Programming Aspects of VLSI
(Preliminary Version)

Richard J. Lipton
Department of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ

Robert Sedgewick
Computer Science Department
Brown University
Providence, Rl

Jacobo Valdes
Department of Electrical Engineering and Computer Science
Princeton University
Princeton, NJ

Abstract: Two components of a VLSI design environment being
built at Princeton are described. The general theme of this effort
is to make the design of VLSI circuits as similar to programming
as possible. A conscious attempt is being made to apply experi-
ence in the design of large software systems to the creation of an
appropriate environment for VLSI circuits. The two components
described are a procedural language to specify circuit layouts and a
switch-level circuit simulator for layout produced with this
language. They have been chosen for presentation because many
issues in their design are very similar to the issues that arise in the
design of programming languages and software environments.

1. Introduction

In this paper we describe two of the most important
components of a VLSl design environment. a layout
language and a switch level circuit simulator. Both systems
grew out of an effort to create an integrated environment
for VLSI design (including layout systems, device and
switch level simulators and testing facilities) currently
under way at Princeton.

Our main thesis is that the VLSI design task can be
profitably thought of as a programming task, and that much
is to be gained by consciously attempting to apply
knowledge about of programming to this new activity.
Thus we have given much weight to principles learned dur-
ing the travel from absolute machine language program-
ming to the use of high level languages, such as working in
as high level a language as the efficiency of the final pro-
duct permits, creating tools in which the division of tasks
among designers can be easily done, and making sure that

Permission to copy without fee all or part of this material‘is granted
provided that the copies are not made or distributed for dlr?ct
commercial advantage, the ACM copyright notice and the title ot: the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To sopy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-065-6/82/001/0057 $00.75

57

the tools are extensible.

We feel that this approach has helped us create
better tools for some of the central tasks of VLSI design.
We also know that there is much room for improvement
and would like to help convince the community of people
interested in programming language design that there are
fresh and important challenges in this reiatively new direc-
tion.

The remainder of this paper is divided into two main
sections. The section that follows is devoted to describe
ALI, our layout specification language. This is the one
tool in our system where most of the familiar program-
ming issues arise so more space is devoted to its descrip-
tion. A shorter section describes a switch level simulator
for layouts generated with the aid of ALI

2. ALI: an overview

ALl is a procedural language to describe VLSI iay-
outs. It differs radically in its basic philosophy from most
current systems for this task in that it simultaneously (i)
makes the layout task more like programming than editing.
(i) eliminates the need for design rule checking after the
layout is generated, (iii) permits the creation of truly flexi-
ble and general purpose libraries of frequently used layout
pieces and (iv) provides the designer with the mechanisms
to describe a layout hierarchically so that objects at one
level of the hierarchy are truly hidden from other levels.

Many of these advantages are gained through a
delayed binding approach: the user may not specify the
absolute location or the size for any element of the layout.
These positions and sizes are determined after the whole
layout has been compietely specified at a conceptual level.

In the sections that follow we review the principles
on which the language is based. describe its operation and
provide a short discussion of why we feel that our
approach to layout design has advantages over those of

other procedural layout languages and over the more popu-
lar graphics-based systems.

2.1. General principles

The basic principles of ALI are quite simple. A lay-
out is regarded as a coliection of rectangular objects with
their sides oriented in the direction of the axis of a carte-
sian coordinate system, and a set of relations among these
rectangles. The ALI user specifies a layout by declaring
the rectangies of which it is composed, and stating the
relations that hold between them.

To declare a rectangle the ALI user specifies its name
and its fype. The types of ALI have the same structure as
the Pascal types. A rectangle can be of a simple type (hav-
ing no internal structure) or of a structured type. There are
a small number of standard types for rectangles, all of them
simple. The structured types are the array (a collection of
rectangles of the same type) or a bus (a collection of rec-
tangles of heterogeneous types), which correspond directly
to the array and record structured types of Pascal. ALI,
like Pascal, permits the creation of new user defined types
that can be either simple or structured. Also like Pascal, it
is a strongly typed language.

The relations between the rectangles that make up a
layout are specified in ALI through calls to a small set of
primitive operations. All such operations take as argu-
ments rectangles of simple types. As an example, one
such operation is touches, which indicates that its two argu-
ments (which must be of the same simple type) have a
certain amount of area in common. There are other opera-
tions (such as above, below, left, and righr) which allow the
user to state that two rectangles (of any simple type) are
separated in the direction of the cartesian axes by a
minimum distance (supplied by ALI) that depends on their
types. Other primitive operations aliow the user to connect
rectangles of different types, to create pass transistors or
implanted transistors, specify minimum sizes for rectangles
and so on.

It is not important to know the actual primitive
operations of the current version of ALI to understand its
operation. As a gross measure of its compiexity we can
say that our current prototype, which is based on NMOS,
has about twenty primitive relations. Most of these primi-
tives are dictated by peculiaritiecs of NMOS. A much
smaller set of primitive operations (maybe six) are truly
needed; all the others can be written in terms of the more
basic ones. It is important however to know that ALI
expects any two rectangles in a layout to be related in
some way, and will make no inferences beyond those
implied by the transitivity of some primitive operations
G.e., if a is above b and b above c it need not be expli-
citly stated that g is above ¢).

Notice that ALI does not allow its user to specify abso-
lute positions or dimensions for any rectangle. All the rectan-
gles of a layout can be stretched and compressed (up to a
minimum size which depends on their type) and all can
float in any direction. If one single characteristic is to used

58

to separate ALI from all other layout systems we know of,
this must be it. Most of the power of ALI and most of the
problems one faces while implementing ALI are conse-
quences of this fact.

Perhaps the most powerful feature of ALI is its
procedure-like mechanism for the definition and creation
of cells. By a cell we mean a rectangle which has some
internal structure more complex than that of an array or
bus. A cell is a collection of related rectangles enclosed in
a rectangular area. Rectangies that are inside a celi are of
two types: local which are invisible to the outside, or
parameters which can interact in a simple and well defined
manner with rectangles outside the cell.

A cell is defined by specifying its local objects, its for-
mal parameters and the relations between them. Once a
cell has been defined, it can be instantiated as many times
as desired by specifying the actual parameters for the
instance, much the same way as one invokes a procedure
or function in a procedural language. The resuit of instan-
tiating a cell is to create a brand new copy of the prototype
described in the cell definition with the formal parameters
glued (another primitive operation) to the actual parame-
ters. A pictorial oversimplification of the relationship
between a cell definition and an instantiation is shown in
Fig. 1.

Definition: cell f (lefta.tl; top b:12); ... end;
Y
Lb |
x |a h
Creation: create /' (x, y) named n;

Fig. 1
A simple representation of a cell definition
and of an instance of the cell.

When an instance of a cell is created it can be given
a name, provided that the name given has been declared as
a rectangle of the standard simpie type virtual. The rela-
tionship of the rectangle bounding a newly created cell to
any other rectangle of the layout can be specified in the
standard manner by calls to the primitive operations. This
is a powerful mechanism since in many cases (i.e., above,

below...) specifying a relation between two cell instances c,
and ¢, immediately implies a relation between every pair of
rectangles r, and r, such that r, is part of ¢, and r, part of
¢, Other ways in which cell instantiation helps define
implicit relations between layout elements is explained in
the next section.

The cell mechanism gives the ALI user the ability to
describe layouts in a truly hierarchical manner. A proper
design, very much like a well structured program, will con-
sist of a hierarchy of cell instances with only a small
amount of information at a given level (the parameters of
the cell instances at that level) being visible from the
immediately higher level.

Much of the power and generality of the cell
mechanism of ALI comes from the absence of absolute
positions and sizes in a layout specification. In particular,
two instances of the same cell may have radically different
sizes depending on the actual parameters used to create
them. We believe that no cell mechanism can be said to
be truly general unless the sizes of its arguments and local
rectangles, as well as their relative distances are deter-
mined at the time the cell is instantiated.

2.2. An ALI program

In an attempt to make the description of the previ-
ous section a little more concrete we will now exhibit a
simple ALI program and discuss some of its features. Our
current prototype system has been implemented as a
superset of Pascalt and therefore ALI programs look very
much like Pascal programs as exhibited by the sample pro-
gram of fig. 2.

The ways in which this program differs from a Pascal
program and some details of the semantics of ALI not
described earlier are explained briefly in the following para-
graphs.

(1) The header is trivially different from a Pascal pro-
gram header.

(2) The boxtype section is an addition to Pascal. In this
section user defined types for rectangles are
described. In our example metal and poly are stan-
dard ALI types (corresponding to the NMOS layers
of metal and polysilicon) and power, ground, vip and
htp are user defined types.

(3) The boxvar section is an addition to Pascal. In it the
symbolic names of the rectangles that make up the
layout are defined and given a type. Thus, in our
example hc, vc and squares are created, each one a
structured rectangle having several component rec-
tangles which can be accessed through the standard
array indexing and record field extraction mechan-
isms of Pascal. The type virtual is a standard ALI
type used to indicate that those variables will become
cell instances.

+This was done to speed up implementation. No lasting commitment to Pascal as
a base language has been made.

59

C))

5)

©)

The cell definitions (see the definitions of white and
black) are also additions to Pascal. We have not
given bodies for the cells of our example to avoid
making it too long, but cell bodies have the same
general form as ALI programs. Note that the header
of a cell definition not only specifies what parameters
and of what type are required to instantiate the cell
but also specifies where (on which side of the rectan-
gle that encloses the cell) the actual parameters are
to be located (i.e., left, right, top or bottom). When
more than one parameter is specified for a cell side,
the convention is that the order in which the param-
eters are given determines their left-right (for the
top and bottom sides) or top-bottom (for the left
and right sides) order. Although not used in the
example, this is a very powerful convention which
can be used to implicitly define relations between
many rectangles by simply using them as arguments
in a cell instantiation. Another convention that
allows the implicit specification of many relations
among rectangles in an intuitive way is the following.
When a rectangle of a structured type is passed as a
parameter, as in our example, a left-to-right or top-
to-bottom order for its component rectangles is
implicit. This order is the one generated by applying
the following two rules recursively: array elements
are ordered from lower bound to upper bound and
record fields in the order in which they are listed.

The use of creare in the executable part of the ALI
program is another addition to Pascal. The effect of
create is to instantiate a cell definition, possibly giv-
ing a name to the instance being created. An impor-
tant effect of instantiating a ceil is that the actual
parameters given are related to the resulting rectan-
gle by the fact of being passed as parameters. Thus
the instantiation

create white (nt, nb, nl, nr) named silly

would immediately imply that nt is above silly. It is
quite common that most of the relations between
rectangles in a well structured layout are specified in
this implicit way.

Finally, our example contains calls to the procedures
above and left which are not defined. These are ALI
primitive operations.

{ This program lays out a checkerboard-like patiern made up of two different types of cells like the one pictured below }

chip checkerboard;

const
nrows = ...; | number of rows}
ncols = ...; | number of columns)
boxtype

power = metal;
ground = metal;
vip = array [1..2] of poly; { vertical links }
hip = bus { horizontal links)
vdd : power;
gnd : ground;
data : metal;
end;
boxvar
he : areay [0..nrows, O..ncols] of hip; { vertical connectors }
ve : array [0..nrows, O..ncols] of vip; { horizontal connectors }
squares ;. array [1..nrows, l.ncols] of virtual;
var
row, col : integer;

function sameparity (x,y : integer) : boolean;
begin sameparity := not odd (x + y) end;

cell white (top t: vip; bottom b : vip; left I : hip; right r: hip);
{ ...Here goes the definition of the body of a white cell... }
end;

cell black (top 1 : vip; bottom b - vip; left | : hip; right r : hip);
{ ...Here goes the definition of the body of a black cell... }
end;

begin
{ lay out the checkerboard pattern }
for row := I to nrows do
for col := 1 to ncols do
if sameparity (row, col) then

11

A
T

{ the squares of the board }

create white { velrow-1, col-1], vclrow, col-1], helrow-1, col-1], helrow-1, coll) named squareslrow, coll

else

create black (velrow-1, col-1], velrow, col-1], helrow-1, col-1], helrow-1, coll) named squaresirow, coll:

end.

Fig. 2

An ALI program and a pictorial representation of the layout it defines.

2.3. From ALI program to layout

The semantics of an ALI program are the following.
Every time a call to a primitive operation is encountered
during the execution of an ALI program, a few linear ine-
qualities that involve the coordinates of the corners of the
rectangles are generated. These inequalities constrain the
sizes and relative positions of the rectangles that make up
the layout. The solution of the set of linear inequalities
generated during the execution of an ALI program consti-
tutes the layout described by the program. The linear ine-
qualities are generated and solved so that the resulting lay-
out will have the bounding rectangle of smallest dimen-
sions among all those that satisfy the relations stated in the
program.

The inequalities generated by the primitive relations
between rectangles are selected to guarantee that the
resulting layout will satisfy some set of design rules [9].
These rules are, in principle, sufficient to guarantee that
the circuit represented by the layout can be fabricated.

60

The fact that the layout process is design rule driven means
that there is no need for a costly design rule check step to
verify the validity of a layout generated by ALL

Not every possible ALI program specifies a realizabie
layout. A trivial way in which an ALI program may fail to
do so is by describing an impossible situation such as “‘q is
above b, b above ¢ and ¢ above a”. An ALI program
which is free from errors of this type will be said to be con-
sistent. Another way in which an ALI program may fail to
specify a valid layout will be to have two objects in the
ALI program that are not related in any way (i.e., they do
not ‘“‘touch’, neither one is ‘‘above’ or ‘‘below’ the
other, nor are they related by any other primitive opera-
tion). An ALI program is complete if it does not contain
any errors of this kind. A consistent and complete ALI
program specifies a layout.

We clearly would like to be able to determine
whether an ALl program is consistent and complete
efficiently. We also need to solve efficiently the large

number of linear inequalities that ALI programs will gen-
erate. A brief description of the computational complexity
issues that these problems pose and our solutions for them
can be found in the next section.

2.4, Complexity issues in the implementation of ALI

We have just described three non trivial computa-
tional problems that had to be solved in any ALI imple-
mentation: determining whether an ALI program is con-
sistent and complete, and solving the possibly very large
system of linear inequalities generated by an ALI program.
We will now describe briefly how these problems are han-
dled.

Before discussing the details however, it is important
to realize that VLSI circuit layout is one area where the
asymptotic behavior of an algorithm is truly important.
The number of objects that have to be manipulated is
quite large (10% or more rectangies may be part of a large
commercial layout today) and is growing rapidly. Perhaps
less obvious is the fact that the space requirements of an
algorithm can be more critical than its running time.
Linear time algorithms may not be acceptable if they
require also linear space: storing 10° objects approaches the
limits of the address capabilities on most of today’s
medium size machines and solutions that use secondary
storage in a substantial way will in all likelihood be too
slow. It is therefore essential for the tool designer to keep
in mind the time and space complexity his or her tools.

We will discuss first the problem of testing con-
sistency and completeness and then describe how to solve
the systems of linear inequalities produced by ALI pro-
grams.

Conceptually, the solutions to completeness and con-
sistency checking are simple: testing consistency transiates
into checking whether a directed graph is acyclic, and test-
ing completeness involves finding the transitive closure of
two graphs, taking their union and testing a simple predi-
cate on the resulting graph.

There are however some practical problems. The
most severe is that transitive closure is too expensive an
operation to consider in this case since it requires roughiy
O () time and O(n?) space, and n can be very large.
Even the test for a cycie which may appear to be as simple
a solution as one could ask for (requires linear time) may
require too much space (linear space is needed in the worst
case).

Fortunately these problems can be solved efficiently
in most practical cases by observing that they can be tested
on a cell by cell basis. This observation leads to a solution
that checks the consistency and completeness of a layout
generated by an ALI program by checking it level by level
along the hierarchy of cell instances that defines the layout.
Thus the n in the time and space complexities of the pro-
cess turn out to be the maximum number of rectangles in
a cell, a distinct improvement over the total number of
rectangles in the whole layout for “‘well structured™ lay-

61

outs. Hierarchical designs are therefored favored in ALI
for reasons other than readability or aesthetics.

This idea of ‘‘hierarchical solutions’ appears to us a
promising paradigm for dealing with problems of this type
in which the total number of objects to be manipulated is
enormous but they are -- in most practical cases -- reason-
ably well organized in a tree-like hierarchy with small
depth and a reasonably small branching factor.

We turn now to the question of how to solve the
very large systems of linear equations that ALI programs
will produce. At the moment we solve this problem by
avoiding it: our set of primitive relations between rectan-
gles is rich enough to specify a layout and restricted
enough so it will only generate linear equations of the
form

x~x)2d (d20)

or
X, = Xj

A set of equations of this type can be solved in
linear time using techniques similar to those employed in
solving PERT problems (variations of topological sort [8]).
Note that the solution to this problem requires again linear
space making a hierarchical solution highly desirabie.

We are far from having solved all our problems in
this area. The set of primitive relations that we currently
use to guarantee that the linear inequalities generated can
be solved efficiently is sufficient to specify a layout, but can
hardly be called convenient. Quite a few important proper-
ties of a layout (such as current densities on wires or mak-
ing the dimensions of certain rectangles be fixed ratios)
can be captured in linear equations that do not permit as
simple and efficient a solution as those produced by our
reduced set of primitive relations.

We are quite far from a general solution to the ques-
tion of what are the useful properties of a layout that can
be captured in systems of linear inequalities allowing a
hierarchical solution. Most of the work published on the
solution of special systems of linear equations (such as
those with only two variables per inequality [2]) is of no
use to us because the memory requirements of the algo-
rithms described are far too big given the size of our prob-
lems and the possibility of hierarchical solutions is not con-
sidered. Progress in this area would make ALI a better
tool that it is now.

2.5. An apprisal of ALI

ALI was conceived as a system which would lack the
more obvious shortcomings of other layout systems we
were familiar with ({11, [4], [10], [12]), namely (i) the
need for rule checking and compaction, (i) lack of true
modularity and (iii) lack of extensibility. In this section we
quickly review these problems and point out what we
believe to be the contributions of ALI towards their solu-
tion.

2.5.1. Design rule checking and compaction

All layout systems that we are aware of, let the user
specify layouts that violate the design rules of the technol-
ogy being used. This implies that some effort has to be
made later on to validate layouts produced with their help.

Most systems (graphics based systems in particular),
force the user to worry about minimizing the area of a lay-
out as it is being generated. To ease this burden, the
design process in many of these systems includes a com-
paction step in which an attempt is made to automatically
reduce the size of the layout generated without violating
the design rules.

Compactors and checkers are invariably large pro-
grams ((3], [6]) requiring hours of CPU time in a large
machine to compact or verify medium sized layouts. The
asymptotic time complexity of these programs is O (n¥2) or
worse in the ‘‘average case’’ and they require linear space
(or use secondary storage heavily). Clearly, this approach
will not scale well as the number of components per circuit
continues to increase.

The possibility of performing these two operations
hierarchically has not been considered until fairly recently.
This may be due in part to the sheer complexity of the
checkers and compactors, but undoubtedly is aiso related

to the lack of a flexible cell mechanism in most of these

systems. Note that since the checking and compaction
process occur after the layout has been produced, informa-
tion about hierarchical relationships between elements of
the layout wouid have to be given to these programs
separately.

A complete ALI program will never produce a layout
with a design rule violation so no rule checking is neces-
sary. The process of solving the linear inequalities gen-
erated by an ALI program is the equivalent of compaction.
We have however two advantages in this process: (i) that
of having the hierarchical information used to generate the
layout available and (ii) that of having designed the con-
straints so they can be solved hierarchically.

Design rule checkers and automatic compactors
spend most of their running time trying to extract semantic
information from the layout. This information is some-
thing which the designer must have had very clear in his
or her mind when producing the layout but that either was
never communicated to the system or has been discarded.
It seems more reasonable to ask the designer to make this
information explicit and saving it than spending much time
and effort trying to recreate it at a later time.

In contrast, ALI requires all semantic relations in a
layout to either be given explicitly or to be easily obtain-
able through transitivity. This information is then used to
guarantee that the layout produced will satisfy the design
rules and be of minimum overall size among those which
satisfy it.

62

2.5.2. Modularity

How easy is it to divide cleanly a design task among
several designers? This seems to be a key question when
considering how modular a layout system reaily is, and for
just about all the systems we know about the answer seems
to be ‘“‘not easy at all’’.

The reason is their lack of a flexible cell mechanism
and their requiring absolute sizes and locations for most of
the layout elements. In these systems, it is necessary for
individuals in a design group to know the absolute location
and size of those elements that are common to two or
more of the pieces into which the layout has been decom-
posed. In many cases any change in the sizes and posi-
tions of these common elements, no matter how smail,
will force several designers into redoing a substantial part
of their work.

The same characteristics that makes cooperation
between several designers hard also precludes the creation
of libraries of frequently used cells in most of these sys-
tems. Because of the reliance on absolute sizes and posi-
tions, different instances of the same cell definition can
differ only in whichever manner the person that defined
the cell allowed. Such cell definitions would most likely be
either too particular to be of any use or so parameterized
S0 as to be too hard to use.

In contrast ALI offers the possibility of dividing a
layout much as one divides a large software project. Indi-
vidual workers need only agree on the header of the cells
they have to define much as they would only have to agree
on the header of the procedures in a software effort.

To pursue the analogy to programming. we feel that
most layout systems available today are like absolute
assemblers without a general subroutine mechanism. ALI
is, at least, a relocatable assembler with a subroutine calil
instruction.

2,5.3. Layout systems as parts of larger systems

If one envisions an environment where VLSI design
is akin to programming, tools more sophisticated than
those available today will have to be built. It is therefore
relevant to ask how current systems stack up when con-
sidered as possible stepping stones for future tools.

A tremendous inherent disadvantage of graphics-
based systems in this respect is that they are an evolution-
ary dead end: no way to further automate the layout pro-
cess is considered. Most procedural systems are open toois
to a certain extent: one can conceive of adding a front end
to them which would translate functional specifications into
layouts, for instance, farfetched as it may sound today.
Such a front end for a graphics based system is hard to
envision since it will need to process visual information
like a human.

The original work on ALI dates back to the time
when the authors were looking for an intermediate
language into which high level descriptions of VLSI algo-
rithms could be compiled. Although we will not yet claim

success on this endeavor, the fact that ALI had to be
usable as part of a larger system has been kept in mind
throughout its design.

2.5.4. Some final comments

Another aspect of ALI in which we believe it to be
superior to most other procedural layout languages is in its
type structures and strongly typed nature. It is not com-
mon for procedural systems to allow the definition of
arrays or records of standard types and even less common
to have user defined types and to provide type checking for
them. Most of them simply deal with standard types. We
feel that type checking at the layout specification time will
prove to be as useful as it is in the specification of pro-
grams.

On the other side of the coin, several procedural
languages provide their users with facilities that are not
available in ALL. The most common one is automatic
routing, where pairs of points to be connected (absolute
positions) are given to the system which automatically con-
nects them. It is not at all clear how such facilities fit with
the overall philosophy of ALI and therefore not clear that
they could easily be added to it.

Another weakness of ALI is its lack of a graphics
interface. At the moment, a graphical representation of
the layout produced by an ALI program is used much as
one would use the listing produced by a program to verify
its correct operation. Clearly there is much room for
improvement in this respect, but we are not yet certain
which approach fits better with the overall philosophy of
ALL

3. A simulator for ALI

The ALI language allows the VLSI designer to create
layouts. While those layouts are guaranteed to satisfy the
NMOS design rules there still is the issue of the ‘‘correct-
ness’’ of the layout. By this we mean whether or not the
layout correctly implements the desired circuit. One of the
key complications in VLSI is that a layout may be incorrect
for a wide range of reasons. These range from purely digi-
tal errors to layouts that are digitally correct but misbehave
due to analog errors.

In order to check that such a wide range of errors,
VLSI designers use a number of circuit simulators. A clas-
sic kind of simulator is the logic-level simulator. This
simulator models the circuit as a connection of gates and
memoryless one-way wires. These gates, of course. com-
pute one of a number of standard boolean functions: typi-
cai gates include and’s, or’s, nand’s, and so on. While
such simulators are simple and useful, they do not capture
the bidirectional nature of NMOS.

Another important class of simulator is the analog-
level simulator such as SPICE [7). This kind of simulator
accurately captures the detailed nature of NMOS circuits.
It does this by operating at a very low level;, hence, such

63

simulators require great amounts of computing resources.
Therefore, it is rare to use such simulators on entire VLSI
circuits.

A third type of simulator studied here is the so
called swirch-level simulator. These simulators such as
MOSSIM [5] lie mid-way between the above two kinds.
They attempt to correctly model the bidirectional nature of
NMOS circuits, and yet they retain the conceptual simpli-
city of logic-level simulators. Such simulators appear to be
quite useful to VLSI designers in catching a variety of
€errors.

The simulator for ALI is a switch-level simulator. It
differs from previous simulators in a number of critical
ways.

First, and most important, it does not operate on all
possible NMOS circuits. It will reject any circuit that does
not satisfy what we call the clocking axiom. Roughly. this
axiom forces the VLSI circuit to use its clock phases so
that on each clock phase the circuit divides into *‘acyclic”
pieces. It appears to be the case that most well ‘‘struc-
tured’’ circuits will satisfy it. Most common VLSI circuits,
such as PLA’s and shift registers, do indeed satisfy it.

Second, our simulator is guaranteed to run in essen-
tially linear time. By this we mean that it runs in time
O(Ta(T,T)) where T is the number of transistors in the
layout and as usual a(n,n) is the Ackermann Inverse
function. (Recall a(n,n) is less than 5 for all “‘possibie”’
values of n [11].) We have an initial version of the simu-
lator written in Pascal running on a VAX 11/750 which
processes circuits having several thousand transistors in
only a few seconds of cpu time.

Third, our simulator aiso guarantees that for the cir-
cuits that satisfy the clocking axiom, the final state exists
and is unique. By this we mean that for such circuits not
only will the simulation eventually stop. but moreover. the
final answer is the unique final answer. Since NMOS cir-
cuits can in general, contain hazards and race conditions
this seems to be a critical advantage to our approach.

3.1. The model

We represent as in [5] each NMOS circuit as a set of
nodes that are connected by pass transistors. There are
input nodes. pull-up nodes, and normal nodes. Input nodes
provided a strong externally generated value. while normal
nodes can only store a charge but cannot generate a vaiue.
Puil-up nodes are connected via a pull-up resistor to a vol-
tage source. They are at a high value unless they are con-
nected to ground.

Pass transistor act as switches that connect such
nodes. A pass transistor is described by a triple:

(gate, source, drain).

Source and drain are not distinguished. Such a device acts
as a switch: if the gate is high, then the source and drain
are connected; otherwise, the source and drain are not so
connected.

3.2. The clocking axiom

Let C be an NMOS circuit. Also, let & be a set of
input nodes to C. Then ® is a clock set for C provided
that at most one node in ® is ever high at a time. Note,
this property is nor a function of the circuit C, but instead
reflects how we wuse the circuit. In many circuits ® is sim-
ply the two input nodes ¢, and ¢, that control the two
clock phases.

We now will state precisely the clocking axiom that
is central to our approach to switch-level simulation. In
order to do this, we need a few simple definitions.

Let ¢ be in the set . Let T, be the set of transis-
tors in C with their gates either equal to ¢ or not in .
The importance of this class of transistors is that when ¢ is
high only these transistors can potentially be on. We say
that two nodes x and y are ¢-connected provided there are
nodes x,...,x; so that x = x;, y=x, and for each
1<i<k-1, there is a transistor (g.x.x4;) in T,
Clearly, ¢-connectivity is an equivalence reiationship, and
so it partitions the nodes of C into equivalence classes, in
a natural way. We further define a directed graph on these
equivalence classes as follows: if (g.x,y) is a transistor in
T,. then place an arc from the equivalence class of g to
that of x. (Note, this is well-defined since x and y lie in
the same such class.) Let us cali this graph the control
graph of ¢.

We are now in position to state the clocking axiom.
A circuit C with clock set & satisfies the clocking axiom
provided for each ¢ in ¢, the control graph is acyclic.
Recall this means that as a directed graph there is no
directed cycle. Roughly, this axiom means that all “‘feed-
back’’ is controlled by ‘‘ciocks’ from ¢. The conse-
quences of this axiom are discussed in the next section.

3.3. The simulation method

The state of a circuit is the array of values associated
with its nodes. Given a circuit and a state S we say that S’
is a mext state provided the circuit can eventually reach S’
simply by the actions of its pass transistors. Such a state
S’ is a final state provided further that no additional
change can occur without external changes to the nodes.
Clearly, not all states ever reach a final state: it is quite
possible for a circuit to osciliate forever. However, we can
prove the following:

Theorem: Any circuit that satisfies the clocking axiom always
has a unique final state.

This then is the primary motivation for the clocking axiom.
Such circuits are guaranteed to be "well behaved". Not
only can they never oscillate, but in addition they always
reach the same final state. Clearly, this is critically impor-
tant to a VLSI designer. Without such a basic theorem it
would be possible for a circuit to work some times but not
others.

64

The proof of the theorem is actually quite construc-
tive and it supplies a very fast way of finding final states.
Let us fix one of the nodes from & as being on, say ¢.
Since @ is a clocking set there always is at most one such
node. (If no such node exists then we can trivially modify
the method that follows.) Now recall that the control graph
of ¢ is acyclic; therefore, we can by topological sort, order
its vertices into a list so arcs only go from earlier vertices
to those later in the list. Now since each of these vertices
represents a set of nodes from the circuit we can in a
natural way order the nodes of the circuit. Our simulator
then proceeds as follows: it “‘fires’’ each transistor once in
the order induced by the above ordering of the nodes.
More exactly, if (g,s,d) is a transistor and (g’,s’,d") is also
a transistor, then fire (g,s.d) first provided g occurs
before g’ in the node ordering. If g equals g’ then the
order of the transistors is immaterial. An induction shows
that this always yieids the unique final state of the circuit.

Since each transistor fires at most once the algorithm
runs in T times the cost of each such firing where T is the
number of transistors. But it is easy to see that the firing
of a transistor invoives merging two equivalence classes.
This operation can be performed using the operations
described in [9], yielding the claimed time bound of
O(Ta(T.T)). On an example with about 3,000 transistors
the current simulator takes about 3 seconds of cpu time on
a VAX 11/750. Note, the topological sort and hence the
transistor ordering can also be done as a preprocessor step.

The application of our simulation method depends of
course on the clocking axiom. We have observed that
many classes of circuits satisfy it. These include shift
registers, PLA’s, and more generally combinatorial logic.
However, many simple circuits will not satisfy our clocking
axiom. A typical such circuit is one in which the clock is
‘“‘anded” together with another control line. While it is
true that this will lead to circuits that do not satisfy the
clocking axiom, it is easy to extend our ideas to such cir-
cuits. The key to this extension is to observe that as iong
as the interaction of the clock lines and the control lines is
without feedback, then our methods will generalize.

Acknowledgements

We would like to thank Jose Mata, Steve North.
Vijaya Ramachandran and Jerry Spinrad for their help in
the implementation of ALI and the simulator, Jean Vuilie-
min and Scot Drysdale for their comments. We also want
to thank Bruce Arden for his advice and support. Special
thanks are due to G. Vijayan for his probing questions.
ingenious solutions and tireless work in the implementa-
tion of the prototype of ALIL

The work of Richard Lipton has been partially sup-
ported by grants MCS8023-806 from NSF and N00014-
81-K-0681 from ONR. Robert Sedgewick’s work was par-
tially supported by NSF grant MCS80-17579. The work of
Jacobo Valdes has been supported by NSF grant MCS79-
05524 and ONR grant N00014-81-K-0681.

4, References

(1

[2]

131

14

(51

6]

mn

(8

191

(10

[11]

[12]

Ackland, B., Weste, N., ‘“‘A pragmatic approach to
topological symbolic IC design. design,”” VLSI’81, pp
117-129, ed. John P. Gray, Academic Press.

Apsvall, B. and Shiloach Y., ‘“‘A Polynomial Time
Algorithm for Solving Systems of Linear Inequali-
ties with Two variables per Inequality”’, pp 205-217,
Proc. of the twentieth IEEE Symp. on Foundations of
Compurter Science, 1979.

Baker, C. M., ‘“‘Artwork Analysis Tools for VLSI
Circuits,”” M. S. Thesis, MIT, EECS Department,
June, 1980.

Batali, J., Mayle, N., Shrobe, H.. Sussman., G..
Weise, D., ‘“The DPL/Daedalus Design Environ-
ment,”” VLSI 81, pp 183-192.

Bryant, R. E., “MOSSIM: A switch-Level Simulator
for MOS LSL,” pp 786-790, 18th Design Automation
Conference, 1981.

Corbin, L. V., ““Custom VLSI Eiectrical Rule Check-
ing in an Intelligent,” pp 696-701, 18th Design Auto-
maton Conference Proceedings, 1981.

Fan, S. P., Hsueh, M. Y., Newton, A. R., Peterson,
D. 0., “MOTISC: A new circuit simulator for
MOSLSI circutis,”” IEEE Proc. Int. Symp. Circuits and
System, pp 700-703, 1977.

Knuth, D. E., The Art of Computer Programming, vol.
1, Fundamental Algorithms, Addison-Wesley, 1971,

Mead, C., Conway, L., Introduction to VLSI Systems,
Addison-Wesley, 1980,

Mosieller, R.C., “REST: A leaf cell design system,”
VLSI '81 pp 163-172.

Tarjan, R. E., “Efficiency of a Good but Not Linear
Set Union Algorithm”, JACM, vol. 22, no.2, pp
215-225, 1975.

Trimberger, S., “Combining Graphics and a Layout
Language in a Simple Interactive System,” 18th
Design Automarton Conference Proceedings, 1981.

65

