International Lecture Series in Computer Science

The International Chair in Computer Science
was created by |IBM Belgium in cooperation with
the National Foundation for Scientific Reséarch

Probability
Theory and _
Computer

Science

Edited by
G.Louchard
& G.Latouche

Academic
: Press

International Lecture Series in Computer Science Probability Theory and
Computer Science

These volumes are based on the lectures given during a series of specially funded
chairs. The International Chair in Computer Science was created by IBM Belgium
in co-operation with the Belgium National Foundation for Scientific Research. The
holders of each chair cover a subject area considered to be of particular relevance

to current developments in computer science. Fdited by

The Correctness Problem in Computer Science (1981)

R. S. BOYER and J. STROTHER MOORE G. Louchard and G. Latouche
Computer-aided Modelling and Simulation (1982)) y ; .

J. A. SPRIET and G. C. VANSTEENKISTE Laboratoire d’Informatique Théorique

Probability Theory and Computer Science (1982) Université Libre de Bruxelles, Belgium

G. LOUCHARD and G. LATOUCHE

1983

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers

London - New York
Paris + San Diego - San Francisco - Sao Paulo - Sydney
Tokyo - Toronto

'

LA
27%
P76
1982
ACADEMIC PRESS INC. (LONDON) LTD. y
24-28 Oval Road Contributors
London NW1 7DX
U.S. Edition published by . Gaver Naval Postgraduate School, Operations Research
ACADEMIC PRESS INC Phpalg L. .G >

111 Fifth Avenue Department, Monterey, California 93940, U.S.A.
New York, New York 10003

Hisashi Kobayashi IBM Japan Science Institute, 5-1 Azabudai 3-chome,
Monato-ku, Tokyo 106, Japan.

Robert Sedgewick Brown University, Department of Computer Science,
Copyright © 1983 by Providence, Rhode Island 02912, U.S.A.
ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any
other means, without written permission from the publishers

British Library Cataloguing in Publication Data

Probability theory and computer science —
(International lecture series in computer science)
1. Electronic data processing—Probabilities

I. Louchard, G. 1. Latouche, G.
ITI. Series
519.2°028'54 QA273

ISBN 0-12-455820-8

_ Typeset by 'IPreface Ltd, Salisbury, Wilts.
Printed in Great Britain by Thomson Litho Ltd., East Kilbride, Scotland

oW
>
)
oo
(&1
(= jp

Foreword

The present volume gathers together the writings on which Professors
Donald P. Gaver, Hisashi Kobayashi and Robert Sedgewick based the
series of lectures they presented at the “Université Libre de Bruxelles” in
the period from the Fall of 1980 to the Summer of 1981. These lectures
took place within the framework of an International Professorship in
Computer Science funded by IBM Belgium, and organized by the Belgian
National Scientific Research Foundation (FNRS).

The lectures were intended as variations on the central theme
“Probability Theory and Computer Science”: a theme which had been
chosen by Professor Guy Louchard, Head of the Computer Science
department of Brussels University, as being in unison with an important
part of the research work conducted in this department.

The calculus of probabilities provides a major mathematical tool in the
analysis of computer systems and computer programs. But bringing it into
play in these types of problems can be a difficult task. The preliminary stages
of model building are often tricky owing to the high degree of complexity
of the real world of computers and programs. The empirical simplifications
of the real problem intricacies, the inference of pertinent analytical charac-
teristics, and the definition of a conceptual model which lends itself to
mathematical analysis may require much familiarity with this real world.

Then, when the model has been formulated, the conventional tools and
methods of analysis are seldom readily applicable without refinements,
generalizations, or more efficient computation techniques to cope with the
huge amount of calculations which may be involved. Sometimes such new
developments broach fundamental issues in Probability or Stochastic
Process Theory; in this respect, the last decade has witnessed the emerg-
ence of a closer interaction between computer scientists and applied
probabilists.

In the final validation and verification of the analysis, when the practical
values of the model must be put to the test for prediction, planning or
control purposes, or for a more complete understanding of the real
problem under investigation, again much expertise in computers and
programming is required.

This classical three-step cyclic process of model inference, analysis and
validation is competently and fruitfully laboured in a great variety of
applications in each of the three parts of the book.

vil

viil ' Foreword

Besides, very appropriately, each author lays stress on a different step of
the process. In the first part, Gaver gives special attention to the con-
struction of stochastic models in these early stages where both imagination
and care are required; several problems and techniques are used to show
how the basic assumptions of a model can be checked against the observed
reality.

Queueing networks and discrete-time queueing processes are funda-
mental models for the analysis of data traffic in computer and communi-
cation systems. Kobayashi, in the second part, surveys and proposes several
approaches, exact and approximate, to evaluate efficiently performance
measures for these models.

Finally, Sedgewick’s material is a very good illustration of how a detailed
mathematical analysis can lead to a better understanding of an algorithm,
to a simpler and more elegant version of it, and to a more efficient
computer implementation.

Each part is self-contained and keeps a fair balance of introductive
material. The book is thus accessible to both applied mathematicians and
computer scientists, challenging, to paraphrase the last author, the former
by its models, and the latter by its mathematical developments. Thanks are
due to Professors G. Latouche and G. Louchard who took in charge the
practical organization of the lectures and the editing of this book.

Philips Research Laboratory P. J. Courtois
Brussels, February 1982

Preface

Probability theory and computer science: the former is an ancient science,
where names such as Fermat and Pascal play a pre-eminent role—the
analysis of games of chance has progressively added to the modern
concepts of the theory of probability—the latter led us in thirty years from
the 30 tons and 18 000 tubes of ENIAC to the silicon chip and its tens of
thousands of transistors per square millimeter.

The connections between the two sciences are ancient and multiple.
Pascal himself, in 1642, invented one of the first mechanical adding
machines: fifty were built, of which a few may be found in museums,
alongside the prototypes of Babbage, and ENIAC itself. These connections
formed the theme of the International Professorship in Computer Science,
1980-1981, hosted by the Université Libre de Bruxelles. This professor-
ship has been created by IBM Belgium. The Fonds National de la
Recherche Scientifique is entrusted with the organization. Three topics
were covered during the courses and seminars: stochastic modeling,
queueing system models and the mathematical analysis of combinatorial
algorithms.

The first topic is developed by D. P. Gaver in Part I of this book. Gaver
emphasizes a modeling attitude, illustrating his subject with numerous
examples. Attention is given to problems of, and models for, redundant
system reliability and availability, queueing with priorities, first-passage
times and areas under path functions of stochastic processes (total waiting
time), and various other examples. Also included is a brief account of
aspects of modern data analysis, with the implication that its usefulness is
significant at the pre-modeling and model-assessment stages of an inves-
tigation. Special attention is given in Chapter 3 to distributional sculpturing,
an elegant alteration of conventional distributions in order to represent
empirical reality more closely.

Queueing system models are examined by H. Kobayashi in Part II.
Chapter 4 is devoted to queueing systems that operate on a discrete-time
basis: all events are allowed to occur only at regularly spaced points in
time. Aside from such discrete structures of an intrinsic nature, it is often
computationally convenient to deal with discrete-time systems when one
must obtain a numerical solution of a given problem. Some fundamental
issues of discrete-time point processes and related queueing systems are
treated in detail. In Chapter 5, Kobayashi presents a discussion of diffusion

»

ix

X : Preface

approximations and shows applications to the performance analysis of
some simple computer system and communication system models. In
Chapter 6 computational algorithms are presented which mark some of the
recent progress in the performance analysis of Markovian queueing
networks.

Combinatorial algorithms and their mathematical analysis form the
subject of Part III by R. Sedgewick. The intersection of fundamental old
techniques from mathematics with fundamental new techniques from
computer science form an interesting field of study around which a
substantial body of knowledge has been built over the past fifteen years.
Sedgewick presents algorithms covering a broad range of application areas:
algorithms for search in binary trees, permutations, sort, merge, hashing,
etc. The mathematical tools, from probability generating functions to
asymptotics in the complex plane, are described and applied to these
algorithms. The various types of difficulties encountered are clearly
identified and illustrated.

It now remains to fulfill the pleasant task of acknowledging the various
individuals and institutions whose help and support made possible the
organization of this series of lectures. Thanks are due to IBM Belgium for
its financial contribution. Mr. t'’Kint de Roodenbeke, Directeur des
relations extérieures, was particularly helpful in solving organizational
problems.

We also wish to thank the FNRS for its permanent effort towards the
promotion of research, fundamental and applied, at the highest level. In
particular, the effective cooperation of Mr. Levaux, Secrétaire général du
FNRS, and Mr. Delers, Secrétaire adjoint, was greatly appreciated.

The three authors have played a crucial role in the success of the
International Professorship in Computer Science, 1980-1981. They have
shared without restraint their knowledge and expertise with Belgian
specialists, from industrial and public organizations as well as from the
academic world, giving them a unique opportunity of being brought into
contact with new and challenging thoughts.

Brussels
June 1982

Guy Louchard
Guy Latouche

Contents

EORIHIROTE Jatanie £ o8 905 1% Gttt ool e ehmtadinisllty af? 5 s v
T e i L e SR T A Y e I vii
P] Ty DS P b, e N S N S Y T X

Part I. Stochastic modeling: Ideas and techniques
Donald P. Gaver

1. Introduction 3
1.1. The total modellng proccss bncf OVerview . 3
2. Topics in outline 5
2.1. Review of probablhstic concepts partlcularly COl‘ldll’lOl’llng 5
2.2. Models involving repeated trials . 8
2.3. Sums of repeated trial (IID) random varlables “large dev;atlons 11
2.4. Bernoulli trials and the Poisson process: rareevents 13
2.5. Markov models: generalcomments. 15
2.6. Some Markov process problems and models 17
2.0.. Diffesion and fluid approxtmation . . . 200 ot 24
2.8. Renewal-theoretic modelmg T Bl A e Fw 29
3. Additional modeling topics . . . S ol GRS SR
3.1. Distributional sculpturing or inverse modlflcanon v g e aoany B8
3.2. Response times under processor sharing 44
3.3. Repairman model in random environment 45
SOEMOWISHIRIENt: . . . 5 3w Meitr L Baues e el s T
BEErpRces s . o 0 s neleriass: ksl s TSy parlaiessey o BT &7
Part II. Stochastic modeling: Queueing models
Hisashi Kobayashi

4. Discrete-time queueingsystems 53
4.1. Introduction . . e Lo
4.2. Poisson sequence and choulll seq HEROE & & . SWDWRRERY 53
4.3. Discrete-time M/M/1system. 54
4.4. Discrete-time M/G/osystem. v . . . 87
4.5. Discrete-time M/G/Lsystem i o L L L 59
4.6. Discrete-time GI/G/1 system . . . 62

4.7. Geometric bounds on the waxtmg-tlme dlstnbutmn of the discrete-
time GI/G/1 system . . . 64

4.8. Geometric upper and lower bounds on the waltmg-tlme distri-
bution of the discrete-time Gl/G/l system . . 67

49. An appllcatxon of discrete queueing models: buffer behav10r in
statistical time division multiplexing . . N Y L
4.10. Finite buffer capacity and statistical multlplcxmg e TV
4.11. Heavy traffic approximation 84

X1

Xil Contents
5. Diffusion approximations in queueing analysis 86
5.1. Introduction . 86
5.2. The diffusion appmxnmatlon ina two stage cycllc queuemg system 90
5.3. The diffusion approximation in a multiple access queueing system 94
6. Computational algorithms for Markovian queueing networks 99
6.1. Introduction : 99
6.2. Computational algomhms and performance formula‘; 100
6.3. The distributions seen by arriving customers in a closed queueing
network . TR 105
6.4. Mean value analysis . 109
6.5. An application: the wmdow ﬂow control analys1s in packet-
switching networks 112
References . 118
Part III. Mathematical analysis of combinatorial algorithms
Robert Sedgewick
Preface . 125
Acknowledgements 126
7. Introduction . . 127
7.1. Why analyze an algonthm‘? 127
7.2. General method 128
7.3. An example 129
7.4. Perspective . 132
8. Trees . 134
8.1. Binary trec search 134
8.2. Digression: solving flrst—order lmear recurrences 137
8.3. Elementary combinatorics of trees . : 138
8.4. Generating function solution of recurrences . 140
8.5. Unsuccessful search in binary search trees 142
8.6. Probability generating functions . 143
8.7. Successful search in binary trees . 144
8.8. Internal path length in static trees 145
8.9. Combinatorial generating functions 147
8.10. Advanced tree algorithms . 149
9. Permutations 151
9.1. Finding the minimum 151
9.2. In-situ permutation 154
9.3. Selection sort . 158
9.4. Insertion sort : 159
9.5. Digression: discrete sums . 160
9.6. Two-ordered permutations : 162
9.7. Sums involving two binomial coeff1c1cnts 166
9.8. Shellsort . 167
10. Elementary asymptotic appmxnmatlons 168
10.1. O-notation . ! 169
10.2. Batcher’s odd-even merge 169

Contents

10.3. Hashing with linear probing

16.4. Linear probing in a full table

11. Asymptotics in the complex plane
11.1. Polyphase merging
11.2. Counting ordered trees .
11.3. Method of Darboux .
11.4. Mellin transforms

12. Probabilistic models . R
12.1. Union-find algorithms .
12.2. Models s
12.3. Summary of results
12.4. Random sets model .
12.5. Random spanning tree model
12.6. Random graph model
12.7. Other models .

References .

Index

Xiii

175
177

180
180
184
186
187

190
191
196
197
197
199
202
204
204

207

PREFACE

Computer programs as objects of study for mathematical analysis can be
complicated and unsatisfying, or simple and elegant. The detailed study of
the dynamic properties of computer programs, an intersection of funda-
mental old techniques from mathematical analysis with fundamental new
techniques from computer science, is an interesting field of study around
which a substantial body of knowledge has been built cver the past fifteen
years. This is a survey (partly) and tutorial (mostly) treatment of some of
this work, presented at a level appropriate for both computer scientists and
mathematicians.

The major reference work for the material described here is D. E.
Knuth’s The Art of Computer Programming, the first three volumes of
which have been published (Knuth 1973a, 1973b, 1980). Knuth pioneered
the art of detailed mathematical analysis of algorithms at the level consi-
dered here, and many of the derivations that we will consider in detail are
taken from his work. In a sense, this could be viewed as an introduction to
the serious mathematical material in Knuth’s books, for the reader
interested in learning what the books have to offer and interested in doing
research in the area.

In some places, material contained here summarizes results which have
appeared in the research literature. For example, most of the material in
Chapter 12 comes from Yao (1976) and Knuth and Schonhage (1978), and
some of the material in Chapters 10 and 11 comes from Sedgewick
(1978b). Where possible, these notes are intended to supplement such
material: the treatment here may seem sketchy because full details are
presented in the papers.

Another important source for the preparation of these chapters was the
notes for a graduate course in the mathematical analysis of algorithms
introduced by Knuth at Stanford University in 1974, taught there by Knuth
in 1976 and 1980 and by A. Yao in 1978, and taught by me at Brown
University in 1977 and 1981. A significant part of these courses comprised
detailed notes prepared by the graduate teaching assistants; these are quite
well written and are invaluable as reference material.

A third influence on the material presented here has been the work of P.
Flajolet at INRIA in France. Flajolet reintroduced me to the idea of avoid-
ing laborious calculations with recurrences and sums for many problems by
doing direct derivations with combinatorial generating functions, then
using classical analysis to do asymptotics on the generating functions. I
believe that this approach simplifies the analysis significantly for many
problems and may have the potential to allow us to extend the range of

”

125

126 : Robert Sedgewick

algorithms that we can analyze; Flajolet and others are doing active
research in this area.

The material is intended to be largely self-contained, but assumes that
the reader has some familiarity with computer programming and with dis-
crete mathematics. A broad range of material is presented in both
domains, so every reader is likely to find things that are too elementary or
too advanced. On the one hand, enough elementary mathematical material
is included so that these notes may serve as an introduction to applicable
mathematical analysis for a trained computer scientist: on the other hand,
enough elementary algorithmic material is included so that they may serve
as an introduction to combinatorial algorithms for the trained mathema-
tician. My experience in teaching this material to a mix of computer scien-
tists and mathematicians has been that the mathematicians are as chal-
lenged by the algorithms as the computer scientists are by the analysis.

Chapter 7 introduces the subject, with an outline of general techniques
and a detailed example. Chapter 8 describes algorithms on trees and tech-
niques for solving simple recurrences. Chapter 9 describes algorithms on
permutations and introduces the use of generating functions. Chapter 10
introduces asymptotic methods through a detailed treatment of two par-
ticular algorithms. Chapter 11 extends the treatment of asymptotics in
Chapter 10 by showing how methods from complex analysis must be used
for many problems. Chapter 12 deals with analyses for a problem where
several different simple algorithms and several different input models have
been suggested: its purpose is to review much of the previous material and
to illustrate the difficulty (and importance) of using the proper input model
for many problems.

Acknowledgments

The generous support of IBM Belgium and the Université Libre de
Bruxelles, which made possible the preparation of these notes and the
lectures upon which they are based, is gratefully acknowledged. Also, some
of this work was done under support from the National Science Foundation,
Grant MCS80-17579 while the author was at Brown University.

Many people looked at an early draft of these notes and provided useful
comments, including Trina Avery and Tom Freeman. In particular, Janet
Incerpi carefully read and corrected several drafts.

7. Introduction

In this chapter we examine on a general level the basic approach espoused
by Knuth (1971) for the detailed mathematical analysis of algorithms. First
we consider the general motivations for algorithmic analysis, then we look
at the major components of a full analysis, then we analyze an algorithm of
fundamental practical importance, Quicksort, and then we discuss the
material to appear in later chapters.

7.1 WHY ANALYZE AN ALGORITHM?

There are several answers to this basic question, depending on context: the
intended use of the algorithm, the importance of the algorithm in relation-
ship to others (from both practical and theoretical standpoints), and the
difficulty of analysis and accuracy of the answer required.

First, the most straightforward reason for analyzing an algorithm is to
discover its vital statistics in order to evaluate its suitability for various
applications or compare it with other algorithms. Generally, the vital statis-
tics of interest are the primary resources of time and space, most often
time. Put simply, we are interested in determining how long an implemen-
tation of a particular algorithm will run on a particular computer, and how
much space it will require. The analysis generally is kept relatively inde-
pendent of particular implementations, concentrating instead on deriving
results for essential characteristics of the algorithm which can be used to
estimate precisely true resource requirements on actual machines.

Occasionally, some expensive resource other than time or space is of
interest, and the focus of the analysis changed accordingly. For example, an
algorithm to drive a plotting device might be studied to determine the total
distance moved by the pen. Also, it is sometimes appropriate to combine
resources in the analysis. For example, an algorithm which uses a large

’

127

128 : Robert Sedgewick

amount of memory may use much less time than an algorithm which gets
by with very little memory. One way to compare algorithms in such situa-
tions is to analyze the product of their time and space requirements: this
corresponds to using a “memory rental fee'” as the resource to be studied.

The analysis of an algorithm can help one to understand it better, and
can suggest informed improvements. The more complicated the algorithm,
the more difficult the analysis, and algorithms tend to become shorter,
simpler, and more elegant during the analysis process. More important, the
careful scrutiny required for proper analysis often leads to more efficient
and more correct implementations of algorithms. Analysis requires a far
more complete understanding of an algorithm than merely producing a
working implementation. Indeed, when the results of analytic and empiri-
cal studies agree, one becomes strongly convinced of the validity of the
algorithm as well as of the correctness of the process of analysis.

Some algorithms are worth analyzing because their analysis can add to
the body of mathematical tools available for mathematical analysis. Such
algorithms may be of no practical interest, but may have properties similar
to algorithms of practical interest which indicate that understanding them
may help to someday understand more important methods. Unfortunately,
results of this type are most often negative: many algorithms which seem to
be very simple require extremely sophisticated mathematical machinery.

Many algorithms (some of intense practical interest, some of little or
none) have a complex performance structure with properties of indepen-
dent mathematical interest. The dynamic element brought to combinator-
1al problems by the analysis of algorithms leads to challenging, interesting
mathematical problems which are worth studying in their own right.

7.2 GENERAL METHOD

The following general methodology is commonly used for the precise study
of the performance of particular algorithms. This approach is a natural one
and 1s very old, but it is generally attributed to Knuth (1971), whose books
serve as witness to the utility of the method for fully understanding impor-
tant algorithms.

The first step is to carefully implement the algorithm on a particular
computer. We shall use the term program to describe such an implementa-
tion, so that one algorithm corresponds to many programs. This implemen-
tation not only provides a concrete object to study, but also can give useful
empirical data to aid in or to check the analysis.

The implementation presumably is designed to make efficient use of
expensive resources. The resources of primary interest must be identified

7. Introduction 129

so that the detailed analysis may be properly focused. The resource most
often analyzed is the running time, so the steps below are outlined in terms
of studying the running time,

The next step is to estimate the time required by each component
instruction of the program. This can usually be done very precisely,
depending on the characteristics of the computer system being used.

To determine the total running time of the program, it is necessary to
study the branching structure of the program in order to express the fre-
quency of execution of the component instructions in terms of unknown
mathematical quantities. If the values of these quantities are known, then
the running time of the entire program can be derived simply by multiply-
ing the frequency and time requirements of each component instruction and
adding these products.

The next step is to model the input to the program, to form a basis for
the mathematical analysis. Often several different models are used for the
same algorithm: initially a model is chosen to make the analysis as simple
as possible; finally a model is chosen to reflect the actual situation in which
the program is to be used.

The last step is to analyze the unknown quantities, assuming the mod-
eled input. For average-case analysis, the quantities can be analyzed indi-
vidually, then the averages can be multiplied by instruction times and
added to give the running time of the whole program. For worst-case
analysis, it is usually difficult to get an exact result for the whole program,
and so an upper bound is often derived by multiplying worst-case values of
the individual quantities by instruction times, then adding.

The average-case results can be compared with the empirical data to
verify the implementation, the model, and the analysis.

7.3 AN EXAMPLE

To illustrate the methodology outlined above, results are sketched here for
a particular algorithm of importance, the Quicksort sorting method. This
analysis is covered in great detail elsewhere (Sedgewick, 1980 and 1977b),
so only a very brief treatment will be given here.

First, an implementation of Quicksort in the PASCAL programming
language follows:

var a: array [0 . .N] of integer;
procedure guicksort (I, r: integer);
var v, t, i, j: integer;
begin

130 : Robert Sedgewick

if r > | then

begin

ve=aglryi:= V-1 ji=r

repeat
repeat i : = i + 1 until a[i] > = v:
repeat j : = j — [umtil a[j] <= v:
t:=ali]; ali]l:=alj) alj]l-=¢

until j < i;

alj):=ali); alil :=a[r); alr]:= ¢

quicksort (L, j);

quicksort (i + 1, r)

end

end;

This is a recursive program which sorts the numbers in an array a[/:r] by
partitioning it into two independent parts, then sorting those parts. The
partitioning process puts the element that was in the last position in the
array (the partitioning element) into its correct position, with all smaller
elements before it and all larger elements after it. This is accomplished by
maintaining two pointers, one scanning from the left, one from the right.
The left pointer is incremented until an element larger than the partition-
ing element is found, the right pointer is decremented until an element
smaller than the partitioning element is found. These two elements are
exchanged, and the process continues until the pointers meet, which
defines where the partitioning element is put. The call quicksort(1,N) will
sort the array, provided that a[0] is set to a value smaller than any other
element in the array (in case, for example, the first partitioning element
happened to be the smallest element).

The first step in the analysis is to estimate the resource requirements of
individual instructions for this program. This is a straightforward step for
any particular computer, and we will omit the details. For example, the
“inner loop” instruction repeat i: = j = 1 until a[i] > = v translates, on
most computers, to assembly language instructions like

LOOP INC 1,1
CMP Vv, A(I)
BL LOOP

This might require four time units (one for each memory reference).
The next step in the analysis is to assign variable names to the frequency
of execution of the instructions in the program. Normally there are only a
few true variables involved: the frequencies of execution of all the instruc-
tions can be expressed in terms of these few. Also, it is desirable to relate

7. Introduction 131

the variables to the algorithm itself, not any particular program. For
Quicksort, there are three natural quantities involved:

A—the number of stages;
B—the number of exchanges; and
C—the number of comparisons.

On a typical computer, the total running time might be about 4C + 11B +
35A. (The exact values of these coefficients depend on the assembly lan-
guage program and properties of the machine being used; the values given
above are typical.)

The input model for the analysis is to assume that the array a contains
randomly ordered, distinct numbers. This is the most convenient to
analyze; however, it is also possible to study this program under perhaps
more realistic models allowing equal numbers (see Sedgewick 1977a).

The average-case analysis for this program involves defining and solving
recurrence relations which mirror directly the recursive nature of the pro-
gram. For example, if Cy is the average number of comparisons to sort N
elements, we have C, = C, = 0 and

Cy=N+1+= Xy Crusy sV nd
N I=j=N

To get the total average number of comparisons, we add the number of
comparisons for the first partitioning stage (N + 1) to the number of com-
parisons used for the subfiles after partitioning. When the partitioning
element is the jth largest (which occurs with probability 1/N for each 1 <
= N), the subfiles after partitioning are of sizej — 1 and N — j. For this to
be valid, it is necessary to prove that the subfiles left after partitioning a
random file are still random. Now the analysis is reduced to a mathematical
problem which does not depend on properties of the program or the
algorithm. This particular problem is not difficult to solve: first change j to
N —j + 1 in the second part of the sum to get

2
Cyv=N+1D+<= > C_

l<=j=N

Then multiply by N and subtract the same formula for N — 1 to eliminate

the sum:
NCN == (N . I)CN_] = ZN + ZCN—I
Rearrange terms and divide by N(N + 1) to get a simple recurrence

Cv L Crey, 2
N+1 N N+1

’

132 : Robert Sedgewick

which holds for N > 2. This telescopes to a simple sum, giving the result
Cy=2(N+1)(Hy, — 3)

where H,,, is the (N + 1)st harmonic number (2,_,-y.,1/k). The average
values of the other quantities can be derived in a similar manner.

This program can be improved in several ways to make it the sorting
method of choice in many computing environments. A complete analysis
can be carried out even for much more complicated improved versions, and
expressions for the average running time can be derived which match
closely observed empirical times (Sedgewick 1980, 1978a). Furthermore,
the combinatorial mathematics involved in these analyses becomes quite
interesting (see Sedgewick, 1977b).

7.4 PERSPECTIVE

The analysis above is in many ways an ‘“‘ideal’” methodology: not all
algorithms can be as smoothly dealt with as this.

First, a full analysis like that above requires a fair amount of effort which
should be reserved only for our most important algorithms. Most often, the
parts of the methodology which are program-specific (dependent on the
implementation) are skipped, to concentrate either on algorithm design,
where rough estimates of the running time may suffice, or on the
mathematical analysis, where the formulation and solution of the
mathematical problem involved are of most interest. These are the areas
involving the most significant intellectual challenge, and deserve the atten-
tion that they get. However, it is an unfortunate fact that as full an analysis
as possible seems to be required to compare algorithms properly. Many
researchers have been led astray by prematurely applying incomplete
analyses.

In succeeding chapters, we will concentrate on techniques of mathemati-
cal analysis which are applicable to the study of the performance of
algorithms. At the same time, we will survey some fundamental com-
binatorial algorithms, including several of practical importance. We will
see that algorithms which seem to be quite simple can lead to quite intri-
cate mathematical analyses, but that the analyses can uncover significant
differences between algorithms which have direct bearing on the way they
are used in practice.

The most serious problem in the analysis of most algorithms in common
use on computers today is the formulation of proper models which realisti-
cally represent the input and which lead to manageable analysis problems.

7. Introduction 133

Serious research in this seems to be required in several areas of application.
However, there is a large class of combinatorial algorithms for which the
model is very straightforward, as in sorting.

For the most part, algorithms of this type will be considered here. Many
of these algorithms are of fundamental importance in a wide variety of
computer applications, and so are deserving of the effort involved for
detailed analysis. Furthermore, the input model leads immediately to
mathematical problems of a combinatorial nature similar to those which
arise in probability, so that classical methods of analysis provide a firm
_basis for their solution. The number of algorithms which have been studied
in tf-lis way is steadily growing, and the analytic tools available are becom-
ing increasingly better understood by computer scientists.

8. Trees

Trees are fundamental structures used in many practical algorithms, and it
is important to understand their properties in order to be able to analyze
these algorithms. In this section, we examine in detail several problems in
analysis which relate to trees and to a fundamental tree search algorithm.
These analyses not only provide results of practical interest, but also
exhibit several fundamental techniques: for solving linear recurrences, for
using generating functions and probability generating functions, and for
using double and combinatorial generating functions.

The properties of trees have been studied for quite some time by
combinatorial mathematicians, and many results are known. However,
as we will see, there is a difference between viewing trees as static
(combinatorial) objects and viewing them as dynamic objects, built by
algorithms.

8.1 BINARY TREE SEARCH

The so-called “dictionary™, “symbol table” or simply ‘‘search’ problem is
a fundamental one in computer science: a set of keys (perhaps with associ-
ated information) is to be organized so that efficient searches can be made
for particular keys (or associated information). A binary search tree is an
elementary structure commonly used for this problem: it consists of a root
node containing a key and links to left and right subtrees which are defined
in the same way. The left subtree contains all keys less than the key at the
root, and the right subtree contains all keys greater. It is convenient to
include an artificial “*header” node with a key smaller than all other keys
(—w) as the root of every binary tree. For example, the following binary
tree contains the French words for the numbers 1 to 10. Such a tree can be

134

8. Trees 135

deux/ un
A e o eyt Mol

/quatre/
huit \six
dix/ neuf

cing trois

sept

searched for a node with the value v using the following program:

x: = head;
repeat

if v <x1.key then x: = x 1 .left else x: = x 1 .right
until v = x 1 .key

If the key sought is not in the tree, this program will not work properly,
since x will eventually be assigned to one of the null pointers at the bottom
of the tree. The program is easily modified to check for this case and to
insert a new node with the key sought if desired (see Knuth, 1973b;
Sedgewick 1983). For example, if the key onze were to be inserted, a new
node would be created as the right son of neuf. Note that the nodes of the
tree can be printed out in order with the simple program:

procedure print (x: link);

begin

if x <> nil then
begin
print (x T.left);
write (x T .key);
print (x 1 .right)
end

end;

Many other useful operations are easily defined on binary search trees; see
Knuth (1973b).

There seem to be two quantities of interest in the analysis of the binary
tree search program: the number of nodes visited in a successful search and
the number of nodes visited in an unsuccessful search. These turn out to be
closely related. First, call the nodes of the tree which have keys internal
nodes, and define imaginary nodes at the bottom called external nodes

”

136 . Robert Sedgewick

(pointed to by null links). Note that any tree has exactly one more external
node than internal node (this is trivial to prove by induction). The internal
path length of the tree is defined to be the sum of the distances from the
root to each internal node, and the external path length is defined analo-
gously. Note that the external path length of any tree is the internal path
length plus twice the number of nodes in the tree (again, trivial to prove by
induction). Also, the quantities we want to analyze are obvious. For a tree
with N nodes, if we define

C, = Average number of comparisons for a successful search, and
C), = Average number of comparisons for an unsuccessful search then
we have

{Internal path length} 1%

Ci = -

and
{External path length}
(N +1)

C:v -

Then the relationship described above between internal and external path
length implies that

(N+1)Cy=NCy+N

Now, our notion of ‘“‘average” must be more carefully defined. The
above relationships hold for any given tree, if each internal (or external)
node is equally likely to be sought: they are static properties of the tree.
Our analysis must take into account the dynamic properties of the trees,
since the way in which the keys are inserted can drastically affect the shape
of the tree.

The tree above was created by inserting the keys in the order un, deux,
trois, quatre, etc. If they are inserted in alphabetic order (cing, deux, dix,
huit, etc.) then a degenerate tree with a high path length results. If N nodes
are inserted into an initially empty tree in order, then the resulting tree is a
single string of nodes, connected by their right links, all with null left links.
In other words, there is one internal node at distance i from the root for
each 0 =i < N, so the internal path lengthis 2,_,_vi = N(N — 1)/2. Thus
trees with quite different shapes can be built by the algorithm, and path
lengths can vary widely. But, as we will see, it is not true that every possible
tree is equally likely to result.

Knuth (1973b) gives a simple derivation that gives the average values of
Cy and C); we will do a more direct derivation later. The simple argument
is to observe that the number of comparisons needed to find a key in the
tree is exactly one greater than the number that was needed to insert it,

8. Trees 137

since keys never move in the tree. Any particular key searched was the kth
one inserted with probability 1/N, so we have the recurrence
1.8
Cyv=1+— C-
3 N lél.Z".:N E¥
This is virtually the same as the recurrence that we had previously for
Quicksort (in fact, the binary tree search algorithm is closely related to
Quicksort). It can be solved by multiplying by N and subtracting the same
equation for (N — 1) to eliminate the sum.

(N D= NG =2 ¥ .,

Rearranging terms, we have

2
Cr —; C“r i e
L N
which telescopes to the answer
C,N =2Hy. .~ 2

which means that

Cy= 2(1 + %)HNH . % =73
Now, H is about In N (we will see how to say so more precisely in Chapter
10), so that, with N nodes in the tree, only about 2In N nodes need be
examined for a typical search.

A fundamental point in this derivation is that we are “‘averaging” not
over all trees, but over all possible orders of the keys inserted into the tree.
(The reader should check that our assumptions are equivalent to this
statement.) This “‘permutation’ model is natural and realistic for this prob-
lem, but it is quite different from the assumption that all trees are equally
likely to occur.

8.2 DIGRESSION: SOLVING FIRST-ORDER LINEAR
RECURRENCES

Above, we took the recurrence
(N+1DCx=N+1)Cy, +2

and divided by (N + 1) to get a recurrence which telescoped. For Quick-
sort, we had a more complicated recurrence

NCy = (N + 1)Cy_y + 2N

”

138 : Robert Sedgewick

which telescopes when divided by N(N + 1). It turns out that it is always
possible to transform recurrences of this nature into sums by telescoping.
For example,

NC,, =(N'=2)Cy_, ¥2N
telescopes when multiplied by (N — 1), and
Cy=2C, . +N

telescopes when divided by 2",
In general, the recurrence

Chn=X\Cyn_, + Yy,

telescopes when divided by XXy, ... X, (written I1,.,.,X,). (The reader
may wish to check this formula on the examples above.) For some prob-
lems, the recurrence can be made to telescope by multiplying by [1,. X . if
It converges.

Solving recurrence relations (difference equations) in this way is analo-
gous to solving differential equations by multiplying by an integrating factor
and then integrating. The factor used for recurrence relations is sometimes
called a “summation factor”. Of course, for many problems, we may be left
with a sum which is difficult to evaluate: we will study this in more detail
later.

8.3 ELEMENTARY COMBINATORICS OF TREES

Trees as (static) objects have been intensely studied by combinatorial
mathematicians, because they arise as natural models in many actual prob-
lems, and they have many interesting properties.

The most general kind of tree is a free tree: a set of N nodes and N — 1
edges connecting them together (this implies that there can be no cycles), If
one of the nodes is designated as the root, then a free tree becomes an
oriented tree, and if the order of the subtrees at every node is specified, we
have an ordered tree. The first two trees below are equivalent as free trees
but not as oriented trees; the second and third are equivalent as oriented

8. Trees 139

trees but not as ordered trees. A binary tree built by our algorithm is a
special kind of ordered tree in which not only does each node have 0, | or 2
sons but also each son of a 1-son node is specified to be “left” or “right™.

The most natural combinatorial question that arises for any defined
tree structure is the enumeration problem: how many different trees are
there? For some tree structures, this can be a difficult problem indeed; for
binary trees it not only will shed some light on our algorithm, but also will
illustrate another fundamental analytic tool.

If we let by be the number of different binary trees with N nodes, then
the following recurrence relation holds:

by = Z bbby,
O0=k<N

It is convenient to define b, = 1, by = 0 for all N negative, and make the
recurrence hold for all N:

by = Z biby 1k + o

O=sk<N

N >0

(Here 6y, is 1 for N = 0, 0 otherwise.) This can be checked against the
small values in the table below:

N0 1 2:8. .4
by 141 2.5, 14

This recurrence is much more complicated than those we have seen before,
and requires more powerful tools. Define the generating function
B(z) =) byz"

N=0

where z is some artificial variable. This function describes the entire
sequence succinctly. Multiplying both sides of the recurrence by z" and
summing on N, we have

B(z) = Z Z bkbN_]_kzN+ 1

N=0 0=k<N

= > > bbby, 2"+ 1 (interchange order)
k=0 N>k

= > > bbyz"**' + 1 (change N to N + k + 1)
k=0 N=0

=2 > bt > byt +1

k=0 N=0

B(z) =zB(z)*+ 1
(A double sum of this type is called a convolution; it arises whenever two
power series are multiplied.) This formula for B(z) can be solved with the

”,

140 ~ Robert Sedgewick

quadratic equation

1
B(z) = 5(1 + 1 — 4z)

To solve for by we need to expand back to power series. This is easily
done with the binomial theorem:

(1 =2 4z)V=) (;,)(-4&')”

N=0

Thus, B(z) = 1/2z(= (1 — 2z + ...)) and we must choose the root with
the negative sign in order for B(0) to be defined. This equation can be

- w i X\ . 3
used to derive b, in familiar terms: the binomial coefficient (N) is defined
to be
x=74+1

l<j=N N _'j + 1
This is the familiar x!/N!(x — N)! for integer x, but the more general
definition allows the binomial theorem to be used for noninteger
exponents. This leads to

2 WAN+ 1N
B(z) = v N i
()1 (N) 1)()
so we can set coefficients equal to get

Nz0
= 3 _1\NAIN+1 _ 1 2N
b“_(NH)(2 N+1\N

These numbers are called the Catalan numbers, which appear very fre-
quently in combinatorics. In Chapter 10 we will see how to show that the
approximate value is by ~ 4Y/N{zN.

There are many more permutations on N objects than binary trees of N
items; therefore, many different permutations give rise to the same tree in
the binary tree search algorithm. But not all trees are equally likely: as we
shall see, some trees (fortunately the more balanced ones) appear much
more frequently than others.

8.4 GENERATING FUNCTION SOLUTION OF RECURRENCES

Generating functions provide a mechanical method for solving many
recurrence relations, although some facility for manipulating power series
is required. For example, a direct solution for the binary tree search

& Trees: 1. 141

recurrence

(N-+1)Cy= 2N +

o

O=k<N

can be derived as follows. Define C(z) = 2,.,Cyz" !, multiply both sides
of the equation by z" and sum on N to get

Cle)=23 ¥+ 5 ¥ Ciz"
N=0 N=0 O=k=N
The double sum is a convolution, as before, so

C’(Z) =9 Z NZN+ z C;czk+l z ZN

N=0 k=0 N=0

But

1
N:
z\g'oz liuz

is elementary, and differentiating both sides gives
1

Nz = -

z (1 ¥ 2)2

N=0

so we have a differential equation on the generating function

Gleng ?-zz)z e

The solution to this differential equation is

pC(z) = le-(lz_—zz)zdz where p = exp (—-J- 7 iz dz)

Carrying out the calculation gives p = 1 — z and

ot 1 27
C(z)—l_zlnl_z

L =iz

1=z

We know from the above that

Integrating this gives

142 : Robert Sedgewick

and multiplying both sides by 1/(1 — z) gives

1 1
In = H.z"
i =7 1 =2 x\gz a

Setting coefficients of z" equal gives the solution
C‘N" = 2H~<+| e 2
as before.
For some problems, an explicit formula for the generating function can
be difficult to derive. For others, the expansion back to power series can

present the main obstacle. However, this general method can be relied on
to produce a solution for many recurrences, if a solution is available.

8.5 UNSUCCESSFUL SEARCH IN BINARY SEARCH TREES

The above derivation shows how to find the average cost of an unsuccessful
search in a binary tree, but it cannot be extended to find more information
about the distribution of this quantity (for example, the variance). In this
section, we examine a detailed direct analysis for this problem.

As above, we assume that a random permutation of N elements is used
to build a binary search tree. Let P, = {Probability that the last insertion
takes k steps}. Then the average unsuccessful search time is given by

Z kP
k
and the variance by
z (k S— CL})ZP‘h.rk = Z kszk = C:\?_
p k

To calculate P, directly, the first step is to use a combinatorial argument
based on permutations to set up a recurrence relation. This will be a
general topic of the next section; we will postpone discussion of this par-
ticular argument until then. The recurrence which results is

NPy, = 2P(.'\‘—1](k—l) (N Z)P(N—])k
If we use the generating function
Py(z) = Z PNka
k=0
we get, after multiplying by z* and summing,

NPy(z) = 2z + N — 2)Py_(2)

8. Trees . 143

which telescopes immediately to

X2 87 ~

2<j=N]

This complicated explicit formula for our generating function is actually
well known: it turns out that

I PNl
Py = — :
: N![k J2

where tpe brackets indicate Stirling numbers of the first kind. The mean
and variance can then be calculated directly (although some facility with

sums involving Stirling numbers is necessary). Fortunately, there is a much
casier way.

8.6 PROBABILITY GENERATING FUNCTIONS

When generating functions are used to manipulate probabilities, they have

several simple properties which make the calculation of the average, vari-
ance, and other moments easy. If

P(z) = Z szk

k=0

where {p,} is a sequence of probabilities (positive values which sum to 1),
then we can exploit the following facts:

(i) P(1) = Z4oopi = 1;

(i) the average, defined to be 2,_.kp,, is simply P'(1);

(iii) the variance is P"(1) + P'1) — P'(1)*; and

(iv) the average and variance of the distribution represented by the
product of two probability generating functions is the sum of the indi-
vidual averages and variances, because if R(z) = P(z)Q(z) and P(1) =
Q(1) = 1 then R'(1) = P'(1) + Q'(1) and R"(1) = P"(1) + Q"(1) +
2P (1)0Q'(1).

These four properties apply directly to our problem, because the

generating function Py(z) is the product of a number of very simple
probability generating functions

(note that f(1) = 1). Therefore, we need only compute moments for these

”

144 Robert Sedgewick

simple functions and then sum. We have

' 2 "
ﬂ(l) = j— and fj(l) = ()
SO
) 2
P(1) = —-=2Hy, — 2
zijN}
as before, and
" ’) - 2 4 (,’}
Pi(1) + Pi(1) = P)(1)’= > 5= 2Hy — 4H? + 2
2=j=N

Probability generating functions provide a very convenient way to calculate
the mean and variance of the number of steps required for an unsuccessful
search.

Two more useful properties of probability generating functions can help
to directly formulate recurrence relations involving them:

(v) if X(z) and Y(z) are probability generating functions for indepen-
dent random variables X and Y, then X(z)Y(z) is the probability
generating function for X + Y; and

(vi) if X,(z) and X,(z) are the probability generating functions for a
random variable X, conditional on whether or not some independent
event happens (with probability p), then the unconditional probability

generating function for X is pX,(z) + (1 — p)X.,(z). For example,

property (v) can be used to give a direct argument for the equation

Pue) = (T +)P

for unsuccessful search: with probability 2/N, the last two elements are
on the same search path, contributing 1 to the total cost of an unsuccess-
ful search; otherwise (with probability (N — 2)/N) the contribution is 0.

8.7 SUCCESSFUL SEARCH IN BINARY TREES

More detailed analyses of successful search can be carried out using the
methods of the previous section in conjunction with the fundamental rela-
tionship between internal and external path length.

Another quantity of interest is the fotal internal path length: the total
cost of building the tree. Ifswe let g, = Pr {k is the total internal path
length of a tree built from a random permutation of N elements} then

8. Trees 145

properties (v) and (vi) above lead directly to the recurrence

N—=1

N

qun(z) = 2

> 4-(2D)an-i(2)

l=j=N

on the generating function

gn(z) = 2 gl
k=0
This recurrence is difficult to solve explicitly for gy, but differentiating
and evaluating at z = 1 gives the familiar recurrence

W) =N -1+ 3 (g(1) + gr-A1)

Isj=N

for the average. The variance can be derived in a similar way.

8.8 INTERNAL PATH LENGTH IN STATIC TREES

We have seen that there are many fewer binary trees on N elements than
permutations, and that the mapping from permutations to trees effected by
the binary tree search algorithm is such that the average internal path
length is 2(N + 1)Hy,, — 4N — 2. In this section we analyze the internal
path length of binary trees in the static model, where each tree is consi-
dered equally likely.

If we define gy, to be the probability that k is the total internal path
length, then the same argument as before gives a recurrence relation on the
generating function g(z) = 2. 0qmz®

l(Zj—Z) i§ (2N—2j
o LA L N =i Ny
z) =2
qn(z) I;N 1 N

N+1\ N

(Before, the probability that the subtrees were of size j — 1 and N — j was
always 1/N; here it is a complicated-looking function derived from the
Catalan numbers in a simple way.) As before, this recurrence is hard to
solve for g,,. Here, it is even difficult to find g, (1): the resulting recur-
rence requires generating functions. It will be slightly more convenient to
work with the number of trees of size N with internal path length k,

1 (2N
N+1\nNJim

q;-(2)qn-[2)

146 . Robert Sedgewick

which satisfies (from the above recurrence)

Z Quz =z Z zQU D ZQ(N ,,,.,Z

l=j=N r=l) s={)

Since we will need a generating function of N later, it is convenient to
include N right away in a double generating function:

Q(w,z) = ¥ yeDmwet

N=0 k=0

Multiplying the above by w" and summing on N gives

O(w,z) = z 2 Q -k’ z Q(N-;).@SWNZN_i + 1
N=1 l=j=N r=0 520
=wY Y 0,zwz) Y Y Qi wz)"” +1
j=0 r=0 Nzj s=0
=w Y ¥ 0z (wz) Z Y Onz'(wz)" + 1
j=z0 r=0 N=0 s=0
= wQ(wz,z)* + 1

Now we can differentiate this with respect to z and evaluate 1t at 1 to get
the average. Note that

Q(w, 1) = Z Z Q"™

N=0 k=0

5 L (M) =),
N'—_*{IN+1 N

the generating function for the Catalan numbers, and
0
a(w) = = 0(,2)]-
Z z kQNk”’

N=0 k=

1 2NN .
= &N I(N)“'N(l)"’h
N=0

is the generating function for the total internal path length. Differentiating
both sides of our equation for Q(w, z) with respect to z and evaluating at

z =1 gives

q(w) = 2wB(w)(g(w) + wB'(w))

which has the solution
1 F l(.1 S5 & 1)
1-4w wilvVl — 4w

g(w) =

8. Trees y 147

and gives the eventual result

4%(N + 1)

2N

N
Notice that this is substantially larger, for large N, than for the dynamic
case: the average internal path length for binary search trees is propor-
tional to NlogN, not N\N. These results show that there are many degen-

erate trees which are very unbalanced. but these trees are built only rarely
by the binary tree search algorithm.

gy(l) = AN PN VN~ SN

8.9 COMBINATORIAL GENERATING FUNCTIONS

The derivation above includes some quite complicated manipulations with
triple sums to prove the simple formula

Q(w.z) = wQ(wz,2)* + 1

It is reasonable to ask whether there might be a simpler proof of this
formula. Fortunately there is, using a direct argument based upon the
generating function itself.

Our approach to this point has been to treat probabilistic analyses as
counting problems; then derive recurrence relations for the counting prob-
lems; then discover an implied relationship between associated generating
functions, and then use analytic techniques to learn about the generating
function from this relationship. However, for many, if not most, problems
amenable to solution by this approach, it turns out to be easy to derive the
relationship on the generating function directly. The key to this new
approach is to use the combinatorial object being analyzed as the index of
summation for the generating function rather than the parameters of the
analysis as we have been using. For example, in the derivation above we
were working with

Ow,2) = > D Quw"z"
N=0 k=0

where Q, is the number of trees with N nodes and internal path length k.
This may be expressed equivalently as

Q(w, z) - z Wlﬂzfpf(r)

all trees T

where | T'| is the number of nodes in T and ip/(T) is the internal path length
of T. Now, we can change this into a double sum, because any nonempty

’

148 Robert Sedgewick

tree T consists of left and right subtrees, trees T, and T, joined together
by a root node. This leads immediately to

O(w,z) =

> S wllerTa gl HpiTe) + ITLI+ITRI 4 1

all trees Ty all trees Ty

(The ““+1” takes into account the case when T is empty). Note that the
number of nodes in a tree is one plus the number of nodes in its subtrees,
and the internal path length of a tree is the sum of the internal path lengths
of its subtrees plus one for each node in the subtrees. Now, this double sum
is easily rearranged to make two independent sums:

Q(w,z) =w Z (wz)iTszPflTU 2 (WZ)[TR|ZI'pf[?'R)_+_1

all trees Ty, all trees T

= wQ(wz,2)* + 1

as before. The reader may wish to study this example carefully to appreci-
ate both its simplicity and its subtleties.

For another example, consider the application of combinatorial generat-
ing functions to find the total internal path length of binary search trees.
Here, the combinatorial objects of interest are permutations, so we start
with the generating function

Z:pffP)
|P!

Here ip/(P) denotes the internal path length of the binary search tree
constructed when the elements of P are inserted into an initially empty tree
using the standard algorithm. Note that, in this generating function, we
need to divide by |P|!. One reason for this is that there are many more
permutations than trees and the function would not converge otherwise.
Another reason that dividing by | P|! is convenient is that it makes Q(w, z)
a probability generating function: we have the equivalent expression

Ow,z) = > > Pyuw'z:

N=0 k=0

Ofw, 2} = 3, wil

all perms P

where Py, is the probability that k is the internal path length of a tree built
from a random permutation of N elements. As above, we can directly
derive a functional equation by splitting the combinatorial definition into a
double sum. Given two permutations P,, P, we can create

(IPLI + |PR|)

|P.|
permutations of size | P, | + |Pg| + 1 all of which led to the same binary
search tree by (i) adding [P, | + 1 to each element of Py; (ii) intermixing

8. Trees 149

P, a‘nd Py in all possible ways; and (iii) prefixing each permutation so
obtained by | P, | + 1. This leads to the following double sum representa-
tion for Q(w, z):

Z (Ile s ‘PRl) w|Pf_|+|PR|+lzip[(PL)+ip!(PR)+ [P+ | PRI 4 3

[P, | (|Pe] + | Pe| + 1)!

all perms Py all perms Pr

(The permutation of size 0 can not be split in this way: this accounts for the
“+17.) This equation is somewhat more complicated than the one above,
but it can be simplified by differentiating with respect to w first, then

rearranging terms as above. If Q (w, z) denotes the derivative of Q(w, z)
with respect to w, we have

(wz)PLiZPUPL)

[P]!

(wz)| PRIz PIPR)
| Pg !

Q.(w,z) =

all perms Py

= Q(wz, z)?

Now if we differentiate this with respect to z and evaluate atz = 1, then we
get the differential equation for the average internal path length that we
solved in the previous chapter.

all perms P

8.10 ADVANCED TREE ALGORITHMS

The elementary binary tree search algorithm has the undesirable property
of having a very bad worst case. Several more advanced structures have
been developed to deal with this and other problems: the analysis of these
structures leads to a wealth of interesting mathematical problems.

One type of solution uses radix search trees. These structures are built
using individual bits of the keys, rather than comparing keys as entities.
The worst-case performance is proportional to the number of bits in the
keys. The analysis of the average-case performance for this method
requires advanced techniques that we will study in a later section.

A second type of solution uses balanced binary trees. These structures
are built with algorithms that do local transformations on binary trees
during an insertion, to prevent them from getting too far out of balance.
The worst case for any search is proportional to log N. Properties and
implementations of these algorithms are discussed in some detail in Guibas
and Sedgewick (1978). The mathematical questions involved in studying
these trees are interesting, but difficult: very few results have been derived.
For example, for some of the algorithms, the difference between the static
and the dynamic structures is even more pronounced than above. The
algorithms achieve balance by allowing more keys per node, so that, for

150 Robert Sedgewick

example, 3-nodes (with two keys and three sons) and 4-nodes (}Vith_ three
keys and four sons) are allowed. Enumerating all such trees is dlfflC.Ult
enough (Odlyzko, 1979), but for some algorithms, there are trees whlgh
cannot even be constructed: the enumeration problem for the dynamic
case is unsolved, let alone the path length problem.

The unsolved mathematical problems on trees are not restricted to
advanced structures. For example, the average height (the length of the
longest path from the root to an external node) has only recently been
derived for the static model (Flajolet and Odlyzko, 1980, and the full
answer for the dynamic model is still not known (Robson, 1979).

9 Permutations

Combinatorial algorithms deal only with the relative order of a linear array
of N elements and so can be thought of as operating on the numbers 1 to N
in some order. Such an ordering is called a permutation, and is a well-
defined combinatorial object with a wealth of interesting properties. In the
previous chapter, we analyzed an algorithm which transforms permutations
into trees; in this chapter, we will look at the analysis of more algorithms
on permutations, the properties of permutations that arise in these analy-
ses, and some more tools (evaluation of finite sums involving harmonic
numbers and binomial coefficients) for use in such analyses. The
algorithms that we will study are much simpler than those in the previous
section, but we will see that even simple properties of permutations can be
difficult to analyze.

9.1 FINDING THE MINIMUM

The trivial algorithm for finding the minimum element in an array may be
implemented as follows:

y: =

fori: =1 to N doif A[i] <vthenvy: = A[i];

The running time of this algorithm, is proportional toc,N + ¢,A + ¢;, where
¢y, €, C3 are appropriate constants and A (the only “variable” involved) is
the number of times v:= A[{] is executed. This is the number of lefi-to-
right minima of the permutation: the number of new minimum values
encountered when scanning from left to right.

For example, the permutation

3 8.4 2 5.8 61 7

has three left-to-right minima (in bold face). As we have before, we will

151

152 ; Robert Sedgewick

assume all N! permutations to be equally likely as input and define the
probabilities

P, = Pr{A =k} = {number of perm;'for which A = k}

The method of solution is to set up a recurrence relation on Py, by writing
the permutations in an appropriate order, in this case sorted by their last
element, as in the example' below for N = 4.

1234 1243, 1342 2381
2134 2143 31427353241
1324 1423 1432 2431
3124 4123 4132 4231
2314 2413 3412 3421
32144213 4312 4321

Writing the permutations down in this way makes it plain that the last
element does not affect the number of left-to-right minima unless it is the
smallest. More precisely, every permutation of N — 1 elements with &
left-to-right minima corresponds to (N — 1) permutations of N elements
with k left-to-right minima and 1 permutation of N elements with (k + 1)
left-to-right minima. This leads directly to the recurrence

NPy = (¥ — 1)(N — 1)!P(N—l)k F (N — 1)!P(N-l}{k—l)

1 1
Py = (1 _}V—)P[N—I)k + E’P(N—])(k—ll
In terms of the probability generating function Py(z) = Z,.,Px.2", this is
z+N-1
Py(z) = TPN—I(Z)

This formula could be derived directly, as in Chapter 8, with the argument
that the last element independently contributes 1 to the number of left-to-
right minima with probability 1/N. Also, as in Chapter 8, we can find the
mean and variance of the number of left-to-right minima by summing the
means and variance from the simple probability generating functions (z +
k — 1)/k, with the eventual result that the mean is H, — 1 with variance
H, - H)

This problem can also be dealt with using the “combinatorial” double
generating function technique introduced in the previous chapter. While
the derivation is certainly not simpler than the one given above, it is very
instructive and will prepare us well for more difficult problems that cannot
be handled easily with the elementary techniques used above. As before,

9. Permutations 153

the combinatorial objects of interest are permutations, so we start with the
generating function
g erm(P]
) — g S
B(w, z) ; Z W P!
all perms P *
Here [rm(P) denotes the number of left-to-right minima in the permuta-
tion P and an alternate representation for the generating function is

B(w,z) = z z Pawz*
N=0 k=0
where Py, is the probability that a random permutation of N elements
has k left-to-right minima. As before, we can directly derive a func-
tional equation from the combinatorial definition. Given a permuta-
tion P|, we can create | P, | + 1 permutations of size | P, | + 1, one of which
ends in 1 (and so has one more left-to-right minimum than P,), and | P, | of
which do not end in 1 (and so have the same number of left-to-right
minima as P,). This leads to the formulation

W]P_]|+lzirm{}’1)+1 I Pl IW|P1|+Izlrm{P1)

B(w,z) = Z
! all perms P (I P]l * 1)' all perms Py (I Pll + 1)'
Differentiating with respect to w, we have
[Pyl lrm(P1)+1 [Py | frm(P1)
Witz Wit %
B, (w,z) = Z B

all perms Py |Pl|‘ all perms Py (lPIl B 1)'

=zB(w, z) + wB,(w, 2)

Solving for B, (w, z), we get a simple first-order differential equation
z
B (w, 2} = ——— B(w,
(W, 2) = =—— B(w, 2)

which has the solution

(since B(0, 0) = 1). Differentiating with respect to z, we have
1
B ; = l zin(1/1-w)
(w,2) =In e

Now, evaluating at z = 1 gives the result

1 1
B’(W'l)_l—wlnl—w

the generating function for the harmonic numbers, as expected.

'y

154 : Robert Sedgewick
9.2 IN-SITU PERMUTATION

A direct use for permutations is to specify how to rearrange elements in an
array. For example, the permutation

3 B a2 sS 26

could direct that the array
E ASIK M LUDHIE B

should be rearranged by putting the third element in position 1, the eighth
element in position 2, etc. to leave

SR AOTME B e, B D

If the permutation is in an array P[1 : N], the array 'in A[l: N] and an
output array B[1 : N] is available, the program is trivial:

for i := 1 to N do B[i] := A[P[i]];

In some situations, the B array might not be available, and the A array
needs to be permuted “in place”. A straightforward way to do this is to start

by saying A[1] in a register, replace it by A[P[1]], setj to P[1], and -

continue until P[j] becomes 1, when A[j] can be set to the saved value.
This process is then repeated for each element not yet moved, so it requires
a bit array to mark those elements which have been moved, as in the
following implementation:

forj.=1 to N do
if not (] then
begin
s:=j; z:= A[j); 1 := P[j];
while r <> j do
begin m[s]:= true; A[s] := A[t]; s := t; t := P[s] end;
Als] =z, m[s] := true;
end;

In our example, first A[3] = § is moved to position 1, then A[4] = R is
moved to position 3, etc., to leave

S CRAMULUDEB

Next, the M is marked (and not moved) and then B, D and L are marked
and moved.

This is not truly an *“in-place” algorithm because N extra bits are needed
for the marks: we will see how to eliminate the “mark’ bits later. The only
“variable” in the running time of this program is the number of times the if

9. Permuzations 155

statement succeeds, the number of cycles in the permutation. The analysis
of this quantity turns out to be simple because of a combinatorial corres-
pondence between permutations. A permutation can be defined by writing
out its cycles: the example permutation above can be written

(13428)(5)(697)

which means that A[3] is to be moved to position 1, then A[4] is to be
moved to position 3, etc. Since there are several ways to write the same
permutation in this “cycle” notation (for example, (976)(5)(28134) is
another for the permutation above), it is convenient to define a canonical
representation: for each cycle, write the smallest element in the cycle first
(call this the leader), then write the cycles in decreasing order of their
leaders:

(697)(5)(13428)

But now the parentheses are no longer needed, and we have a one-to-one
correspondence with another permutation:

697513428

In fact, it is the left-to-right minima that determine where cycles begin and
end. This means that we have already completed the analysis, and the
average and variance for the number of cycles is the same as for the
number of left-to-right minima, H, and H, — H®

To eliminate the “mark” bits, we can decide to permute each cycle only
when its leader is encountered, as follows:

forj:=1 to N do
begin
k:=P[j]; whilek >jdok: = Plk]
if £ = j then permute cycle;
end,

Now the analysis must also include a quantity (call it B) that counts the
iterations of this while loop, the “distance” from each element to a smaller
one in the same cycle. This is most easily counted in the permutation
describing the cycle structure: in our example, the following table gives the
contribution to this quantity due to each element:

697513428
200041010

That is, when the 3 is encountered, one more element must be examined
(the 4) before a smaller one in the same cycle (the 2) is encountered (which
bears witness to the fact that 3 is not thé cycle leader).

#

156 Robert Sedgewick

An easy way to analyze this quantity is to expand the table above to a
two-dimensional array in which the ith row has 1s in positions correspond-
ing to “right-to-left” minima in the permutation defined by considering
only the first i positions. In our example, this table is

6 9 Fay¥als 34,2 8
D ¢ 9 61 9.0 . 2
U0 101
O SO0 20" TS T
0 000 11

5 St e | R R |

00 01

1031

L -1

1

If we ignore the rightmost 1s, the columns in this table add up to the
numbers that we had before. On the other hand, the rows (by definition)
add up to right-to-left minima statistics: the ith row is the number of
right-to-left minima in the permutation occupying the first N — ¢ + 1

positions of the array. If we use the same correspondence as before and

generate the permutations of N elements by adding a new element at the
end of permutations of N — 1 elements, then it is plain that the average
increase in B is just one less than the number of right-to-left minima in a
random permutation of N elements. (The increase simply comes from the
1s in the first row of the table.) This gives a direct solution for the average:

BN:BN—1+HN_1

l<k=N
By= (N + 1)Hy— 2N

(The sum of the harmonic numbers can be evaluated by substituting in the
definition H, = 2,_,.,1/j, then switching the order of summation: we will
see another method at the end of this chapter.) Note carefully that the
amount contributed by the Nth element is not independent of the arrange-
ment of the previous elements, so we cannot get a “simple”™ direct recur-
rence of the generating function by using this simple way to compute the
average. Or, put another way, there does not seem to be a simple way to
organize the permutations to derive a recurrence in the probabilities that

B = k. However, Knuth (1971) found enough structure in this problem to

derive the variance. Knuth’s derivation is rather complicated, but we can

develop a simple argument using combinatoriai generating functions based

on his way of splitting the problem.

9. Permutations 157

b.Agan), we write do:wn the generating function in terms of the com-
inatorial structure being analyzed, in this case permutations. We have

Bw,)= 3 win i
b e w
all perms P | P |l

wherfe v(P) is the value of B when the algorithm is run on P, As above, our
goal is to derive a functional equation using this combinatorial defini}ion
because that can be used to find the first two derivatives with respect to z ot:
B(w,z), evaluated at 1, from which the mean and variance can be com-
puted. Given two permutations P,, P,, we can create

(| P |+ | Pg |)
[P

pern.lutations of size | P, | + | Pg| + 1 all of which have the same value of B
by (1) concatenating them with a 1 in between; and (ii) making the values
dlstlpct by choosing |P, | values from 2, 3,..., |P,| + |Pg| + 1 in all
possible ways for assignmentto P,. All of the permutations formed in this
way have the same value of B when the in-situ permutation algorithm is run
on them: v(P;) + v(Pg) + | Pg |. This follows from examining the table
above: the 1 has all 1s below it; the elements to the left of these 1s are all 0
and this block divides the table into two independent parts, one for the lef;
permutation, one for the right permutation. Since every permutation of

size | P, | + | Pr| + 1 is formed exactly once by this construction, we have
the following double sum representation for B(w,z):

| P.| (| PL| + [Pg| + 1)

As in the analysis of the internal path length of binary search trees, this

reducfes, after differentiating by w and rearranging terms, to the simple
functional equation:

| Py |+ | Pg| wiPLIFIPRIF1,v(PL)+v(PR)+ | PR|
all perms Py, all perms PR

B,(w,z) = B(w, z)B(wz, 2)

Then, differentiating by z and evaluating at 1 gives differential equations in
the generating functions for the mean and variance that can be solved as in
the analysis of binary search trees. (This part of the calculation, involving
tricky manipulations with partial derivatives, is by no means simple, but it
is S0 automatic as to be suitable for a computerized symbolic manipulation
system such as MACSYMA (Mathlab Group, 1977).

Many interesting combinatorial problems derive from the “cycle” struc-
ture of permutations, some of which have direct relevance to various
algorithms. For example, the above algorithm, might be slightly improved

’

158 Robert Sedgewick

by a special test for singleton cycles. This could be easily analyzed, because
the average number of cycles of size m for any particular m can be derived.
On the other hand, questions such as “what is the length of the largest
cycle, on the average?” lead to very difficult combinatorial problems

(Shepp and Lloyd, 1966).

9.3 SELECTION SORT

A similar quantity arises in selection sort, a method of sorting by succes-
sively “finding the minimum™:

forj:= 1 to N do
begin
v:=o k=g
fori.=jtoN do
if A[i] <v then beginv := A[i]; k := i end;
t:=A[j]; Alj]:= A[k]; A[k] := g
end;

The operation of this method on our sample file is diagrammed below: the
elements in bold face are the left-to-right minima encountered.

F 8 LT S be B
I8 4 2 +8 963
1.2 887579 & I
150 38 58 0 Jh e ol
72 3 8y Y o8
I 234 5 0 &) BT
2 34 3.69 8 4
i 2 3435 6 7 8 ¥
12 ' 130 4 050 G INgey

The only ‘“‘variable” in the running time of this program is B, the total
number of left-to-right minima encountered during the life of the sort.
(This is not the “‘leading” term in the running time, since the if statement is
executed (N + 1/2) times.) As above, we can define a correspondence
between permutations as follows: given a permutation of N — 1 elements,
create N permuations of N elements by incrementing each element and
then exchanging each element with a prepended 1. For example, 3 1 2
corresponds to:

W N B
& b=
N =N
—_) W W

9. Permutations 159
Each of these permutations will result is 1 4 3 2 when the algorithm is

iterated once, which is equivalent to 3 1 2 for subsequent iterations. This
correspondence immediately implies that

BN=BN_|+HN=(N’+'1)HN_N

But again, we do not have independence: for example, if we have a low
number of left-to-right minima on one iteration, we can expect a low
qumber on the next. What is worse, each iteration modifies the permuta-
tion not yet seen (by exchanging a new element into the position occupied
by the current minimum). This “dynamic” aspect seems to make this a

muf:h more difficult problem than the in-situ permutation problem: the
variance of B is not yet known.

9.4 INSERTION SORT

z@ simple sort?ng program which can be more successfully analyzed is inser-
tion sort. This method works by “inserting” each element into proper

position among those previously considered moving larger elements over
one position to make room:

A[0] := —oo;
fori:=2 toN do
begin

vi=Alil; j:=i-1;

while A[j] > v do begin A[j + 1] := A[j]; j:=j — I end;
A[j+1]:=v;

end

The table below shows the operation of this program on our sample file;
elements in bold face are those that are moved.

4 2, 83%9 % 17

o RN RN W W W
B WWWwWW A~ oo
WWwW s &b &

B B Ui o

thh th O\ oo OO

LN WO

9
8§ 9
il gl

The only “variable” in the running time of the program (call it B) is the
total number of elements moved: this is the number of elements to the left

r

160 : Robert Sedgewick

of each element which are greater than that element, shown for our
example in the following table:

3.8 4 25 gy A
0.0 3% 06 2 J8 2

(Note that this table can be built by considering the permutation as a static
object, even though the elements involved may move around before the
move which is counted.) This table is a well-known combinatorial object
called an inversion table, and the total of the numbers in the table is called
the number of inversions in the permutation. The important properties of
inversion tables are that a table uniquely determines the corresponding
permutation and that, for a random permutation, the ith entry can take on
each value between 0 and i — 1 with probability 1/i, independently of the
other entries. This gives a direct generating function derivation for the
average number of inversions: the generating function for the number of
inversions involving the Nth element is (1 + z + z> + ... + Z"7)/N,
independent of the arrangement of the previous elements, so that the
generating function for the total number of inversions in a random permu-
tation of N elements is given by

1+2z+2%... 4+
N

By(z) = By_1(2)
Again, the mean and variance can be calculated by summing individual
means and variances: the mean turns out to be N(N — 1)/4, and the
variance N(N — 1)(2N + 35)/72.

It is an interesting exercise to derive these results using ‘“‘combinatorial”
double generating functions as we have done for several other problems.

9.5 DIGRESSION: DISCRETE SUMS

The calculation of the variance of the number of inversions involves
evaluating sums of the form

> k and

O=k=n

i

O=k=n
Since we will be encountering more complicated sums of a similar nature, it
is appropriate to consider methods of evaluating such sums at this point. It
turns out that a few identities and techniques are sufficient for the evalua-
tion of many sums involving binomial coefficients, harmonic numbers and
polynomials. _

For polynomials in the index of summation, the fundamental formula on

9. Permutations 161

U;n (::1) L (mi 1)

should be used. For example

g k k\ _ . [n n n(n —3)(n — 1)
k = s 2
UEkz;n ﬂg‘in 2(2) e {‘F_'-;:n (1) 2(3) i (2) - 3'

In general, a polynomial in k can be expressed as a sum of binomial
cpefficients, the fundamental formula applied, and the binomial coeffi-
cients converted back to polynomials if desired. This identity is akin to a
simple integration identity: binomial coefficients are sometimes written in
terms of “falling factorial” powersk” = k(k — 1)...(k —m + 1), som!(%)
= k™ and our identity is ”

binomial coefficients

n_ii

m+ 1

S ko=

O=k<n

which is exactly analogous (for m = 0) to

n m+1
n
fx’”clx =
0 n1’+ 1

This analogy to integration holds elsewhere. For example, there is a

“summation-by-parts” formula which can be used to simplify some compli-
cated sums:

Z (ak+l hal ak)b.k - anbn

O=k<n

— agho — Z y1(besr — by)

O=k<n

n n
-—jvdu
0 0

The ‘difference” a,,, — a, in the discrete case corresponds to the “differen-

tial” operator dv in the continuous case. For example, summation by parts

can be used to sum the harmonic numbers: taking @, = k, b, = H,, we get
> Hy=nH,— Y (k+1)(H—H)=nH,—n

Isk<n Isk<n

This corresponds to the familiar

f udv = uy

0

This is the analog to
j Inxdr=nlnn —n +1
1

(In fact, the definition of H, itself is the analog to [} 1/x dx = In n.)

s’

162 . Robert Sedgewick

Similarly, we can evaluate

in a manner analogous to integrating
n
J x™ Inx dx
|

using summation by parts.

The analogy is not a method for evaluating sums (it sometimes breaks
down), but it is useful in allowing one to apply intuition about integrals
towards sums. One further feature: the analog to e* is 2%, since

O s 7y
O=k<n
and thus we can do sums such as 2k?2, etc.

Later we will see more details on the important class of sums involvh}g
two binomial coefficients. Sums with the index of summation appearing in
the lower index of a single binomial coefficient are more difficult: although

()
k

by the binomial theorem, the partial sum

SR M

1s very difficult to evaluate. We will see techniques for such an evaluation
later,

9.6 TWO-ORDERED PERMUTATIONS

A practical improvement to insertion sort, called Shellsort, reduces the
running time well below N? by making several passes through the file, each
time sorting A independent subfiles (each of size about N/h) of elements
spaced by A. This is easily implemented as follows:

forh:=h,h_, ...~ do
fori:=h + 1 toN do
begin

v:=Alil;j:=i—h;

whilej > 0 and A[j] > v.do begin A[j + h]:= A[j];j:=] — h end;
Alj+h]:=v;

end;

9. Permutations 163

The “increments” A, h, |, ... h, which control the sort must form a

decreasing sequence which ends’in 1. Considerable effort has gone into

finding the best sequence of increments, with few analytic results: although

it is a simple extension to insertion sort, Shellsort has proven to be

extremely difficult to analyze. This may be appreciated by attempting to

analyze the simplest version in which 4 takes on only two values, 2 and 1.
For example, suppose that the input array is initially

< e o] S AR <ot WL AR 1 s AR s T T Rl A |
Then, after the first pass, with & = 2, the file becomes
1 21 3 5 4 .6 W) ¥ 1998 149 15 12 16 13

Such a permutation, which consists of two interleaved sorted permutations,
is called 2-ordered. Since the next pass of Shellsort, with & = 1. is just
insertion sort, its running time will vary with the number of inversions. We
need to find the average number of inversions in a 2-ordered permutation.
This will not only involve some interesting manipulations with finite sums
but will also yield some results that will be of use later, since 2-ordered
permutations arise in the analysis of several interesting algorithms (for
example, they naturally model the input to merging algorithms).

To compute the average number of inversions in a 2-ordered file, we
count the total number of inversions appearing in all 2-ordered files, by
counting, for each i, the total number of inversions from all 2-ordered files
involving the ith element from the odd part of the array. Now, this element
can have value i + j for 0 < j < N. Since exactly i of the elements less than
i + j appear in the odd part of the array, all the elements in the first j
positions of the even part of the array must have values less than i + ;.
From this it is easy to see that the number of inversions to be counted is
i—j—1lfori>jandj —i+ 1forj =i orsimply|i —j — 1]|. Since there

are exactly
j N _j

2-ordered files where the ith element in the odd part has the value i + j, we
are led directly to the formula

2N . A —LN2ZN —i~j
A o I_J—I(])(.
(N) ¢ 1£ND%N| | J N-—]j
. . b IHEAN = = j =]

O=i<N O=j=N

for the average number of inversions in' a 2-ordered permutation of length
2N. (Knuth, 1973b, gives a graphical proof of this formula based on a

164 : Robert Sedgewick

correspondence between 2-ordered permutations and paths in an N by N
lattice.)

The general strategy in evaluating this sum is to use symmetries to elimi-
nate the absolute value and to get an inner sum involving only the two
binomial coefficients, then evaluate that sum and simplify. In this case, the
resulting inner sum is rather difficult to evaluate although it can be done
with elementary techniques.

First, to “use symmetries’” means to split the inner sum into two parts:

> rebld ulol) = T (R G ra bt out ()

O=i<N Osj=N O=i<N O=j=i O=i<N i<j=N

then changeito N — 1 — i andj to N — j in the second sum and recombine

to get
e ST
(e 2 S oo L)

O=i<N U=)=i

Now, change j to i —j in the inner sum, interchange the order of sum-
mation, then change i toi + j to get

T
(ZN)) (2;+1)Z(2”’)(2§_f’_j’_1)

D=j<N
2N
UEEN—;'(k)
2N
j<§f~ (N L k)

which implies, after interchanging the order of summation, that

2N 2N - :
(N)Arv:k;(N _k) S @i+1)

U=j<k

Below it is shown that

Z (2::,‘)(% g iZi_—jj_—l 1)

I

I

Note that the only property of |i — j| that we have made use of in this
derivation is that it is constant along diagonals; in particular, the derivation
works for any function f(i, j) satisfying

fli,i = j) = £, 0)
and
fi,i +j) = f0,j) for j=0

For any weight function with these properties, we have proved the
following combinatorial identity which (as we will see later) is useful in the

9. Permutations 165

study of 2-ordered permutations:

B 3 ﬁ(u)(‘”)(z” “?‘1)

O=i<N U=sj=N N)

2N
=Z() > (fU. 0) + f(0,j +1))

U=j<k

Returning to the number of inversions in a 2-ordered permutation, we
find that the inner sum evaluates to k2, so that

(%V)A” =5 (Nzivk)kz

The easiest way to evaluate this sum is to “‘absorb” the k ? into the binomial
coefficient by writing it as N* — (N — k)(N + k) so that

ZN N s o 2N -2
(N~k)k N(N-k) gl 1)(N~—k—'1)

Now we are left with sums on the bottom index of a binomial coefficient
which can be evaluated since they are nearly over the whole range:

(%) -2 2 () + (V)

The final result, which comes after some calculations from the previous

three equations, is
2N ’
(N)AN = N 4"

so A is approximately equal to VaN?/4.

It is somewhat surprising that such a simple result requires such a long
and complicated derivation: this result deserves a one-line proof! A shorter
proof is available through a combinatorial generating function argument:
using Knuth’s correspondence to paths in a lattice diagram it is possible to
show that the generating function

Z w IPIZ:'nv(P)

B(w,z) =
all 2-ordered

perms P

(where inv(P) is the number of inversions in P) satisfies

w

Bw(w: Z)|z=1 i (1 i 4W)2

However, this derivation not only involves an indirect argument using the

F

166 : Robert Sedgewick

generating function for particular types of paths in the lattice but also some
complicated manipulations with derivatives of these generating functions
(see Knuth, 1973b, Ex. 5.2.1-15). A direct, simple proof of this result

seems to be an elusive goal.

9.7 SUMS INVOLVING TWO BINOMIAL COEFFICIENTS

Many sums involving two binomial coefficients reduce in some way to the
fundamental Vandermonde convolution:

2267 (2]

This is trivially proved with generating functions from the identity
(1l+z2)A+2y=0+2)"

since (1 + z)" is the generating function for (}), etc. Many other sums
involving two binomial coefficients can be derived in this way: for example,
Vandermonde’s convolution on the upper index

Z r—k\s+k o r+s+1
o\ Lm n m+n+1

comes from the simple identity
1 1 1

I+z) A+zy (Q+z)™

A similar (though much more complicated) argument can be used to
remove one binomial coefficient from the inner sum which arose above:

2i +j\[2N = 2i —=j — 1 o K 1
= 2I
Z(i)(N—i—j-1) ;,(N—i~j—l)

Now Vandermonde’s convolution can be used in an unexpected way: since

the sum is

5 2N) 5 2N
-y iap\N Btk d Lo ko L &

9. Permutations 167

This derivation is typical: many more examples and many more techniques
are given in Knuth 1973a).

9.8 SHELLSORT

Some aspects of the above analysis can be extended to analyzing the gen-
eral Shellsort algorithm, but the full treatment of this program remains an
unsolved problem. Yao has recently done an analysis of (A, k, 1) Shellsort
using techniques similar to those above, but the results and methods
become much more complicated. For general Shellsort, the functional form
is not even known: some conjecture it to be N*, for some small constant a;
others conjecture N(log N)*. This problem has an interesting combinatorial
quality and direct practical relevance (since Shellsort is the method of
choice for medium-size files, especially if space for the program is limited).
For many more details on this problem and an example of the extensive use
of the techniques of this section see Yao (1980).

10. Elementary asymptotic
approximations

The methods and examples that we have studied to this point have been
oriented towards deriving exact average-case results. Unfortunately, such
exact solutions may not be always available, or if available they may be too
unwieldy to be of much use. In this section, we examine some methods of
deriving approximate solutions to problems or of approximating exact
solutions.

We have seen that the analysis of computer algorithms involves tools
from discrete mathematics, leading to answers most easily expressed in
terms of discrete functions (such as harmonic numbers or binomial coeffi-
cients) rather than more familiar functions from analysis (such as
logarithms or powers). However, it is generally true that these two types of
functions are closely related, and one reason to do asymptotic analysis is to
“translate” between them. It is sometimes necessary to do such transla-
tions in order to invoke more powerful analytic tools.

Generally, the “size” of a problem to be solved is expressed in terms of
one (perhaps a few) parameters, and we are interested in approximations
that become more accurate as the parameters become large. By the nature
of the mathematics and the problems that we are solving, it is also often
true that our answers, if they are to be expressed in terms of a single
parameter N, will be convergent power series in N and log N. Therefore,
our general approach will be to convert quantities to truncated versions of
such power series, then manipulate them in well-defined ways. When
results cannot be so expressed, then we will need much more powerful
tools, as we will see in the next chapter.

168

10. Elementary asymptotic approximations 169

10.1 O-NOTATION

The standard way to write down precise asymptotic approximations is the
so-called O-notation. For example, it is shown below that

1 1

(Here y is a constant with approximate value 0.57721...) The quantity
represented by the O(1/N?) term (the error in the approximation) is less in
absolute value than some constant divided by N? for large enough N. A
precise definition of the O-notation may be found in Knuth (1973b, 1976).
It is easy to check many elementary properties of the O-notation which
facilitate simple calculations involving asymptotic formulas such as the one
above, For example, consider the formula derived in Chapter 8 for the
average internal path length of binary search trees:

(N+1)Cy=2(N+ 1)Hy — 2N

Since N O(1/N* = O(1/N) and 1/N + O(1/N) can be replaced by
O(1/N), etc., we have

1
(N+1)Cy=2NInN+N(2y-2)+1 +O(ﬁ)

No matter what the value of the constant involved in the O-notation (in
principle it could be large, in practice it is small), the error in this approxi-
mation becomes small as N grows.

The O-notation is useful because it can allow suppression of unimportant
details without loss of mathematical rigor or precise results. Note that we
could determine C to within O(1/N?) with only a few more calculations. If
a more accurate answer is desired, one can be obtained, but most of the
detailed calculations are suppressed otherwise. We shall be most interested
in methods that allow us to keep this “potential accuracy”, producing
answers which could be calculated to arbitrarily fine precision if desired.

10.2 BATCHER’S ODD-EVEN MERGE

An example of a problem for which the exact answer is surely very compli-
cated is determining the average number of exchanges required by
Batcher’s “odd—-even” merging method. In this section, we examine the
derivation of an approximate answer for this problem that illustrates many
basic techniques used for estimating combinatorial sums. In the next sec-

.

170 : Robert Sedgewick

tion we will study the more powerful methods that are needed to make the
answer precise. Details on this derivation may be found in Sedgewick
(1978b).

Batcher’s method is a way to sort a 2-ordered permutation on 2N ele-
ments (which is equivalent to doing an N by N merge) as follows:

for j:= 1 to N do compexch(A[2] — 1],A[2]]),
for k:= lg(N) downto I do
forj:= 1 to N — 2" do compexch(A[2j],A[2j + 2" — 1]);

Here compexch is a procedure which compares its two arguments and
exchanges them, if necessary, to make the first smaller. The operation of
this method on a sample file is diagrammed below:

1 od o & 6 10 e ST 8, (g g oS SO kG
1 2 38 % 6 7 180 & 1L 9 34 12 8. FAocln
1 23 5 4 6 7 19 & ¥ 9714 12 150 E3N06
1 2 3 & 4 65 TS * SINE D 13012 15 14 36
L 2a3. 448 6 ulin8 % 200 11 212 13 0405 X6

This algorithm seems mysterious at first glance, but actually its operation
can be quite easily understood in several ways (see Knuth 1973b;
Sedgewick 1978b, 1982a for details). It can be shown that the first stage
ensures that the ith element in the odd part of the array has value i + j with
J = i, then the subsequent stages ensure that (i — j) < 2, until reaching the
state where the ith element in the odd part of the array contains i + j
with j =i — 1 for each i, at which point the array is sorted.

Note that the sequence of compare—exchange operations is predeter-
mined (independent of the data) and that all the operations in each stage
can be done in parallel, so the method is appropriate for implementation in
hardware.

The only “unknown™ quantity in the above program is the number of
times exchanges are actually done: we will denote the average value of this
quantity for a file of size 2N by B. In Sedgewick (1978b) it is shown that
our combinatorial identity for 2-ordered permutations from the previous
section holds, with a “weight function” f(k) that turns out to be equal to
the number of 1s in the Gray code representation of k (see Ramshaw and
Flajolet, 1980). Thus, by that derivation, the average number of exchanges

18 given by
(2N
N-i)
s ————— (k) 'where F(k)=2 3 f(j)+k

k=1 2N 0=j<k
N

B_\' ==

10. Elementary asymptotic approximations 171

This sum is essentially a sum over the lower index of a binomial coefficient
which, as we saw when calculating the number of inversions in a 2-ordered
permuation, can be easy to evaluate if F(k) is a simple polynomial in k.
However, for other F(k), such sums are difficult to evaluate exactly, and
We must resort to asymptotic techniques. To approximate B,, our method
will be to estimate the summand in terms of classical functions, then
approximate the sum with an integral, and integrate. We will describe the
method in general terms, for it is applicable to a variety of similar sums
involving factorials, powers, and other functions, and reasonably well
behaved F(k).

A precise way to estimate sums with integrals was given by Euler:

it B,
2 =] fes 3 2
Here B, are the Bernoulli numbers (B, = 1,B,=-1/2,B,= 1/6, B, = 0),
m is the number of terms desired in the asymptotic estimate, and R, is a
term smaller in absolute value than the last term estimated. (The Bernoulli
numbers grow to be quite large, so this formula is typically useful only for
small m.) Of course, the function f must be differentiable enough times to
make the formula valid.

For example, taking f(k) = 1/k leads to an asymptotic expansion for the
harmonic numbers:

1 1 1
HN—IHN+?+2N" 12N2+O(N3)

and taking f(k) = In k leads to an expansion for N!:

AP+ R,

InN!'=(N+HDInN-N+1n 2z + E-IWJrO(]Tlg)
These expansions require calculation of “Euler’s constant” y =
0.57721 . . . and “Stirling’s constant” In 2z: see Knuth (1973a) for many
more details about these expansions and Euler’s formula,

To use Euler’s formula to approximate B, we need to approximate the
summand with functions that we could hope to integrate. The first step,
which is unnecessary for this problem but very useful for many others, is to
“normalize” the sum by centering it so that the largest term occurs for k =
0, then dividing by that term. This is useful because not all the terms of the
sum contribute significantly to the result. (In fact, as we will see, for this
example most do not.)

Next, we need to approximate the summand. For this, we need only
Stirling’s approximation

| e 1
InN!'=(N+HnN-N+In \/2n+0(ﬁ)

Bookmark icon

172 - Robert Sedgewick

Applying this to the binomial coefficients in our summand, we find that
NIN!

(N + k)Y(N — k)!

= exp‘(ZN + D)InN = (N +)(In(N + k) HIn(N — k))

= exp{2 In N! — In(N + k)! = In(N — k)!}

— In V2r— k(In(N + k) — In(N — k))

+ofs) + o) + o)

Note carefully that this approximation is meaningless for |k | close to N;

fortunately, we will not need it for k in that range. -
The In function is easily approximated by turning its Taylor series expan-

sions into an asymptotic formula:

3
s iy

In(l —x) = —x —?——é—+0(x"), for |x|<1
Approximation by Taylor series works for many other functions, for

example
ik
f=1l4x+—=—+—+0(x*
e ¥ tghE (x%)

Since In(N + k) = InN + fr{l +§) and similarly for In(N — k), we have

kZ k4
In(N+k)+In(N—-—k)=2InN ~ N7 - O(m)

In(N + k) = In(N — k) = % % O(J%;)

Substituting,

NIN! o,k k*\) 2k k’
(N + N — k) e"pl_w . i)(" N O(V‘)J n k(F e O(JV;))

B 1 | S 1
—In V2n + O(N) 2 O(N T k} + O(m)]

Now we have even more O terms to worry about: we need to restrict k to
be less than some value to make all the approximations useful. On the
other hand, we cannot restrict k too much, since we will need to deal with
the terms for large k in some other way. We will partially postpone this

10. Elementary asymptotic approximations 173

problem as follows. Clearly, since k is our index of summation, we want as
few occurrences of k as possible (preferably just one) in our final approxi-
mation. The “largest” term involving k is —k*/N; next come O(k*/N?) and
O(k’/N°). These become O(1/N) for |k | < VN so VN is clearly a ““critical
value” beyond which more values of & may be needed. Recognizing that
we may later need to allow k to be larger, we will postpone the exact

decjsion by restricting | k | to be < /Nt(N) for some small function t(N), in
which case we have

N!N! —k* N 2
(N +KU (N —k) CXP{T . O(iw_))j . IN(I ¢ O(i(zf:fl-)))

(This last equation follows from e®™ = 1 + O(x), a fact the reader might
wish to check.)

Applying the approximation to our sum, we have

; DECTR o e*zm(Pt o(‘(—g—))) F(k)

l=lki= ‘,'_Nt{N)
Z NI N! F(k)
k
N + k)! - k)!
k| > /Ni(N) (RN, =)

But we can use the approximation calculated above to bound the second
sum, since the terms are decreasing. For |k | > VNt(N), we know that

N!N! » N!N!
(N + k) (N =k)! (N + VNi(N))! (N — VNt(N))!

L d t((N)
expl t(N) + O(_N_”

In fact, exactly the same bound holds for exp(—k %/ N), for |k | > VNt(N),
SO we can write

By= > e"‘sz(1+ O(%))F(k) 0 o(by e“"N’F(k))

K=1 ——
|k |=Nt(N)

Now, if F(k) does not get too large, then ¢(N) can be chosen large enough
to make the second sum small. For example, if F(k) is O(N™) for some
constant m, then ¢(N) can be chosen to be (m + 2)In N to give

R log N 1
By= e *"Ead 1 + of 28 AL
v 2 “((N L

As mentioned above, these calculations could, in principle, be carried out

’

174 : Robert Sedgewick

to better asymptotic accuracy, but there are complications involved. One
problem, as the reader certainly must have noticed, is that it is difficult to
predict a priori how far to carry out the asymptotic series at various steps in
the process: the penalty for taking too few terms is an answer with less
accuracy than might be expected; the penalty for taking too many terms is

excessive needless calculation.
Now that we have estimated our summand in terms of the exponential

function, we can apply Euler’s summation formula to estimate it with an
integral. In fact, the exponential is so well behaved that this introduces no
further error, and we have

B, =f e INF(x) d.r(l + o(loiN)) + 0(%)

as long as F(x) is well behaved. For example, if F(x) = 1, then the integral
is the well known normal distribution function (Abramouitz and Stegun
1972), with value N, confirming our earlier estimate for the Catalan
numbers. Similarly, for F(x) = x?, the integral is easily evaluated to get an
asymptotic formula for the average number of inversions in a 2-ordered
file.

For Batcher’s merge, it is easy to prove by induction that F(x) = x log x
+ O(x). Combined with the previous result, this implies that

By =I e~y Ig x dx + O(N)
1

The substitution ¢ = x?/N transforms the integral to another well known
integral, the “exponential integral function”, with the result

B,=iNIgN + O(N)

Unfortunately, it is not easy to get a better approximation to F(x), and
more powerful tools are needed to get a more accurate estimate for B, as
described in the next section.

However, the general method of approximating a sum by first approximat-
ing the summand in terms of simpler functions (using only the large terms),
then using Euler’s formula to approximate with an integral, is quite often
used in asymptotic analysis. The particular example that we have used is a
familiar one (corresponding to the normal distribution being the limiting
case of the binomial distribution), but the same techniques apply to a wide
range of sums. For example, Knuth (1973b) describes how to use the
method to evaluate

4 N!
2, (N = 2k)! 2%}

10. Elementary asymptotic approximations 175

;vhicl; counts the number of permutations consisting of cycles all of length
or 2.

10.3 HASHING WITH LINEAR PROBING

For another concrete example of the use of asymptotic methods, we will
consider a fundamental strategy for searching: an alternative method to
trees called hashing.

.T}.le idea behind hashing is to try to address directly a set of N keys
within a table of size M by using a hash function h which maps keys (which
have a very large number of possible values) to table addresses (0 to M —
1). (A typical way to do this is to use a prime M, then convert keys to large
numbers in some natural way and use that number modulo M for the hash
value. More sophisticated schemes have been devised.) For example, our
sample set of ten keys might have the following hash values:

un deux trois quatre cinq six sept huit neuf dix
4 5 4 6 8 8 5 6 5 8

No matter how good the hash function, some keys will have the same hash
values, and a collision resolution strategy is needed to decide how to deal
with such conflicts. Perhaps the simplest such strategy is linear probing: if,
when inserting a key into the table, the addressed position (given by the
has value) is occupied, then simply examine the previous position. If that is
also occupied, examine the one before that, continuing until an empty
position is found (if the beginning of the table is reached, simply “cycle” to
the end). For the keys above, the table is filled as follows:

0 1 2 3 4735 6 a8 9
un
un deux
trois un deux
trois un deux quatre
trois un deux quatre cing
trois un deux quatre six cinq
sept trois un deux quatre six cing
huit sept trois un deux quatre six cing
neuf huit sept trois un deux quatre six cing
neuf huit sept trois un deux quatre six cing dix

Collisions (occupied table positions examined) are printed in bold face in
this table. This example (especially the last insertion) shows the algorithm
at its worst: it performs badly for a nearly full table, but reasonably for a

”,

176 - Robert Sedgewick

table with plenty of empty space. As the table fills up, the keys tend to
“cluster” together, producing long chains which must be searched to find
empty space.

An easy way to avoid clustering is to look not at the previous but at the
tth previous position each time a full table entry is found, where ¢ is com-
puted by a second hash function. This method is called double hashing.
Other hashing methods use dynamic storage allocation, for example keep-
ing all the keys with the same hash value on a simple linked list.

Linear probing is a fundamental searching method, and an analytic
explanation of the clustering phenomenon is clearly of interest. The
algorithm was first analyzed by Knuth, who states that this derivation had a
strong influence on the structure of his books. His books certainly have had
a strong influence on the structure of research in the mathematical analysis
of algorithms, and this derivation is a prototype example showing how a
simple algorithm can lead to nontrivial and interesting mathematical
problems.

Knuth’s derivation divides into two parts, a combinatorial argument
leading to an exact answer and an asymptotic estimation of that answer.
Since the combinatorial argument is long, largely specific to this problem,
and similar to things we have done in previous chapters, it will be only
summarized here. Some of the asymptotic estimation is similar to the
above, so it also will be summarized here. Full details are found in Knuth
(1973a, 1973b).

We are interested in knowing the average number of table entries
examined for a successful search, after N keys have been inserted into an
initially empty table of size M. Knuth shows that this quantity is given by

1

k+1 [i 1
Cw=— - N
il ; | u;h‘ u;k:a k;-s.:' M’ (]) (] e 1)

AM —-i—-1
; e R
><(]+1)(M__}.__1

Jor -1 -1

This formula looks formidable, but the inner sum is actually quite similar
to the sum in Abel’s binomial theorem, which says that

i i (;) x(x = jz)y~'(y + jz)”

)
or, with appropriate substitutions,

m' =3 (;)0 e L)y 1)

g

Abel’s theorem turns out to be a powerful enough tool to evaluate this

10. Elementary asymptotic approximations 1737

sum, although i substantial amount of computation is involved: the details
may be found in Knuth (1973b). The eventual result is

20— 1= ———-——N!

4 2 V=1
(This formula seems a perfect candidate for derivation using triple “com-
binatorial” generating functions, but such a derivation has not yet been
worked out.) This is an exact answer, but it is not in a particularly useful

form, so that we would like to do an asymptotic estimation.

Practically speaking, it seems clear that the table should not be allowed
to get nearly full: if we define N/M = «, we certainly want a << 1. If a is

not tc?o close to 1, the sum is not difficult to estimate using the same
techniques as above:

N! N\ N!
2Cy - 1= o A P) A S
e DI (m) MV —)]

O=i=N

Splitting the sum into two parts, etc., exactly as above, we can use the fact
that terms in this sum begin to get negligibly small after i > VN to prove

that
- N\ i’ 1 1
2y — 1 = 7 == VIR P
=2 () (1 +o)) - =+ o)

Thu§, for fixed o, as N (and M) get large, the average successful search cost
for linear probing is about 1/(1 — «).

10.4 LINEAR PROBING IN A FULL TABLE

The constants implicit in the O-notation in the equation above are inde-
pendent of N and a, but the equation becomes meaningless as « gets close
to 1. For simplicity, consider the case N = M, or

N!
2¢.. = 1= St i
5 ug_-:n' NY(N - f)!

In this case, it will be convenient to rewrite the sum as

|
2CNN—1=Z(N)}%

~ N

The methods above could be used, even in this case, to eventually estimate
the sum with an integral, but it will be instructive to consider a somewhat

”,

178 \ Robert Sedgewick

more direct method which makes use of the I'-function, defined by
rG+ 1) =J e 't di
]

This is a generalization of the factorial: it is not difficult to prove that I'(+
1) = iT(i{) and ['(i + 1) = i!, using integration by parts. It is a generaliza-
tion because it is defined even for noninteger i. This formula becomes
directly useful in our problem if we take + = uN so that

ri@+1) J“ .00
S AL = g T
NH-I)

This is equal to i !/N'*! for integer i, so it can be substituted directly into
our sum to yield

N S LA
ZCNN =2 l = Z (f)NJ’ enj\uu' du
i 0

Now we can interchange the order of integration and summation to get

- X

Gy == NJ e M(1 + u)" du
{0

and we need only evaluate the integral. Knuth (1973a, Section 1.2.11.3)
shows how to get an asymptotic value for the integral by using reversion of
power series: if we change variables tov = u — In(1 + u), so that (1 + u)"
=e"“anddu = [1 + (1/u)]dv, then we can expand the logarithm to get

v =4u’ -’ + 0

and solve for u, “‘bootstrapping’ one term at a time, to get

U= \f@ i %V - - O(V3,"3)
and

1 + : : - oWy
— = =T -+ OWy
u V2v 3)

Knuth gives details and further terms of these expansions, as well as a
proof that it is valid to use them within the range of integration under

consideration. Thus the integral is

N 1 2 —
2C,.—1=NJ e Ml —+ = + O(vyv)] dv
NN (\/—2; 3 ())

But now we can use the definition of the I' function for i = — i, 0,

0

» 10

-

179
get the result

et Is) 2 FE N
2C\e- 1 =N|—=2 == i 2
i (\/2N+3 i f))

5
Cyy = VaN/8 + =+ 0N

(F'(1/2) is easily calculated from the normal distribution function.) This
result can be extended to show that Cy,y = O(/N) whenever N > M — 8
for fixed B.

The fnethod used here of converting a sum to an integral may seem quite
mysterious at first (especially since we used the same formula to evaluate
the integral); in the next chapter we see that it is a special case of a
powerful general technique which is applicable to many problems.

11. Asymptotics in the complex plane

The analysis of many algorithms cannot be understood without resorting to
complex numbers. In the simplest cases, roots of polynomials can be in-
volved: in advanced cases, complex analysis is necessary to derive answers
which could not otherwise be stated, much less derived. A substantial
body of mathematics has been built up, mostly in other contexts, which
applies directly to analytic problems associated with simple algorithms. A
survey treatment of the *‘classical analysis”” necessary to solve such prob-
lems would be far beyond the scope of these notes; nonmathematicians
who are convinced by now of the potential utility of such analyses should
first read Knopp (1945). Advanced material on some topics relevant to the
analysis of algorithms may be found in Bender (1974) and DeBruijn
(1958).

11.1 POLYPHASE MERGING

For our first example, we will consider the problem of sorting a file which is
too large to fit in our computer’s memory but which does fit on a magnetic
tape. To sort the contents of a magnetic tape, we will need some auxiliary
tapes; a good algorithm will minimize the amount of movement among
tapes.

Several methods have been developed for this problem: they all begin by
reading the input tape into memory and writing sorted *‘runs” of informa-
tion out onto the auxiliary tapes. (The naive method for doing so would
result in runs about the size of the internal memory; the actual method
usually used manages to create runs about twice the size of the internal
memory.) Then the runs are merged together in successive phases to make
longer and longer runs, ultimately producing the sorted file.

Many different algorithms have been developed which work this way. A

180

11. Asympiotics in the complex plane 181

fundamental method is the polyphase merge which works (after the runs
have been distributed onto the auxiliary tapes in some “perfect” distribu-
tion) by taking one run from each tape, and merging them together to
ma.ke a longer run on an output tape until one tape becomes empty: at this
point the process is repeated, using the emptied tape as the new output
tgpe: For example, suppose that three tapes are used and the first step
distributes 34 sorted runs onto Tape 1 and 21 onto Tape 2. Then the

polyphase “‘merge until empty” strategy produces a fully sorted file on
Tape 2 as follows:

Tape 1 Tape 2 Tape 3 Total runs
34(1) 21(1) 0 55
13(1) 0 21(2) 34

0 13(3) 8(2) 21

8(5) 5(3) 0 13

3(5) 0 5(8) 8

0 3(13) 2(8) 5

2(21) 1(13) o0 3

1(21):5 0 1(34) 2

0 1(55). .| 0 1

’_l"he numbers in the table are the number of runs on the tape; the numbers
in parentheses are the sizes of the runs (relative to the size of the initial
runs). For example, in the second phase, 13 (initial) runs from Tape 1 are
merged with 13 of the 21 runs on Tape 3 (of relative size 2) to make 13
runs (or relative size 3) on Tape 2, leaving Tape 1 empty and 8 runs (of size
2) on Tape 3.

The question immediately arises: how many phases are required to merge
tggether N initial runs? For the three-tape case, this is not a particularly
dl.fficult question (many readers may already have recognized the
Fibonacci numbers), but if more than three tapes are used, the situation
becomes more complicated and it is best to use complex analysis.

The merge pattern is easy to derive by working backwards. For example,
the following table shows the pattern for four tapes (the table ignores tape
labels and is skewed to make the pattern obvious).

I 1 0 06 @

+ s B T |

v S R R |

13 b s W30

25 8 7. 6 4
49 15 .14 412 8§

Each line in the table is obtained from the previous line by removing the

4

182 ‘ Robert Sedgewick

leftmost entry, adding it to the others, then appending it to the right. It is
easy to verify that “merge until empty”, starting with these distribution
patterns, will implement a polyphase merge.

Polyphase merging and similar methods lead to very interesting and
intricate patterns which have been subjected to intensive study and
analysis. For example, the problem of how to add “dummy” runs if the
number of runs to be merged is not a perfect total appearing in the table
has been studied in detail, with the surprising answer that many more
dummy runs should be added than seems necessary (see Knuth, 1973b).
Our purpose in discussing polyphase merging is to motivate a particular
method of analysis, so we will concentrate exclusively on the simplest
problem of determining how many phases are required to merge N runs
together.

The analysis starts from the observation that each number in the table
(including the totals) is the sum of the previous four along the same
diagonal: in general, for m tapes, the total number of runs in an n-phase
merge is given by the recurrence

fﬂ = fJrr--] + fu-l T ey rn—-m+l for n >0

with

h=t,4=...b_,=1
This recurrence directly yields a closed-form expression for the generating
function:

(m-1z+(m—-2)2"+...+z""

m=1

Tm(Z) = Z I:,Z" =

n=>0 I_Z_ZE_-.._Z

For example,

4z + 3z2 + 273 + z*¢

T &
5(2) E——
and
27 + z°2
Ty2) = —/
I =z=¢

The standard technique for finding 1, is to expand these expressions for
T (z) in power series, then equate coefficients of 7,. This can be done by
factoring the denominator and then using partial fractions, as illustrated
below for M = 3.

2z + %4

(1 - ¢z)(1 — ¢2)

T(z) =

11. Asymptotics in the complex plane 183

=2+z(g Sy
V5 \1 - ¢z 1-&2)

2% 5
= EZ (Z ¢nzrr = Z ¢Hzn)

n=1u n=u

where

_1+'\/§ A_l"'\ffg
¢ e

Therefore,

1 n+2
rﬂ = __,(2¢N'+ ¢!!—I — 2&:; b &n—l == ¢ + O i
-) =S+ 0@
(Note that ¢ + 1= ¢°, so 2¢ + 1= ¢°, and that | ¢ | <1, so that the

contribution of ¢" is negligible compared to that of ¢". Now, if 1, = N, we
can take logs to find that

log,N=(n+ 1)+ logﬁ,(—lg) + log4,(1 + O(%)n)

so that the number of phases required to merge together N runs is
log,N —1log,5 — 1+ O(N™)
for a positive ¢ depending on ¢ and ¢.
This technique generalizes. If the roots of 1 —z —z2 — ... — 27! are
&y, @ . . ., @y, then we can apply partial fractions to give
T,(z) = hy(2) 2 @ z" + hz(z)z @z + ...+ h, 4(z) Z O 1l
n=0

n=0 n=0
where h(z) are polynomials coming from the partial fractions calculation.
It. tums. out that the inverse of one of the roots say «,, always dominates the
others in the same way that ¢ dominates ¢, even though some of the roots

are complex (see Knuth, 1973b, for a proof). Therefore, as above, we

eventually find that the number of phases required to merge N runs using
M tapes is

1
log,,N - log,]hl(a—) + O(N™)
1

as above. Now, Knuth shows that

1 M
a1=2—§—g+0(w)

»,

184 ’ Robert Sedgewick

as M grows, and that all the other roots are smaller. This gives enough
information to calculate the leading term. Unfortunately, the next term is
available with this method only through a laborious partial fractions calcu-
lation involving all the other roots. However, complex analysis provides a
convenient method for performing this calculation.

The idea is to note that, as a function in the complex plane, the
generating function 7,,(z) has a simple pole at 1/a;: put another way,
(1 — ,2)T,,(z) converges for | z | < R with R > 1/ | «, |. Therefore,

H
+ rz" with |r,|<R™
1 B {I]Z II-Z-’U fz | |

T.(2) =

As above, this leads to the expression
log, N + log, H + O(N™)

for the number of phases required to merge N runs. The constant H is the
“residue” of T,(z) at 1/a,; it can be calculated using I'Hospital’s rule. If we
denote the numerator of 7,,(z) by p,.(z) and the denominator by g,(z), we
have

(1 il J:I!IZ)PJ'N(Z) — alpm(lfal)
q,,,(Z) q:n(l/al) .

This calculation is a simple example of a general technique that we will
examine more closely below: a function in the complex plane is approxi-
mated by another that performs similarly near its singularities. Our next
example shows a more complicated application of this method.

H = lim (1 — «,2)T,(z) = lim

z—=1feq z—1/x)

11.2 COUNTING ORDERED TREES

Suppose that we wish to count the number of ordered trees with N internal
nodes. We know from the direct correspondence between binary trees and
ordered trees that the answer is given by the Catalan numbers. This result
can also be derived with a direct generating function argument. If G(z) =
282" is the generating function for the number of ordered trees with N
internal nodes, then G(z)* is the generating function for internal nodes in
two ordered trees, G(z)® for three ordered trees, etc. Since every ordered
tree consists of a root with one son (which is an ordered tree) or with two
sons (which are both ordered trees) or with three sons, etc., we are
immediately led to the recurrence

G(z) = 2(1 + G(z) + G(2)* + G@) + . . +) :

TT-6Q)

L1. Asymptotics in the complex plane 185

This gives a quadratic equation with the solution

G(z) =1(1 £ V1 — 4z)

This is very similar to the generating function for binary trees: as before
we cl?oose' the root which yields the right small values: then expand using
the binomial theorem; then approximate using Stirling’s formula to get the

result
4 1+0 L
NN]_V_))

But suppose we want to count the number of ordered trees with N
external nodes. This is not a well-posed problem because, for example,
there are an infinite number of ordered trees with only one external node
(almy nun?ber of unary nodes strung together). This anomaly is fixed by
dissallowing one-way branching: how many ordered trees are there with no

unary node§ and N external nodes? Arguing as above, we immediately get
the generating function recurrence:

gN+1 =

G(z)*?
1= iG{(z)

This leads to a different quadratic equation with the solution of interest

G(z)=z2+G()}+G@)>*+...=z+

GiZ)=i(1+z - V1 -6z +2°

But now we cannot get anywhere by applying the binomial theorem, since
it would lead back to a convolution sum to find g,. To simplify notation, we
will consider the asymptotics of V(1 — w)(1 — aw) for « < 1: to find gy we
will need to takew = (3 + 2V2)zanda = (3 — 2V2)/(3 + 2V2).
Now, V(1 — w)(1 — aw) has an algebraic singularity atw = 1: it is not a
pole, so we will not be able to approximate the function accurately with
negative powers of (1 —w), as above. Nevertheless, we do expect the

function to behave something like V(1 — w)(1 — @) at w = 1, and this sug-
gests that we compute

VA —w)(1 —aw) = VA —w)d —a) + VT —w (VI — aw) — V1 —)

o = a(l = w)¥?
Wl et e T,

The function (V1 — aw + V1 — a)~! converges forw > 1; therefore, as we
have argued before, it is the generating function for a sequence which is
O(r7) for some r > 1. By the binomial theorem (1 — w)¥?is the generating

,

186 | Robert Sedgewick

function for

(_1)4\;(3]{“2) = O(N —SJZ)

. - J\‘I -
It remains only to convolve these two sequences: the coefficient of w™ in

this convolution is
k —5f2 k—f\fl k —5!2)
Z O(N-k) ugkz;'.-w: ('Aﬁ&) N,I’ZZA?.-.'\-' L

D=k =N i

BOGE) VONET) 15

N2=k=N
= O(N~?)

This completes the approximation:

V(I —w)(l —aw) = z (\/"1 o (;)(—1)N+ O(N_m))w‘”

N=0

which eventually leads us to conclude that the number of ordered trees
with N external nodes and no unary nodes is approximately ((3 V2 —)/

16xNY)X(3 + 2V2)".

11.3 METHOD OF DARBOUX

Again we were able to estimate a function by subtracting a function. which
behaves similarly near a singularity, then estimating the error. In this case,
the error was not exponentially small (as it was in the case of p_oles) but
merely slightly smaller than the leading term. It turns out thgt this general
method applies to many generating functions. The techmq_ue is wel'l known
in analysis as the method of Darboux: if G(z) = 2 v=agnz” is analytic near «
and has only an algebraic singularity of the form (1 — z/a) "h(z), then

2 h(a:)N”"‘ L O(w-l)
A

&N r(w)a
This formula yields directly the three asymptotic results derived_ abf)ve. A
more general statement (when more singularities are involved) is given in
Bender (1974). This method can give a quick solution to many problems.
On the other hand, functions do arise in the analysis of simple algorithms
which are too ill-behaved for this theorem to be useful. The general idea of
studying the behavior of the function around its singularities is preserved,
but much deeper arguments are required; for examples of this see Odlyzko
(1979) and Flajolet and Odlyzko (1980).

11. Asymptotics in the complex plane 187

11.4 MELLIN TRANSFORMS

In the previous section, we were unable to find the coefficient of the linear
term in the analysis of Batcher's sort. This problem can be solved using the
Mellin integral transform, a technique which has wide applicability in the
analysis of algorithms. As we shall see, the answer thus derived has charac-
teristics that make it plain that simpler methods will not work for this
problem. Furthermore, several problems from a variety of applications
exhibit similar characteristics. This method is outlined in detail in Knuth et
::'zt.h(1969), Knuth (1973b), and Sedgewick (1978b), so we will only sketch
it here.

We will pick up the derivation at the point at which we need to evaluate
By = T e F()
k=1

The asymptotic derivation for linear probing in the previous section
involved “transforming” a sum involving a factorial (the I'-function) into
an integral involving an exponential. For this problem, we do the opposite:
change the sum involving the exponential above into an integral involving a
I'-function.

The specific tool we need to start is the Mellin inversion theorem:
If f is piecewise continuous and

Fs) = [) ax

is absolutely convergent for ¢, < Re(s) < ¢, then
oti®E

1
fix) = ——f x "F(s) ds
IREI S

forc, < o <c,. This is a special case of Fourier inversion (see Titschmarsh,
1951) which has applicability in analytic number theory and many other
fields.

Taking f(x) = e gives F(s) = I'(s) by the definition of the I'-function
(see the previous section), so the inversion theorem says that

oHi®
& im —l—j ¥2F(s)ds far' o> 0!
23‘” =
This formula may be proved independently by noting that the value of the
integral is very closely approximated by the sum of the residues to the left
of the line of integration because the T function is very small for arguments
at the fringes of the left half plane. (See Knuth, 1973b for a detailed proof

F

188 ' Robert Sedgewick

of this: the line integral is approximated by a contour integral which
encloses the left half plane in the limit, and the contributions of the other
parts of the contour are shown to vanish.) The T function has a pole at each
nonpositive integer (see Whittaker and Watson, 1927, for properties of the
I function); the residue at —j is (— 1)/j!. Therefore, the sum of the residues
to the left of the line of integration in the integral above 1s

z x(—1) =e%,

j=0 !'

verifying the relationship between I'(s) and e* implied by Mellin inversion.
To use Mellin inversion for our sum, we simply “transform” the expo-

nential in our sum,

l gti® kz -5
= . i dsF(k
By = z,zfjo_ﬁ (N) [(s) dsF(k)

k=1

then interchange the order of summation and integration to get

B it f (Z F(k))N‘l"(s) ds

- : 25
2ni 1, KX

then ‘““transform™ back to get the functional form of B,. Note that the
interchange of integration and summation is allowed only if

F(k)

};1 k 25

is defined on the path of integration. This depends both on F(k) and o, and
plays an important role in the derivation, as we will see in the examples
below. Moreover, we need to be able to study properties of this function in
the complex plane. Fortunately, for many examples which arise in the
analysis of algorithms, this function can be expressed in terms of classical
special functions.

To begin, we will consider an example for which we already know the
answer: if we take F(k) = k*, then, as we saw in Chapter 9, B is the
number of inversions in a 2-ordered permutation. We have

SOR-3 =t

25
k=1 k k=1

the well known Riemann {-function (see, for example, Abramowitz and
Stegun, 1972). The sum converges for s > 3/2, so we have from above

—l o+ix
By EEJ {(2s = 2)N°T(s) dx . for g > 3/2

o—i

Now we can evaluate this integral using a contour integration argument

11. Asymptotics in the complex plane 189

s:mllgr to the proof of the Mellin inversion formula described above.
Consider

J {25 - 2IN'T(s) ds

where R is a rectangle comprised of two long vertical lines at Re(s) = 2 and
Re(s) = 1 and two short horizontal lines connecting them, say at Im(s) =
+M. The I'-function becomes exponentially small in the complex part of its
argument (see Whittaker and Watson, 1927, for specific bounds), so it is
possible to prove, by taking limits as M goes to infinity, that the leading
aysmptotic term in the value of the integral is the sum of the residues in the
area between Re(s) = 1 and Re(s) = 2. There is only one pole in this strip,
ats = 3/2, so this leads to a short proof that

B, = N*’r(3/2) = VaN?¥/4

This might be too powerful a tool for this simple problem, but there are
many problems for which Mellin transforms are applicable although more
traditional methods fail. Selutions for these problems follow the same
general structure as the argument above; significant differences show up
in the type of convex integration which must be performed.

For example, in the analysis of radix-exchange sorting, Knuth (1973b)
uses the general method above to derive the following integral:

5 1 —3/2+i= 1
= e T
A 2ni j‘_jfz__.f'x 2"] S (S) &

This integral can be evaluated with residues as above, but a double pole at
s = lisinvolved, as well as a series of new poles along the line at Re(s) = —1.
(For details see Knuth 1973b.) Derivations involving similar functions,
with similar complications, may be found in the study of merging networks
(Sedgewick, 1978b; Flajolet er al., 1977) and in many other applications.
The solutions of these problems take on a complicated form depending on
the residue structure of the functions: they are unlikely to be accessible
with more elementary techniques. Moreover, as we have seen, Mellin
transforms do work properly for some simple problems, so there is some
possibility that a general method of solution of a wide class of recurrences
based on the Mellin transform could be developed.

12. Probabilistic models

Many algorithms readily admit natural input models. It is quite reasonable
to analyze the cost of sorting a randomly ordered file, or searching for a
random element, or finding the greatest common divisor of two randomly
selected integers. Even for such algorithms, however, it is difficult to be
confident that the model used for the analysis reflects reality sufficiently
well to allow use of the analysis to predict the performance of algorithms in
actual applications. Moreover, sometimes several different models suggest
themselves. And for many problems, no “natural’” input model is apparent
or even likely to exist. In this chapter, we consider some of the difficulties
inherent in analyzing algorithms in the face of such uncertainties.

Such difficulties can arise even in more ‘‘classical” analyses like those
that we have been considering. For example, in our examination of the
Quicksort algorithm, we were careful to note that the partitioning process
preserves randomness in the sense that it produces random subfiles if used
on a random file. Some variants of Quicksort do not have this property,
and there are many other algorithms which operate on random inputs in a
controlled way that (incidental to the algorithm) destroys the randomness.
Some examples of algorithms in this class are balanced tree algorithms for
searching (see Guibas and Sedgewick, 1978), and Heapsort (Sedgewick,
1982b). The analysis of such algorithms cannot take advantage of the
natural input model, and is thus similar to the analysis of algorithms in the
absence of a good input model.

When several different input models are available, how is one to choose
among them? Different models may be appropriate for different situations,
but the analyst is basically forced to trade off between the ease of analysis
and the degree to which the model reflects reality. A description which
purports to model the actual expected inputs will be of little us if it is too
complicated to admit any analysis, and analytic results on simple artificial
models are of limited utility. A$ we have seen, even very simple algorithms

190

12. Probabilistic models 19]

can require quite sophisticated analysis, so it is reasonable to first find a
model in which the analysis is tractable, then extend the analysis to more
complicated (and more realistic) models.

One approach that is useful when average-case analysis is difficult or
impossible is to concentrate on best-case and worst-case performance. This
analysis might be easier, less sensitive to assumptions about the input, and
still indicative of the performance of the algorithm. For example, it is not
difficult to estimate the worst-case behavior of both Heapsort and balanced
tree algorithms, and to prove that the average-case performance is within a
constant factor of the worst-case. On the other hand, the worst-case per-
formance may be misleading and indicative only of how the algorithm
performs for a very few artificially constructed inputs that would never
occur in practice. In fact, it is sometimes possible to prove that this situa-
tion exists, and take advantage of it to make precise statements about the
average behavior of algorithms whose performance characteristics are
about the same for virtually all inputs.

Below we will examine some of these issues by studying some algorithms
for simple set maintenance. Several variants on a trivial algorithm have
been proposed for this problem, and it is not clear which is best. Also,
several models have been proposed for the input, and it is not clear which
best reflects actual situations in which the algorithms are used.

12.1 UNION-FIND ALGORITHMS

The union-find problem involves processing a set of equivalence relations
while maintaining an internal data structure which allows testing whether
two given items are equivalent. The algorithm is to process two kinds of
requests, union (x,y) for x =y, and find(x), which is to return the “‘name”
of the equivalence class containing x so that one can test whether x, and x,
are in the same equivalence class by checking whether find(x,) = find(x,).
For the purposes of analysis we will assume that the elements being proces-
sed are the integers 1 to N; in a practical implementation, hashing would be
used to convert arbitrary names to this form.

One simple solution to this problem is to maintain an array a[1 .. N]
containing the name of the equivalence class of each element: to process
union(x,y), simply give all elements in x’s class the name of y’s class.
Equivalence class ‘“‘names’ are simply element indices, so we start witha[i]
= i to indicate that each element is in its own class. The table below shows
how the array changes as the equivalence relations at the left hand side are
processed.

192 Robert Sedgewick

il Sl AR LI SR vt e R 0 g g
A gy g g leigag RGO BgRROR SETeN TR S
2=11 1 11 3 9 S0G0 EERESIGNENTTET 12013
PGl i Aegim ZRELGREENE GREFIINIGNO D AN MR S
6 ST TR ST 100G gy SRSy N RS 1 3 n S
1= = § s oRIQRg F FIRRSIERN GRSl N 2 1D
(2= 12750 a0 ERgEIE RUTU SSUERESYE 10 T2 1oL S
3 =130 T 31 gy ISAAEIE Jgie RAVYQAERTRETE " 12VTS
Q=10 Y SALEIN Y TR{s TR BN RTEOIN Y= TR 3
9 =51 ES M3 TSI A 18 110 VR0 15 LSS
4=E % 3 IR Y T3 BheT gt 13 Iy 13
JI=fiOwSRNIGHE LIgaigatEs WERRligs vg LET S8 9NN
QIEEI5] (4G WEig O WORRES g aigs a5t F5ST LSRG =5

This algorithm was called the quick-find algorithm by Yao (1976),
because the cost of a find operation is constant (the time required to access
the array). The “variable” in the running time of this algorithm is the
number of elements processed during a union. In the worst case, this could
be large, since it is proportional to the size of one of the sets being merged.

One way to reduce the cost of union operations, called the weighted
quick-find algorithm by Yao, is to change names in the smaller of the two
classes to be merged. This requires maintaining an array of weights con-
taining the number of elements in each equivalence class. The table below
shows the operation of this version of the algorithm on our example.

1 2 34 5 6 7 8)% 300 112 43
4=9 1 2 3 9 5 6 7 8 9 10 11 12 135
2=TT" 1 1Y °3 9° 5 "5 "7 8 & 00 11 dd 1S
T=3" 1 1173 9§76 3 "5 "9 10 11 42 1S
6=3 1 11 3,9 .8 3. '3 8 9 10 11 12 "13
IS A D I s T g D - L AR e R
L1 = 12 8 TN S S O LR R R
3=43" 5 11 "% 95" IV O AL S Y
S 1 e L e e e [N T s
e - (R S B T e o T U e
4=8 . 5,53 F 9 553 F3 QNS g e
= ol N I R S e e Wl e S e e iy
B, e e e S T Y T D SN Sl e B e

In this example only 18 names are changed during all unions, while the

unweighted algorithm does 27 name changes.

An alternate approach is the quick-union algorithm (again using Yao’s
terminology) in which the union operation is done efficiently, but some

12. Probabilistic models 193

ﬁnfis coulgl be expensive. The method is to weaken the requirement that
ali] contain the ““name” of the set containing element i by having it contain
the index of some other element in the same set, with no cycles allowed.

Thus, each set is represented by a tree, which is stored in the a array. For
example, the configuration

RSN RN NSNS 7 8 9

: 16 I 1 & I
el 5 11 13 9 5.3 3 8 19 10 12 13 13
is an array representation of the forest
5 8 10
; i PN
9
| 6/,3\7 1|2
4 11
I
2
which means that the equivalence classes are {1, 5},

{2, 3.6, 7, 113 12, 13}, {8} and {4, 9, 10}. Note that an element i is at the
root of a tree if and only if a[i] = i: these elements are the obvious choices
for the representatives of the equivalence classes.

Now find is easily implemented by tracing back through the a array until
a root element is found:
J :=x; while o[j]<>j do j := a[/];

For u.ni.on (x,y) the same method is used to find the roots of the trees
containing x and y, and then one is set to point to the other:

J:=x, while a[j]< > j doj: = afj];

i:=y; while a[i]<>idoi:= afi];

ifi<>j then o[j] :=i;

The following table shows the execution of this quick-union algorithm on
our example.

1 o %2y O AR 506, 8,9 16 J1. 12 18

{ RN D AR A8 RN T A (1 IR 5 e [T

=t b 11, 3 SO AT 8 9 D 1 32 13

=3 11l TR 9" 50 308 9 1011 12,13

B8 alalldls s Bt S8 BinBui 9% 10 1132 13

FESNS W ETENe 5 3 3 89 W 11 12 13

TSN Seill o 3wiDip ¥ Bn 308 18y 31012 52 43
d=A8 5.1 13 9058 38 9 T2 ' 92 13

100 Sl il X 9 808 B8 10 400, 12 1213

194 : Robert Sedgewick
FEG IS F NSATGUNLE LRI B WO 2R TS
€ R R b Sl i T - B R g
BSOS TS S R R S N R D SR
BiEr g Mg gyt TR SRR TRNSIEE (R

This produces the following tree which shows the equivalence class con-
taining all the elements.

5
I I
1 E|3 /l 3\
l|0 6/ 3\7 I|2
{f lll
2
4

The cost of a find operation, the number of array elements examined, is the
rank of x in the tree, and the cost of union(x, y) is the sum of the ranks of x
and y in their trees.

The quick-union algorithm can build unbalanced trees, so there is a
corresponding weighted quick-union algorithm that balances the trees by
always making the root of the “light” tree point to the root of the “heavy”
tree when the union is performed

1 2 3 &% 5. 6 98 9T 117127 13
4229 ol 2 03 9 5.6 T.48,9 30 441 T2 13
2 Vhsaidihy Uy o 3-e@gd B 7 0l o910 10 LU 02 13
TR R 1 IR 3T 00 5R el 3 8¢ O 100 s dde 13
6=3' 1° 11 3" OF &k 39%3° g OF Wt TINERE 13
=5 5 11 3 95 3 398 9 ML 1
11=42 5 11' 3 95 3 3 8 9 1 1111 15
A=A 3A0E0 . T B AR 5@ Ao S wdlyr shas id w3
9=10" S 11" 3 9'§ 3 3 8 9 9 11\ lige3
=3 5 11" 3 9' 5 303 g4 §f S I8 3
4=8 S 113 95 % 3 99 § 3 1l 3
3=9 "§: 11 3 9" 3' 3" 4 904 9° 38 113
= R O L O Al S e Sl e)

This is implemented by replacing the last line of the union code above by
if 1<<>j then
if wj] > wl[i] then afi] .= j else a[j] .= i

This method clearly produces”“ﬂatter” trees than the unweighted method.

12. Probabilistic models 195

Still, none of the above methods are entirely satisfactory: the quick-
union and the quick-find methods can be slow, and the weighted methods
require extra storage. Path compression is a technique which improves the
speed without requiring extra storage: after doing a quick-union, make all

the nodes on the paths just traversed point to the new root. For example,
the equivalence 4 = 8 transforms

to

Not to

In our example, there is no difference from quick-union until the last four
equivalences:

- IR PN T P O . N T e

13 13

2=3 35 : S Sl TR 1 Sl TN 1 . R A
$=8 3y 13..13 8 5.3 3 KRR 13 13 13
=0 9 i3 S S GBS LS TR B 13 13 5
A T R N TR, e R S als. e i G

The final tree is better even than that produced by the weighted algorithm,
but still not perfecly balanced:

The cost of the union operation is multiplied by a constant factor, but the
requirement for extra storage is eliminated.

The path compression rule can also be applied to the weighted quick-

L

196 : Robert Sedgewick

union algorithm, and it could be applied in either algorithm before or after
the actual union is done (not to mention during finds). These options all
lead to methods with different performance characteristics.

The algorithms above are all quite simple and easily coded, but they
perform quite differently. It seems clear that the weighted algorithms
improve upon their straightforward counterparts, but by how much? And
to what extent is path compression an improvement? Unfortunately, not
only do we have several possible algorithms to analyze, but also we have
several different input models to consider.

12.2 MODELS

To contrast the three models that have been suggested for this problem, we
will calculate a precise probability for a small case (the probability, for
N = 4, that two sets of size two result after two relations have been pro-
cessed). Also, we will try to see, on an intuitive level, what happens within the
models for large N, just before the last few relations which bring together
all the elements into one equivalence class are processed. In fact, a goal of
the analysis will be to quantify these intuitive statements.

The simplest model is the random sets model, used by Doyle and Rivest
(1976). Here we consider each pair of classes so far formed to be equally
likely to be merged (regardless of size). For N = 4, we have three classes
after the first relation, one of size two and two of size one. The probability
that any two of these will be merged, in particular the singleton classes, is
1/3. For large N, we have sets of all different sizes, from O(1) to O(N), all
equally likely to be merged. This model is generally viewed as the most
unrealistic for most applications.

The next model, due to Yao (1976), is called the random tree model.
Here we consider each way of merging the N items together with N — 1
equivalence operations to be equally likely. If we think of the elements as
nodes in a graph and the equivalence relations as edges, then a set of edges
which merges all the nodes together is a spanning tree for the graph. In this
model, we first take a spanning tree at random, then use the edges from

12. Probabilistic models 197

e S T

that spanning tree in random order. In the fourth tree, the probability that
we get two sets of size two after using two edges i 0; in the other three it is
1/3, so the unconditional probability is (3/4)(1/3) + (1/4)0 = 1/4. For
large N, the most likely situation is that the last few edges will join together
large components with O(N) nodes in them.

The third model that we will consider, the random graph model, was
analyzed by Knuth and Schonhage (1978). Here we suppose that each
edge between elements not yet equivalent is equally likely to occur. This is
the same as adding random edges to the graph but ignoring those connect-
ing parts that are already connected. For N = 4, there are six different
edges, with five left after the first is chosen. These occur with equal likeli-
hood, so the probability that the one which connects the two singletons is
chosen is 1/5. For large N, the most likely situation is that a large compo-
nent of size O(N) is quickly formed, and the last few edges just connect
single nodes to this component. This model is generally thought to be the
most realistic, although, as mentioned above, it is arguable how well actual
applications match any of the models.

There are still other possibilities. For example, it is reasonable to do path
compression even for calls to union(x,y) for which x and y are found to be
equivalent. What is needed to model this situation is a random edge model,
in which each pair x = y is equally likely, independent of the past.

12.3 SUMMARY OF RESULTS

Table 12.1 gives the leading term for the total running time (number of
times the a array is accessed) for the various equivalence algorithms in the
worst case and in the average case for the three models described above.
We will look below at the analyses that produced most of these. With a few
very significant exceptions, the constant implied by the O-notation is
simply too complicated to fit in the table, but could be worked out. The
function «(N) on the last line is an extremely slowly growing function
which is constant for practical purposes (see below).

12.4 RANDOM SETS MODEL

The analysis for the quick-find algorithm under the random sets model is
the easiest. Let Cy be the total average cost of doing N — 1 union opera-

'

198 _ Robert Sedgewick

TABLE 12.1
Average
Worst Sets Tree Graph
N2 H N2
QUiCk find —-2—- N II'! N N VTI.’N/S '—8-'
1
Weighted NIgN iN In N ~NInN O(N)
NE H:

Quick union s (—3 = 2) N iINInN O(N?)
Weighted N lg N O(N) O(N) O(N)
Compression NlgN O(N) ? ?
Both O(Na(N)) O(N) O(N) O(N)

tions (to form a set of size N). If the last union causes sets of size k and N —
k to be merged then the total cost is k + C, + Cy_,. But the essence of the
random sets model is that each value of k is equally likely to occur. This
leads to the recurrence

1
Cy = pir e B ol Ot
N lgémlhf_ 1 k N-k

which simplifies to a familiar recurrence (see Chapter 7)
N+1 .2
C.'\-'+1 2 2 + ‘N I Z Ck'

<k=N

This is only slightly different from the recurrence arising in the study of
Quicksort and binary search trees. The solution is

CN = N(HN Lp= 1)

Analysis of the weighted version involves solving a similar recurrence,

Cy= z =k<N ﬁ (min(k,N — k) + C, + Cy_,)
1
using precisely the same techniques.

Knuth and Schonage (1978) show how to make the correspondence with
binary search trees even more explicit by defining a structure called the
union tree, which is a full description of a sequence of union operations.
Defined recursively, the union tree for a sequence of equivalence instruc-
tions ending with x = y consists of a left subtree which is the union tree for

12. Probabilistic models 199

the equivalence class containing x and a right subtree which is the union
tree for the equivalence class containing y. The tree for an equivalence
class with only one element is an external node containing that element.

The tree for the sequence of instructions used in all the examples above is
drawn below.

The correspondence with binary search trees is easy to see from this con-
struction. The dynamic process is the same, but run backwards. After the
first union, we have a forest consisting of N — 2 singleton external nodes
and one internal node with two external sons. A full tree is eventually built
upon these N — 1 nodes. If we look at the process backwards we can see that
a tree of N nodes comes from replacing an external node by an internal
node with two external sons in a tree of N — 1 nodes. This is exactly the
way that binary search trees are built.

In the union tree, the cost of the last union for the quick-find algorithm is
the number of nodes in the left subtree (or in the smaller of the two
subtrees for the weighted version). For the quick-union algorithm, and its
weighted version, the costs are also available as simple properties of the
tree, leading to recurrences similar to those above, but which relate the
costs of quick-union and quick-find algorithms (see Knuth and Schonhage,
1978). Thus, we will consider only the analyses for quick-find methods
under the random spanning tree and random graph models below.

12.5 RANDOM SPANNING TREE MODEL

Much of the machinery above can be applied to the analysis for the random
spanning tree model, though the resulting recurrences are much more

,

200 _ Robert Sedgewick

complicated. The same argument as above shows that the average cost of
the quick-find algorithm under this model satisfies the recurrence

Cn T z Pk + C, + Cyyi)

D<k<N

where p,, is the probability that the last union operation merges a set of
size k with a set of size N — k. Knuth and Schonhage give a counting
argument (based on the fact that there are N"°* spanning trees on N
elements) which proves that

L N\ (k\ V(N = k\ N+
P =N — 1) (k)(ﬁ) (N)

It is easily shown with Abel’s binomial theorem that 2 kpy, = N/2 (see
Chapter 10), and this leaves, after applying symmetry, the recurrence

N 1 N k k—lN_k N=k=1
o e - iema— — _— C,
-3 L WE (F) e

For the weighted quick-find algorithm, we get the same recurrence except

that the first term is Z,min(k, N — k)py. This is similar to the sum for

hashing with linear probing that we solved in Chapter 10 and yields to the

same techniques: the value is V2N /n + O(1).
To finish, then, we need to solve recurrences of the form

1 N\ (k* Y (N = k\ N+
o X il S
wenr=s LR) e

for Xy = N, VN. The recurrence becomes somewhat less formidable when
both sides are multiplied by (N — 1)N"~" and divided by N!

il N-1 a N-1 k=1 _ LYN—k—1
_ /\}T)N Cm = ;')N Kooty U;N kk! C (AZN f)k)!

From this it can be proven by appealing to Abel’s binomial theorem that if

C=N_1(N—2 N—-M)

i M Nt silubed
then
N =2 N-M
AR o e~

for any positive M. A motivation for this solution might be that Abel’s
theorem provides a way to evaluate sums of the type that appear in the
recurrence, so we may as well work backwards, using the theorem to

12. Probabilistic models 201

evaluate a general version of the sum for a particular Cy, then solve for X .
(.Knuth and Schonhage give another motivation, based on generating func-
tions.) The result is a family of solutions (parameterized by M) to the
recurrence, which leads to a general solution involving linear combinations
of members of this family. This solution is expressed in terms of a general-

ization of the function that we studied in the analysis of hashing with linear
probing:

1N—1+1N—1N-2

A= A N N
o ' NE1T N=-2'N'-3
gI=v K N N

The reader may find it interesting to verify that if

Xy = Q(N)

ON)=1+

then
Oy = (N- == I)Q[H(N) + NQ,»(N)

This is directly relevant to our analysis for the spanning tree model because

Qo(N) = N (this is a subtle fact which the reader should check). We have
proved that

Cy=1/2(N - 1)Q,(N) + NQ,(N))

Now, Q,(N) is none other than the function that we encountered in Chap-
ter 10:

N! 1
N) = : L gy G) —1/2
Furthermore, we have the simple bound
1
Qi(N)< > i
l=j=N

whic.h implies, for example, that Q,(N) = O(log N) and Qi(N) = 0(1).
Putting these results together completes our analysis for the unweighted
algorithm:

Cy = VAN Y8

The analysis for the weighted algorithm proceeds along very similar lines:
the solution in this case is

V2/n((N — 1)Q5(N) + NO«(N))

”

202 ' Robert Sedgewick

—

The details of working out a more precise asymptotic value for Q,(N) are
left as an interesting exercise for the reader (see Kruskal 1954).

12.6 RANDOM GRAPH MODEL

The full analysis of the performance of the union and find programs under
the random graph model given by Knuth and Schonhage (1978) involves
intricate arguments which we do not have room to consider in detail here.
It is an asymptotic analysis similar in spirit to those we have been consider-
ing, but much more complicated.

As mentioned above, the most likely outcome when edges are added at
random to a set of vertices is that one large component is quickly formed,
with the last few edges connecting the remaining few single vertices to the
large component. This scenario is a classical result proved by Erdos and
Renyi (1959). A quick look at the major steps of their proof will not only
provide some insights into the behavior of random graphs (and the per-
formance of union-find algorithms) but also will illustrate an important
method of algorithmic analysis which is applicable to many difficult
problems.

There are possible edges connecting N vertices. By a “random

graph” we mean one that is formed by adding edges to the vertices in

random order (with all ! orderings equally likely). How many edges

must be added before the graph becomes connected? For the union-find
algorithms that we have discussed, this point is moot, because we ignored
edges within components already connected. However, suppose one
wanted to write a program to check the analytic results presented in
Table 12.1 by generating random edges, doing a find to discover if each
should be ignored, then doing a union if not. This result will tell us how
long such a program will take to complete.

The Erdos—Renyi proof has three parts. First, they show that, after a
certain number of edges are added, the probability that there is one very
large connected component with at least N — log log(N) edges is 1 —
O(1/log(N)). Next, they show that the log logN remaining vertices are
likely to be i1solated (with no edges between them) with even higher prob-
ability. Finally they calculate the probability that a graph has no isolated
vertices. This is asymptotically the same as the probability that a graph is
connected, but it is much easier to calculate. (Graphs which are not con-
nected are nearly certain to consist of one large connected component plus
some small number of isolated vertices.)

12. Probabilistic models 203

: Suppose _that C edges have been chosen. The number of graphs with no
150¥ated points can be counted using the principle of inclusion—exclusion.
This leads to the following formula for the probability that no isolated

points occur:
A= k)
%

[(
P l)k(}:) é)

C

The crux of the proof is to use Stirling’s formula to show that if C is about
: N InN + cN for some constant ¢ then this sum is approximated by

ck

T ey
S Gl =

k=0

The first two parts of the proof use similar, but more complicated, counting
arguments and asymptotic estimates, with the final result that, as N — o,
the probability that more than 1/2NInN + cN edges are needed before the
graph becomes connected approaches 1 — e~ . This is close to zero for
only moderately large c: for example e < '° = 0.99995. . .

This proof is an example of the probabilistic method of algorithmic
analysis: when we can prove that an algorithm is nearly certain to behave in
a particular way, then by assuming that it does so we are sometimes led to
an easier way to analyze its performance. Of course, the challenge in such a
proof is to be sufficiently precise about the likely behavior of the algorithm
to be able to make sharp asymptotic estimates: the above proof depends on
the discovery of the 1/2NInN + ¢N cut-off point. Nevertheless, this is a
powerful general technique that must be considered for algorithms which
we cannot analyze directly but for whose performance we have some sus-
picion of a precise description. For example, Guibas and Szemeredi (1978)
use this method to analyze the double hashing method that was described
briefly in Chapter 10.

From this result we can get some intuitive feeling about the behavior of
the union-find algorithms under the random graph model. The last few
edges connect isolated vertices to a large connected component with about
N nodes. For the unweighted algorithm, this will cost O(N) on the average,
while for the weighted algorithm the cost will be only O(1) The challenge
in the Knuth—Schonhage proof is to show that these performance charac-
teristics are maintained throughout the execution of the algorithms so that
the total cost of the unweighted algorithm is O(N?) while the weighted

r

204 ' Robert Sedgewick

algorithm is linear. This turns out to be particularly difficult for the
unweighted algorithm: a delicate asymptotic argument is used to prove that
the cost is O(N), but the constant of proportionality is not known.

12.7 OTHER MODELS

Despite the fact that the various union-find algorithms and probabilistic
models provide an interesting review of many of the techniques of
algorithmic analysis that we have discussed, it must be pointed out that the
analysis of the algorithms of greatest practical interest (those using path
compression) still remains open. What is worse, it is apparent that none of
the models examined above may be appropriate for this problem, because
a practical implementation would do path compression in the find routine,
so that commands requesting that two already connected elements be
made equivalent will have an effect. This is an interesting open problem,
but it also makes a sobering concluding comment on the importance of the
proper choice of model in the analysis of algorithms.

REFERENCES

ABRAMOWITZ, M. and STEGUN, L. A. (1972). *Handbook of Mathematical
Functions”. Dover, New York.

BENDER, E. A. (1974). Asymptotic methods in enumeration. SIAM Review, 16,
Oct).

DE(BRlalJN, N. G. (1958). “Asymptotic Methods in Analysis”. North-Holland
Publishing Co., Amsterdam.

DOYLE, J. and RIVEST, R. (1976). Linear expected time of a simple union-find
algorithm. Information Processing Letters, 5.

ERDOS, P. and RENYI, A. (1959). On random graphs, 1. Publicationes
Mathematicae, 6.

FLAJOLET, P., RAOULT, J. C. and VUILLEMIN, J. (1977). On the Average
Number of Registers Required for Evaluating Arithmetic Expressions. Proc.
18th Ann. Symp. Fnds. Comp. Sci.

FLAJOLET, P. and ODLYZKO, A. (1980). The Average Height of Binary Trees
and Other Simple Trees. Proc. 21st Ann. Symp. Fnds. Comp. Sci.

MATHLABGROUP (1977). MACSYMA Reference Manual, Laboratory for
Computer Sciences, MIT.

GUIBAS, L. and SEDGEWICK, R. (1978). A Dichromatic Framework for Bal-
anced Trees. 19th Annual Symposium on Foundations of Computer Sciences, A
Decade of Progress: 1970-1980. Xerox Palo Alto Research Center, Palo Alto,
CA.

GUIBAS, L. J. and SZEMEREDI (1978). The analysis of double hashing. J.
Computer and System Sciences, 16 (April).

KNOPP, K. (1945). “Theory of Functions”. Dover, New York.

12. Probabilistic models 205

KNUTH, D., DEBRUIIN, N. and RICE, S. O. (1969). On the height of planted
plane trees. In “Graph Theory and Computing™, R. C. Reed (ed.).

KNUTH, D. E. (1971) Mathematical Analysis of Algorithms. TFIP Congress.
Lubyiana, Yugoslavia.

KNUTH, D. E. (1973a). “The Art of Computer Programming, Volume I: Funda-
mental Algorithms”, 2nd Edition. Addison-Wesley, Reading, MA.

KNUTH, D. E. (1973b) “The Art of Computer Programming, Volume III: Sorting
and Searching”. Addison-Wesley, Reading, MA.

KNUTH, D. E. (1976). Big Oh and Big Omicron and Big Theta. SIGACT News.

KNUTH, D. E. and SCHONHAGE, A. (1978). The expected linearity of a simple
equivalence algorithm. Theoretical Computer Science 6, (3), June.

KNUTH, D. E. (1980). “The Art of Computer Programming. Volume II: Semi-
numerical Algorithms™, 2nd edition. Addison-Wesley, Reading, MA.

KRUSKAL, M. D. (1954). The expected number of components under a random
mapping function. Am. Math. Monthly, 61.

ODLYZKO, A. (1979). On the number of 2-3 trees. Theoretical Computer
Science, 10.

RAMSHAW, L. and FLAJOLET, P. (1980). Grey code and the odd-even merge.
SIAM. J. Computing, April.

ROBSON, J. (1979). The average height of binary search trees. Australian J.
Computer Science, 11 November.

SEDGEWICK, R. (1977a). Quicksort with equal keys. SIAM. J. Computing 6
June.

SEDGEWICK, R. (1977b). The analysis of quicksort programs. Acta Informatica,
7, pp- 327-355.

SEDGEWICK, R. (1978a). Implementing quicksort programs. CACM, 21,
October.

SEDGEWICK, R. (1978b). Data movement in odd-even merging. SIAM J. Com-
puting, 7 (2). August.

SEDGEWICK, R. (1980). “Quicksort”. Garland Publishing Co., New York.
(Reprint of the author’s Ph.D. thesis, Stanford University, 1975).

SEDGEWICK, R. and HONG, Z. (1982a). Notes on Merging Networks. In prep-
aration.

SEDGEWICK, R. (1982b). The Asymptotic Behavior of Heapsort. In prepara-
tion.

SEDGEWICK, R. (1982c). “Algorithms”, Addison-Wesley, Reading, MA. In pre-
paration.

SHEPP, L. A. and LLOYD, S. P. (1966). Ordered cycle lengths in a random
permutation, Trans. Am. Math. Soc., 121.

TITSCHMARSH, E. C. (1951). “The Theory of the Riemann Zeta-Function”.
Clarendon Press, Oxford.

WHITTAKER, E. T. and WATSON, G. N. (1927). “A Course of Modern
Analysis”. Cambridge University Press.

YAO, A. C. (1976). On the Average Behavior of Set Merging Algorithms. 8th
Annual Symposium on Theory of Computation.

YAO, A. C. (1980). “Analysis of (h, k, 1) Shellsort™. J. Algorithms, 1 (2). June.

Index

Abel’s binomial theorem, 176, 200
Aloha, 54, 94
Approximations
diffusion, 24, 28, 86, 90, 94
fluid, 24
geometric bounds, 64, 67, 74
heavy traffic, 84
Asymptotics
approximations, 168, 169, 176
complex plane, 180, 184

Backward equation, 31, 35

Balance equations, 55

Batcher’s odd-even merge, 169

Bayes’ formula, 56

Bernoulli (see also processes)
sequence, 53, 54, 59, 76
trials, 8, 9, 10, 13, 14

Brownian motion, 26

Buffers, 74, 83

Catalan numbers, 140, 146, 184
Chebyschev’s inequality, 64
Computational algorithms, 99-117
Convolution method, 99, 104
Correlations, 7, 9, 19

Darboux method, 186
Distributions
beta, 10
binomial, 10, 24
Erlang, 30
exponential, 6, 7, 8, 9, 13, 19, 21,
27, 30, 33, 35, 44 97
approximations, 15, 23
gamma, 30
Gaussian, 30

geometric, 7, 9, 14, 54
modified, 18
log-normal, 37
phase-type, 16
Poisson, 6, 14, 27, 53
sculptured, 12, 36
Weibull, 36
Distribution shapers, 38, 40, 41, 43

Euler’s formula, 171, 174

Flow control, 112
Fokker-Planck equation, 89, 95

Forward equation, 10, 95

Generating functions, 139, 140, 143,
145, 147, 152, 165
Gray code, 170

Harmonic numbers, 132, 137, 142, 144,
152, 1593, 155, 156, 159, 161, 171,
198

Hashing, 175, 177

Jackson networks, 99-107

Kolmogorov’s
diffusion equation, 89
inequality, 64
Kurtosis, 12

Lindley’s integral equation, 62

approximations, 10, 12, 26, 32, 88 Linear probing, 177

207

208

Machine repairman model, 18, 22, 23,

24, 45, 97, 105
catastrophic failure, 23
common-cause failure, 18
incorrect repairs, 31
redundant systems, 21
simultaneous repairs, 24

Markov (see also networks and
processes)

Martingales, 26, 64

Mean value analysis, 99, 109

Mellin transforms, 187

Multiplexing, 74-78, 82

Networks

Communication, 27

Jackson, 99-117

Markovian queueing, 99-117
Normalization constant, 100, 103
Norton’s theorem, 107

Packets, 74, 112
Permutations, 151
cycles, 155
in-situ, 154
inversions, 160, 163
two-ordered, 162
Poisson (see also distributions and
processes)
sequence, 53
Polya’s theorem, 99, 102-104
Probabilistic models for algorithms
input, 190-203
Processes
arrivals, 18, 59, 61, 79
Bernoulli, 58
birth and death, 22, 45, 98
departures, 57, 58
diffusion, 25, 86, 96
Gaussian, 88
geometric, 79
Markov, 15, 22, 27, 94
Poisson, 13, 14, 25, 80, 113
compound, 13
renewal, 29
alternating, 33
Wiener, 28, 89

Queues (see also processes)
congested, 25
cyclic, 90

Index

delay, 20

priority, 19

processor-sharing, 44

tandem, 57

waiting time, 25, 45, 62, 64, 67

work-conserving disciplines, 60
Queues in discrete time, 17, 53-85

GI/G/1, 62, 64, 67, 78

GI/M/1, 73

M/G/1, 59

M/G/x=, 57

M/M/1, 54, 72

Random environment, 16, 45

Recurrence relations, 131, 137, 140,

145
Riemann {-function, 188
Repeated trials, 8, 13
sums of, 11

Singularities, 185, 186

Skewness, 12

Sorting
insertion sort, 159
polyphase, 180
quicksort, 129
radix-exchange, 189
selection sort, 158
Shellsort, 162, 167

Stirling approximation, 171

Stirling numbers, 143

Sums, 160, 166, 171

Time to failure, 9, 21, 30

Trees, 134
balanced binary trees, 149
binary search tree, 134, 142, 144
combinatorics of trees, 138
external path length, 136
internal path length, 136, 145
ordered trees counting, 184
radix search tree, 149
union tree, 198

Union-find algorithm, 191
models, 196
random graph, 202
random set, 197

Index

random tree, 199
path compression, 195
quick-find, 192
quick-union, 192
weighted quick-find, 192

Variance, 8

Wald’s identity, 67
Wiener-Hopf factorization, 63

209

	Screen Shot 2022-02-07 at 8.55.33 AM
	Screen Shot 2022-02-07 at 8.55.48 AM
	Screen Shot 2022-02-07 at 8.55.59 AM
	Screen Shot 2022-02-07 at 8.56.11 AM
	Screen Shot 2022-02-07 at 8.56.21 AM
	Screen Shot 2022-02-07 at 8.56.33 AM
	Screen Shot 2022-02-07 at 8.56.42 AM
	124-151
	Screen Shot 2022-02-07 at 8.16.45 AM
	Screen Shot 2022-02-07 at 8.17.05 AM
	Screen Shot 2022-02-07 at 8.18.08 AM
	Screen Shot 2022-02-07 at 8.18.18 AM
	Screen Shot 2022-02-07 at 8.18.32 AM
	Screen Shot 2022-02-07 at 8.18.43 AM
	Screen Shot 2022-02-07 at 8.18.56 AM
	Screen Shot 2022-02-07 at 8.32.38 AM
	Screen Shot 2022-02-07 at 8.32.53 AM
	Screen Shot 2022-02-07 at 8.33.07 AM
	Screen Shot 2022-02-07 at 8.33.19 AM
	Screen Shot 2022-02-07 at 8.33.41 AM
	Screen Shot 2022-02-07 at 8.33.53 AM
	Screen Shot 2022-02-07 at 8.34.10 AM

	152-179
	Screen Shot 2022-02-07 at 8.39.04 AM
	Screen Shot 2022-02-07 at 8.39.15 AM
	Screen Shot 2022-02-07 at 8.39.30 AM
	Screen Shot 2022-02-07 at 8.39.43 AM
	Screen Shot 2022-02-07 at 8.39.54 AM
	Screen Shot 2022-02-07 at 8.40.05 AM
	Screen Shot 2022-02-07 at 8.40.20 AM
	Screen Shot 2022-02-07 at 8.40.34 AM
	Screen Shot 2022-02-07 at 8.41.18 AM
	Screen Shot 2022-02-07 at 8.41.29 AM
	Screen Shot 2022-02-07 at 8.41.46 AM
	Screen Shot 2022-02-07 at 8.41.56 AM
	Screen Shot 2022-02-07 at 8.42.17 AM
	Screen Shot 2022-02-07 at 8.42.30 AM
	Screen Shot 2022-02-07 at 8.42.40 AM
	Screen Shot 2022-02-07 at 8.42.51 AM

	180-211
	Screen Shot 2022-02-07 at 8.45.35 AM
	Screen Shot 2022-02-07 at 8.45.46 AM
	Screen Shot 2022-02-07 at 8.45.56 AM
	Screen Shot 2022-02-07 at 8.46.12 AM
	Screen Shot 2022-02-07 at 8.46.44 AM
	Screen Shot 2022-02-07 at 8.46.55 AM
	Screen Shot 2022-02-07 at 8.47.06 AM
	Screen Shot 2022-02-07 at 8.47.15 AM
	Screen Shot 2022-02-07 at 8.47.47 AM
	Screen Shot 2022-02-07 at 8.47.59 AM
	Screen Shot 2022-02-07 at 8.48.08 AM
	Screen Shot 2022-02-07 at 8.48.18 AM
	Screen Shot 2022-02-07 at 8.48.35 AM
	Screen Shot 2022-02-07 at 8.48.52 AM
	Screen Shot 2022-02-07 at 8.49.02 AM

