costly computations to update the graphics on the
screen. Since many views (including multiple instantiations
of the same view) frequently use the results of the costly
computation, we have developed the concept of view data
structure managers (VDSMs). A VDSM is a set of routines,
frequently shared among views, that performs various com-
putations required by the views. Thus, at each interesting
event, the BALSA IE-manager calls all VDSMs associated
with active views and then calls all active views. Note that
computation done in one view cannot be used by another
view, since the other view will only be called when the user
has opened a window of the view. The shared work must be
done by the VDSM.

If an algorithm is executing when the user first opens an
instantiation of the view on the screen, the view must display
itself corresponding to the current state of the algorithm.
This could be done in one of two ways. First, BALSA could
replay its saved history of interesting events and the view
would update itself incrementally as if the program were
executing. This method has the problem that one might not
be interested in what happened in the algorithm over history;
rather the current state is of interest. The second option,
which is more di~cult for the animator to implement, is for
the view to refresh itself from the current VDSMs. (In this
mode, the VDSM --if it was not already active because of
another dependent view-- would be called incrementally with
the history of interesting events so that it would be current.)

182

Computer Graphics Volume 18, Number 3 July 1984

VDSMs and views must also be able to reverse execu-
tion. Our current BALSA interpreter, when told by the user
to run in reverse, will go through the history of interesting
events in reverse order and call the VDSMs and views with a
flag indicating that the direction is reverse. The VDSMs and
views must undo the graphics associated with the interesting
events. This is also another reason for VDSMs: while conven-
tional compilers and interpreters do not run code backwards,
the VDSM data structures need to be undone to some extent.
Undoing the graphics for some views is simple. For example,
to undo the effects of exchanging the contents of two elements
from an array is usually identical to exchanging them in the
first place. In contrast, undoing the insertion of a node in a
balanced 2-3-4 tree is non-trivial.

The final responsibility of views is that of "inquiry." For
example, if an animator writes an input module for a binary
tree deletion algorithm, the user might want to specify which
node to delete by pointing at it with a mouse. The view must
be able to map a point on the screen into a coordinate system
meaningful to the view, VDSM, and input modules.

In summary, a view can be called in one of five "modes":
forward, backward, rerun (usually the same as forward),
refresh, or inquiry. The VDSMs can be called in either the
forward or backward mode. Most successful animators take
the approach of designing for all modes, but only implement-
ing the forward and (if the input module requires) inquiry
modes to start. As the view matures, the other modes are
gradually implemented. For example, animators will often
not invest the time needed to make a view reverse itself until
the view has become more versatile, at which time it would
probably also be added the BALSA library.

Scripts

The primary job of the scriptwriter is to assemble algorithms
and views into a coherent dynamic entity to tell a story.
The mechanism currently provided in BALSA to allow this is
quite rudimentary: the scriptwriter simply uses the interac-
tive facilities of BALSA in a mode where everything that he
does is saved in a file to be later played back. Some features
are provided to allow different things to happen on playback:
the most commonly used is the [u~ure freeze which is a no-op
during interaction, but a "pause" (wait for the user to press a
button) during playback. Also, it is possible to save complex
window configurations (scenes) to be loaded later. Typically,
the scriptwriter will create scenes or sequences of scenes con-
sisting of several algorithms and views, then create a script to
run the algorithms on a variety of inputs, with future freezes
inserted at particularly interesting points.

It is possible, albeit difficult, to edit scripts: this is an
area in which we plan to significantly extend the capabilities
of BALSA. Also, we expect to allow various types of con-
ditional execution of scripts (extensions to future freeze) in
future versions of the system.

IES=>
IEinit "Initialize" "~d ~d ~d ~d"

-- xmin, ymin, xmax, ymax
IEinitvertex "Init Vertex" "~d ~d ~d"

-- vertex id. xcoord° ycoord
IEinitedge "Init Edge" "~d ~d ~d"

-- vertexl, vertex2, weight
IEaddtree "Add Vertex to Tree" "~d ~d ~d"

-- father vertex, vertex, value
IEaddfringe "Add Vertex to Fringe" "~d ~d ~d"

-- father vertex, vertex, value

INPUTS=>
GKAPHinputFile "File"
GRAPHinputRandom "Random"

VIEWS=>
GRAPHviewPlane "Points in Plane"

IES: IEinit IEinitvertex IEinitedge
IEaddtree IEaddfringe

VDSMS: GRAPHvdsm

Figure "t'. Shown above is an excerpt from the
configuration file that the animator uses to provide
BALSA with detailed information about interesting
events, inputs, and views. Each interesting event
registers with BALSA a control string specifying the
data types of the algorithm-specific parameters, and
each view lists its associated VDSMs and the interesting
events to which it will respond.

Shown below is pseudo-code for the VDSM and view
that displays the graph. With the VDSM as shown
below, the view could not refresh itself from the current
state of the data structures, nor could it execute in the
"backward" direction (because the old mark-state of
each node is not known). Thus, a more sophisticated
VDSM would be needed, but the view would not be any
more complicated than above. Note carefully that the
view data structure does not include graph edges (they
are just drawn on the screen). This view and VDSM are
very versatile, and can be used for many very different
graph algorithms, including those for dense graphs
which are based on an adjacency matrix rather than an
adjacency list.

GRAPHvdsm:
switch (type of i n t e r e s t i n g event)

case IEin i tedge:
save x and y coords of vertex
mark all vertices as "unseen"

case IEaddtree
mark vertex as "tree"

case IEaddfringe:
mark vertex as "fringe"

endcase

GKAPHviewPlane:
switch (type of interesting event)

case IEinit:
initialize graphics window to parms

case IEinitvertex:
dr~w vertex node in its mark-state

case IEinitedge:
case IEaddtree:
case IEaddfringe:

if both vertices are "unseen" =>
style=THIN

else if either vertex is "fringe" =>
style=DASHED;

else style=THICK
draw edge from vl to v2 in style
draw vl node in its mark-state
draw v2 node in its mark-state

endcase

183

@SI6GRAPH'84

= , , '!

O • 1:3•
• 011 D D

@[::] •
• •
0 •
0 • O l D
O •
ED • •

[]

~ H

Figure 8. The image above illustrates a breadth-first
traversal of a small undirected graph. The display style of
each node and edge indicates its state: dark circular nodes

with thin edges have not yet been visited; hollow square
nodes with dotted edges are nodes on the priority queue

data structure ready to be visited in the near future; and
dark square nodes with thick edges are nodes which have

already been visited. The large view at the left shows
the adjacency matrix; the view below that shows the

current contents of the priority queue (the height of the
stick above each node indicates its priority); the view at

the upper right shows the connected components; the
view below that shows a "history" of the fringe; and

finally, the view in the lower right corner shows the graph
itself. The image below is a comparison of depth-first
(top) and breadth-first (bottom) traversal algorithms.

BALSA has been used for research in the design of al-
gorithms. It is especially useful when designing new variants
of old algorithms, or new algorithms which operate within

standard contexts. The image below illustrates the
BALSA feature of executing multiple algorithms in

parallel. This has proven to be a very effective means
for comparing and contrasting different methods.
(BALSA synchronizes the algorithms by allowin~

each to execute a fixed number of interesting events.)

Conclusion
One th ing tha t we have learned f rom our exper ience in
an imat ing algori thms is tha t a lgor i thms in execut ion are
even more complex and intr icate objects t h a n we had an-
t ic ipated, and we can make good use of fur ther improvements
in hardware technology. For example, pre l iminary experi-
ments show tha t color is l ikely to play a p rominen t role in
fu ture animat ions (see Figs. 9-10). We have several plans for
ex tending animat ions t h a t we have done in b lack-and-whi te
to make full use of color.

By contrast , a second th ing tha t we have learned f rom
our experience is t h a t many of the animat ions tha t we
finally set t led on could be done on much more modes t
hardware. Accordingly, we are invest igat ing the develop-
ment of a B A L S A tha t could be made widely available, say
on Apple Macintoshes or IBM PCs. This does not imply
t h a t it would have been prudent to use such hardware f rom
the beginning: most of our animat ions are the product of
a significant amount of exper imenta t ion and development ,
which would not have been feasible on less powerful machines.

Our highest pr ior i ty is to evaluate and assess the views
tha t we have implemented , wi th a general goal of assimilat ing
and integrat ing them into the system, so tha t more compli-
ca ted animat ions can be easily buil t f rom them. This is l ikely
to be quite difficult, for example, we have over a dozen anima-
t ions involving trees, bu t each has slightly different charac-
teristics (see, for example , Figs. 3 and 4).

Also under s tudy is the addi t ion of more general-purpose
capabili t ies to the system (e.g., a syntax-di rec ted editor) ,
au tomat ion of some of the stages of an imat ion (e.g., the
addi t ion of interest ing events), and the implementa t ion of
BALSA-l ike animat ions on general-purpose systems (e.g.,
those which support monitors , such as P E C A N [12]). Of
pr ime concern here is the balance be tween per formance
(as stressed in BALSA) and funct ional i ty (as stressed in
PECAN) .

Another area of interes t is to provide more powerful
facilities for the scriptwriter. Certainly, he should be able
to edit scripts, perhaps using a general ized undo-redo faci l i ty
such as [15], though the extensive amount of context in
BALSA makes this challenging. Yet another possibili ty is
to consider nonlinear or condit ional scripts, as in t rad i t iona l
computer -a ided- ins t ruc t ion systems. Also, we have plans for
providing graphical aids to the scriptwriter , allowing him to
manipula te iconic representat ions of window configurations,
algori thms, views, input modules, and scripts.

Finally, we are continual ly interes ted in ex tending the
applicabil i ty of B A L S A by an imat ing more programs f rom
more domains. In par t icular , we would like to address the
problem of an imat ing very large programs, so t h a t B A L S A
could be of use in systems p rogramming applications. For
these and other applicat ions, i t is our hope tha t the tools t h a t
we have buil t to date will convince teachers and researchers
t ha t there is the potent ia l to make a quan tum step forward
in the way in which they interact wi th compute r systems.

184

Computer Graphics Volume 18, Number 3 July 1984

References

[1] Baecker, Ronald, "Two System Which Produce
Animated Representations of the Execution of
Computer Programs," ACM SIGCSE Bulletin 7,
1 (February 1975), 158-167.

[2] Baecker, Ronald, 'Sort ing out Sorting," 16ram
color sound file, 25 minutes, 1981. (SIGGRAPH
1981, Dallas, Texas)

[3] Booth, Kel logg, 'PQ Trees," 16ram color silent file,
12 minutes, 1975.

[4] Brown, Marc H. and Sedgewick, Robert, "Progress
Report: Brown University Instuctional Computing
Laboratory," ACM SIGCSE Bulletin 16, 1
(February 1984).

[5] Dionne, Mark S. and Mack-worth, Alan K.,
"ANTICS - A System for Animating LISP
Programs," Computer Graphics and /znage
Processing 7 (1978), 105-119.

[6] Goldberg, Adele, Smalltalk, Addison-Wesley,
Reading, MA, 1983.

[7] Gnibas, Leo and Sedgewick, Robert ,"A Dichromatic
Framework for Balanced Trees," in Proc. 19th
Annual Syrup. on Foundations of Computer
Science, October 1978, pp.8-21.

[8] Herot, Christopher F., et. al.,"An Integrated Env-
ironment for Program Visualization," in Auto-
mated Tools for Information Systems Design,
H.J. Schneider and A.I. Wasserman, Ed., North
Holland Publishing Co., 1982, pp. 237-259.

[9] Knowlton, Kenneth C. , 'L6: Bell Telephone
Laboratories Low-Level Linked List Language,"
two black and white sound films, 1966.

[10] Myers, Brad A., 'Displaying Data Structures for
Interactive Debugging," CSL-80-7, Xerox PARC,
Palo Alto, CA, 1980. (Summary in SIGGRAPH
1983)

[1 1] Plattner, Bernhard and Nievergelt, Jurg, "Monitoring
Program Execution: A Survey," Computer 14
(November 1981), 76-93.

[12] Reiss, Steven P. ,"PECAN: A Program Development
System that Supports Multiple Views,", Orlando,
FL, March, 1984.

[1 3] Sedgewick, Robert, Algorithms, Addison-Wesley,
Reading, MA, 1983.

[14] Tufte, Edward R., The Visual Display of
Quantitative Information, Graphics Press, Cheshire,
CT, 1983.

[15] Vitter, Jeffrey S.,~USeR: Undo, Skip, et Redo," ,
Pittsburg, PA, April, 1984.

I) :'

e ~

I)

Figure 9. These two images are "chips" views
of Bubble Sort (above) and Quicksort (below).
The contents of the array are displayed as a
row of paint chips (from left to right), with
color corresponding to value. Each row (from
bottom to top) shows the the array at various
stages of the algorithm. It is instructive to
note that the number of "stages" does not
determine a fast or slow algorithm; rather,
it is the amount of work that must be done
during each stage. In the Quicksort image, the
dot at the center of each chip indicates this
"work": a white dot indicates that the element
was moved, and a black dot indicates that the
element was accessed but not modified. Thus,
it is the sum of these dots that gives a realistic
first-approximation of the algorithm running
times. In a "dots" image of Bubblesort, about
half of the total chips would contain dots.
Note how color is used to illustrate the time
dimension.

'185

~SIGGRAPH'84

r ~,~

O

a

Acknowledgements
To date , t he p r imary use of B A L S A has been in the in-
s t ruct ional comput ing l abo ra to ry at Brown. Al though m a n y
people have helped to make the pro jec t successful, A n d y
van D a m ' s t ireless efforts to ensure an impressive physi-
cal envi ronment cer ta in ly mus t be singled out for acknowl-
edgement . He has also con t r ibu ted to the pro jec t as the in-
s t ructor of the in t roduc to ry p rogramming course.

Much of the current version of B A L S A was implemen ted
by Mike 8 t r ickman. Steve Reiss, Joe Pa to , and Dave Nan ian
wrote significant pieces of the under ly ing software. Tom
Freeman d id p re l iminary work for some of the color images.

As usual , J ane t Incerp i ' s TEXpertise has been invaluable,
and thanks are due to Steve Feiner for advice and suppor t
in producing the images. These two also provided de ta i led
comments and suggest ions on earlier draf t s of the paper .

A p ro to type on which some of the g raph t raversa l views
are based was developed by the second au thor wi th Leo
Guibas at Xerox PARC, using the Cedar envi ronment on the
Dorado.

Figure 10. The image above illustrates a depth-first
(top) and a breadth-first (bottom) traversal of the graph

representing the Paris Metro system. Colors spanning
the spectrum from red to blue are used to indicate when

in time a particular node has been visited. The nodes
in white are on the data structure ready to be visited;

those in black have not yet been visited (see Fig. 8).

The picture below (reprinted courtesy of Bryce Flynn
- - Picture Group Inc.) shows the ~Electronic Classroom"
at Brown, a specially built anditorium/lecture hall housing
60 powerful graphics-based workstations. This picture was
taken during a lecture on elementary sorting (see Fig. 9).

186

