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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS*

ROBERT SEDGEWICK’, THOMAS G. SZYMANSKI$ AND ANDREW C. YAO

Abstract. Given a function f over a finite domain D and an arbitrary starting point x, the sequence
f(x), fl(x), f2(x), is ultimately periodic. Such sequences are typically the output of random number
generators. The cycle problem is to determine the first repeated element fn(x) in the sequence. Previous
algorithms for this problem nave required 3n+O(1) operations. In this paper we show that n(l+O(1/k/))
steps are both necessary and sufficient, if M memory cells are available to store values of the function. We
explicitly consider the performance of the algorithm as a function of the amount of memory available and

the relative cost of evaluating f and comparing sequence elements for equality.

Key words, computational complexity, time-space tradeoffs, cycle detection

1. Introduction. Suppose that we are given an arbitrary function f which maps
some finite domain D into D. If we take an arbitrary element x from D and generate
the infinite sequence f(x), fl(x), f2(x), ..., then we are guaranteed by the
"pigeonhole" principle and the finiteness of D that the sequence becomes cyclic. That
is, for some and c we have l+c distinct values f(x), fl(x), ..., fl+c-l(x) but
ft+(x) ft(x). This implies, in turn, that fi+"(x) fi(x) for all i>-l. The problem
of finding this unique pair (1, ) will be termed the cycle problem for f and x. The
integer c is the cycle length of the sequence, and is termed the leader length. Simi-
larly, the elements f1(x), fl+l(x), fl+c-l(x) are said to form the cycle of f on x
and f0, fl(x), fl-l(x are said to form the leader of f on x. For notational
convenience, the number + c of distinct values in the sequence will be denoted by n.

The cycle problem arises when analyzi,ng pseudo-random number generators that
produce successive "random" values by applying some function to the previous value
in the sequence [1, 3.1]. Solving the cycle problem gives the number of distinct ran-
dom numbers which can be produced from a given seed. Algorithms for the cycle
problem are used in checking the characteristics of random number generators whose
internal properties are unknown. Other applications include checking for loops in
self-referent lists (see [2]), and studying the performance of certain numerical calcula-
tions (see [5]). Beyond these practical motivations, the problem is of some intrinsic
combinatorial interest.

A graphic restatement of the problem is provided by imagining a directed graph
whose nodes are the elements of D and which contains an arc from y to f(y) for every
yED. For example, Fig. la shows the graph corresponding to f(x) (2x+ 1)mod 10,
with D 0,1,.. ",9. The cycle structure for a function consists of a number of
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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 377

FIG. l a. A typical cycle structure.

disjoint cycles, with disjoint trees feeding points on the cycles. To solve the cycle prob-
lem, we need consider only the subgraph consisting of a single cycle and leader, which
can be drawn as shown in Fig. lb.

FIG. lb. A typical cycle and leader.

One method for cycle detection, commonly referred to as "the tortoise and hare"
algorithm, has been given by Floyd [1, Exercise 3.1-7]. The idea is to have two vari-
ables taking on the values in the sequence, one advancing twice as fast as the other.
A program implementing this idea is given in Fig. 2.

y-z-x;
repeat

y f(y);
z f(f(z));

until y z;

FIG. 2. Floyd’s algorithm.

This algorithm stops with y=fi(x)=fZi(x)=z, where is the smallest positive multiple
of c which is greater than or equal to 1. If/=0 then 3n function evaluations are per-
formed, and if l=c+ 1 or if c= 1 with 14:0 then a total of 3(n-1) function evaluations
are performed. This number may be objectionable when the cost of evaluating f is
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378 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

high relative to the cost of comparisons.
Another method, due to Gosper [2, page 64], was designed to circumvent the

overhead of advancing two independently operating "copies" of the generating func-
tion as required in Floyd’s method. His method is to save certain values of the
sequence in a small table (whose size must be at least logzn) and to search for each
new value to see if it has previously been generated. The table update rule is to save
the ith value generated in the jth cell of the table, where j is the number of trailing
zeroes in the binary representation of i. This method can require as many as + 2c
function evaluations, or 2n if/=0, and 3n/2 if l=c. Moreover, it requires at least an
equal number of table searches, which would be important if the cost of comparisons
were high relative to the cost of evaluating f.

These algorithms are suitable for detecting the existence of a cycle. The value of
c can be found by proceeding around the cycle one additional time. Of course, this
may be undesirable if c is very large. Moreover, neither algorithm has provision for
directly finding except by starting back at the initial value.

In this develop an algorithm that solves the cycle problem usingaper, we
n(1+O(1/ )) function evaluations in the worst case, where M is the amount of
memory available for storing generated function values. The number of memory
operations (i.e., stores and searches) used is O(n/X/- + Mlogn/M). The algorithm is
developed in 2 in two parts: one stage which detects the cycle, and a companion
stage which recovers the values of and c. A worst case analysis of the algorithm is
given in 3. In 4, we derive a lower bound which shows that no algorithm using the
same fundamental operations can have a substantially better worst case performance.
Our algorithm for the cycle problem thus demonstrates a tight, non-trivial tradeoff in
which time is a continuous function of memory-size. A generalization of the problem
and some concluding remarks are offered in 5.

2. The algorithm. Any algorithm for the cycle problem must have a running
time of at least ntf where tf is the (assumed constant) time to perform one evaluation
of f. It should be clear that by using a large amount of memory we can produce an
algorithm whose running time is ntf+ O(nlogn) by employing, for example, a bal-
anced tree scheme to save all elements generated in the sequence. Such an algorithm
is unsatisfactory for at least two reasons. First, it is unrealistic to assume an unlimited
supply of memory. Second, it does not take into consideration the relative complexity
of evaluating f and comparing two domain elements for equality. Let us therefore
construct a framework in which these considerations can be addressed. We shall be
particularly interested in the tradeoff between memory size and execution time.

Let TABLE be an associative store capable of storing up to M pairs (y, i) of
domain elements and integers. Both elements of the pair are keys in the sense that it
is possible to search TABLE for an entry that contains a specified value for its first (or
second) component. Let tu be the time needed to insert or delete a pair from TABLE,
i.e., to update TABLE, and let ts be the time needed to search TABLE for a given key.
Depending on the implementation of TABLE, tu and ts might be constants, logarithmic
functions of M or even linear functions of M (see 5). All other operations of the
algorithm are assumed to be free.

Within this model, we are ready to develop an algorithm for the cycle problem.
The basic idea is to limit the number of operations performed on TABLE by only stor-
ing and searching for occasional values in the sequence f(x), fl(x), .... Thus,
most of the time consumed by the algorithm is spent advancing the function f. In
order to implement this idea, let us introduce two parameters, b and g. Fig. 3
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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 379

contains an algorithm which only stores every bth function value in TABLE and which
performs searches on blocks of b consecutive values spaced gb apart in the sequence.

y -x;
,--0;

repeat
if (i mod b) 0 then insert(y, i);
y f(y);

i+1;
if (i mod gb) < b then search(y);

until found;
output i, j;

FIG. 3. Preliminary version of the algorithm.

Here the procedure insert(y, i) puts the pair (y, i) into TABLE without checking to
see if there is another entry already there with the same first component. The pro-
cedure search(y) sets the variable found to false if no pair in TABLE has y for its first
component, otherwise it sets found to true and j to the minimum value of j for which
(y, j) is in TABLE. The modulus computations in this program are used for clarity;
an actual implementation would use counters instead.

The program is guaranteed to halt because once the cycle is reached at least one
function value out of every block of b consecutive values searched for must be in
TABLE. Although it is possible to overshoot the point at which the cycle first returns
to itself, it is clear that the algorithm will always detect the cycle before the (n + gb)th
evaluation of f. Since the algorithm performs g updates and b searches for every gb
evaluations of the function, the worst case running time of the algorithm is no greater
than (n + gb)(tf+ ts/g + tu/b)+ bts. The bts term is caused by the fact that the searches
are not uniformly distributed within the sequence of function evaluations.

It is interesting to note that a dual algorithm can be developed by interchanging
the roles of search and insert in Fig. 3, that is, every bth function value is searched
for, and a block of b function values is stored every gb evaluations. Most of the
results of this paper then carry through for the dual algorithm. Further development
along these lines is left to the reader.

We could arrange to have the algorithm spend virtually all its time doing the
(unavoidable) task of stepping f by choosing b and g suitably, were it not for the fact
that TABLE will soon fill up. Accordingly, we introduce the following memory
management mechanism. Whenever TABLE gets filled, we invoke a procedure
purge(b) which removes all entries (z, j) from TABLE for which j 0 (mod 2b). We
then double b, and continue. This has the same effect as restarting the program from
the beginning (,.vith the larger value of b) and running it to the current value of i.
Notice that this effect is achieved at the cost of a few memory operations and, more
importantly, no additional function evaluations. The algorithm thus adapts its
behavior to the problem at hand. (A similar memory allocation strategy can be dev-
ised for the dual versioh of the algorithm mentioned above.)

The final version of the algorithm is shown in Fig. 4. The variable m is used to
count the number of entries currently in TABLE. Notice that b is now a variable of
the program, while g is still a parameter. The memory size M must be at least 2 and
g can be any integer in the range l<-g<M. If g= 1 then every generated function
value is looked for in TABLE and the algorithm will halt very soon after the nth func-
tion evaluation. Larger values of g result in fewer searches but delay the point at
which a duplicate element is discovered. It will be explained later how to best choose
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380 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

the value of g.

y .--x;
,--0;

rn ,--0;
b,-1;
repeat

if (imod b) Oandm Mthen
begin

purge(b);
b 2b;
rn [m/2l;

end
if (i mod b) 0 then

begin
insert(y, i);
rn m+l;

end

Y f(Y);
i+1;

if (i mod gb < b then search(y);
until found;
output i, j;

FG. 4. The cycle detecting algorithm.

The following lemma provides the key invariant relations necessary for under-
standing the operation of the algorithm. The corollaries to the lemma provide useful
facts needed in the analysis and correctness proof.

LEMMA 1. The following relationships hold among the variables in the cycle detect-
ing algorithm at the start of each if statement (and therefore at each call of search,
insert, or purge):

(a) y fi(x),
(b) (fJ(x), j) is in TABLE i and only i] j:-O (rood b) and O<-j<i,
(c) the number o] entries in TABLE is rn [i/b].
Proof. Clearly, the relations are all true when the repeat loop is first entered.

Moreover, it is easy to see that (a) is preserved throughout the program because the
variab!es y and are only changed in one place in the loop. It remains to show that
(b) and (c) are preserved by the loop body.

Consider the first if statement in the loop. If its predicate is false, no variables
are changed and the relations are preserved. If its predicate is true, then by induction
we bave rn [i/b] M with 0 (mod b). Thus Mb and TABLE contains
(fJ(x), j) for j E {0, b, 2b, (m-1)b}. After the call on purge, TABLE contains
only those entries with jE{0, 2b, 4b,.-., kb} where k is M-2 if M is even, and
M-1 if M is odd. In either case, the number of entries remaining in TABLE is
(k/2)+ 1, which turns out to be [M/2|. Thus (c) is preserved by the purge and subse-
quent assignment to m. It should be equally obvious that the purge and subsequent
doubling of b preserve (b), so we have thus established that the first if statement
preserves the relations in the lemma.

The preservation of (b) and (c) by the rest of the loop body is straightforward. []

COROLLARY 1. For k>-O, the k+ 1st call on purge increases b from 2 to 2k+l and
occurs when =2kM.
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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 381

COROLLARY 2 The value of b when search is called is i/M rounded up to the next
[log2i/M]

integral power of that is,

Our main goal in the study of the performance of Algorithm 4 is to prove that it
halts fairly soon after the nth evaluation of f. We would expect termination to occur
during the execution of the first block of consecutive searches initiated after the time
when i= n: this turns out to be true, but the proof is complicated substantially by the
possibility that purges can occur at inopportune times, thus delaying the start of the
search block. The situation is quite complicated because, though g and M are fixed
ahead of time, the algorithm must work correctly for all values of and c. It is not
obvious that the algorithm is guaranteed to terminate within a reasonable amount of
time: for some choices of g and M there might be values of and c that the search
block is delayed for some time by unfortunate purges. The following lemma shows
that this cannot be the case, and gives precise bounds on the time at which the algo-
rithm must terminate.

LEMMA 2. Let bn be n/M rounded up to the next power of 2 (i.e., bn is the value of
b when is assigned the value of n). Then if, the value of at the termination of the
cycle detecting algorithm, obeys:

n --< (1 < n + (g + 1)b, if [M/g] is even,

n <- if < n+(Zg + 1)b, if [M/g] is odd.

Moreover, these bounds on if a:’e as tight as possible.
Proo[. Complicated interactions between the occurrence of purge and search

operations, based on arithmetic relationships between M, g l, and c, make this proof
an intricate case analysis, which is relegated to the Appendix. To see the flavor of the
proof, consider the simplest case, when no purge operations occur between the first
evaluation of fn(x) and the search that terminates the algorithm. In this case, the
algorithm performs searchs for fi(x), is<_i <is+ bn, where is is the (unique) multiple
of gbn for which n<-i,<n+gbn. D’aring the search, since there are no purges (the pre-
cise conditions for this case are given in the Appendix), the value of of b remains
fixed at b,. Since i.>-n, the values searched for are equal, respectively, to fJ(x),
is-c <-j<is+b,-c, exactly one of which, by Lemma l(b), must be in TABLE. The
algorithm therefore finds a match on one of these searches and terminates with found
true and if < is+bn < n+glT,,+bn n+(g+ 1)bn. Notice that if c<b,, the fJ(x) that
is found will have j=is. []

The algorithm of Fig. 4 halts as soon as it discovers a pair i>j of integers for
which fi(x)=fJ(x). This implies that j>-l and that i=j (mod c), but we need to do
some additional processing to find the exact values of and c. Fig. 5 shows a com-
panion algorithm which recovers the solution (l, c) once the cycle detecting algorithm
has terminated.

if fJ(x)--fJ+c(X)with 1--<c-<(g+ 1)b then
c smallest such c;

else
c .-i-j;

i’ max(c, gb [i/gb] gb);
j’ -i’-c;

smallest >j’ such that f(x) f+ (x);
output l, c;

FIG. 5. The recovery algorithm.
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382 ROBERT SEDGEWICK THOMAS G. SZYMANSKI AND ANDREW C. YAO

The second to last statement in this program may require evaluating f starting at
a point that is not in TABLE. This can be done with little extra overhead. For exam-
ple, fJ’(x) can be found by doing a search for a TABLE entry whose second com-
ponent is b [j’/b] and then applying f exactly j’ (mod b) times to fblj’/b](x).

LEMMA 3. The recovery algorithm correctly computes c using at most 2(g + 1)bn
function evaluations.

Proof. The bound on the number of function evaluations is immediate from the
observation that the final value of b is either bn or 2b.

The correctness of the computation of c has two cases depending on the predicate
in the initial if statement in the algorithm. If the true branch is taken, then c is
correctly computed by definition of cycle size. If the false branch is taken, then we
must have c>(g+ 1)b. However, we know from the proof of Lemma 4 that
< n + (g + 1)b and hence < n + c. Since j-> n- c, this means that i-j< 2c. Because
i-j must be a multiple of c, this implies that i-j-c, which is precisely what the
algorithm has computed in this case. []

LEMMA 4. The recovery algorithm correctly computes using at most 4(g+ 1)bn
function evaluations and two memory searches.

Proof. The expression gb li/gb] gives the value of at the start of the final block
of searches that the algorithm performed. Subtracting an additional term of gb from
this gives the start of some previous block of searches that was completed unsuccess-
fully. Thus n-gb<-gb[i/gb]-gb<n and we have max(c, l+c-gb)<-i’<l+c=n.
This implies that max(O, 1-gb)j’ <l. It should be clear from the definition of
leader length that the algorithm correctly computes 1.

The time bound follows from a more detailed consideration of the implementa-
tion of the statement that assigns I. As mentioned above, fJ’(x) and fJ’ +(x) can each
be found by performing a memory search and b-< 2b, function evaluations. Assigning
these function values to variables and applyitlg f to both of them until they are equal
involves (from the range given above on j’) at most gb<_2gb, function evaluations
apiece. []

It is possible to design faster recovery procedures for many situations. For exam-
ple, c could be found by applying "divide and conquer" to the prime decomposition
of i-j, and could be found by a binary search procedure. However, the recovery
time is heavily dominated by the cycle detection time, so such sophisticated implemen-
tation tricks might not be worth the effort.

3. Worst case analysis. The algorithms of the previous section can provide an
efficient solution to the cycle problem if the parameter g is chosen intelligently. In
this section we shall analyze the running time of the algorithms to find the best choice
of g. We shall concentrate on minimizing the worst case running time.

THEOREM 1. In the worst case, the running time of the cycle detecting algorithm is
at most

M tf+ + tuMlog2 8n.M
The additional time required to recover the values of and c is at most

n 12(g + !)
M tf+ 2ts.

Proof. Corollary
if< n(1 + (4g + 2)/M).

2 tells us that bn<-2n/M. Lemma 2 then implies that
Tbe detection algorithm performs if evaluations of f for a
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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 383

contribution of iftf to the running time. Throughout the execution of the algorithm, b
searches are performed for every gb function evaluations. Thus the total number of
search operations is if contributing ifts/g to the running time. This takes care of
the first term. (Note that the full result of Lemma 2 implies that coefficient of g in
the O(I/M) term could be reduced to 2, by taking [M/g] to be even.)

For the second term, observe that each call on purge removes M/2 elements from
TABLE. If we charge each element with tu time for initially inserting it, and then tu
time for its removal, we get a cost of Mtu for each purge performed. In addition,
TABLE can contain up to M elements at the termination of the algorithm, elements
which have been inserted but not yet deleted. This contributes at most Mtu more to
the cost. Since the total number of purges performed is no greater than 1 + log2bn, we
get a memory manipulation charge of Mtu(2+log2bn) which gives us the second term
above.

For the running time of the recovery algorithm, Lemmas 3 and 4 give us an
upper bound in terms of bn, which by Corollary 2 is at most 2n/M. []

COROLLARY 3. The total running time of the cycle finding algorithm is

if g is chosen appropriately.
Proof. From Theorem 1, the total running time (of both algorithms) is bounded

by

Choosing g to be the square root of 1 +

[ [.[ __))’* 14tfn tf+8 1+ + +
M

minimizes this expression, yielding

16ts ) 8n+ tuMlog2.
M M

Combining terms that are O() gives the stated result. []

Note, in particular, that a balanced tree implementation will have ts O(logM),
and a hashing method could have ts O(1). In both cases, the worst case running
time will approach ntf as M gets large. In the next section, we shall see that the algo-
rithms are, in fact, optimal in a much stronger sense than this.

4. Optimality. The cycle detecting algorithm given above can be thought of as a
family of algorithms (parameterized by g) that trade off between the two types of
basic operations, namely, function evaluations and memory searches. Thus, in the
range 1 <--g<M, if we are willing to use O(ng/M) extra function evaluations in addi-
tion to the n function evaluations needed to compute fn(x), then we need only per-
form O(n/g) table searches. The corollary to Theorem 1 shows that g can be chosen
to allow the cycle problem to be solved in time ntf(l+O(/ts/Mtf)). In this section,
we shall show these results to be optimal in the sense that no algorithm which does
successive function evaluations and has a limited amount of memory to store function
values can do substantially better.

We shall consider the problem of cycle detection, that is, finding a pair i:/: j such
that fi(x)--fJ(x). The lower bound results will also, of course, apply to the more gen-
eral cycle finding problem. We need to specify the model of computation to be
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384 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

considered.
The model. An algorithm A uses an array T[1], ,TIM], each cell of which

can store a pair (k, d) with k_>0 an integer, and d an element of the domain D. At
all times, any pair (k, d) stored in a cell will satisfy the relation d fk(x); initially all
cells contain (0, x). The algorithm can make two types of moves: An F-move which
picks a pair (i, j) of integers (possibly equal) and sets T[i] (k, f(d)) where (k, d) is
the contents of T[j] when the move is executed; and an S-move which picks an and
tests "is there a ji such that T[i]=(k, d) and T[j]=(k’, d’) satisfy k’k and
d’=d". The computation proceeds one move at each time 1, 2, and halts
as soon as some S-move results in a "yes" answer. The algorithm is assumed to
remember the entire history of the computation (that is, the values of and j made in
all F-moves, and the value of used in all S-moves) and the choice of the next move
can depend on all of this information. Of course, values of D are "remembered" only
if they are currently stored in T. The reader will note that algorithms constructed for
our model of computation are oblivious in that any one algorithm, when run on two
different problem instances, will exhibit identical behavior up until the point that one
of the computations receives a "yes" response to an S-move and halts.

For any instance (f,x) of the cycle problem, let Ff,x(A) be the number of F-
moves performed by A when run on that instance, and let Sf,x(A) be the number of
S-moves. The running time is thus Ftf,x(A)tf + Stf,x(A)ts. We shall use the notation

ntf,x to denote the sum of the leader and cycle lengths for the instance (f,x).
The following theorem gives an explicit lower bound on the tradeoff required

between the number of function evaluations and table searches for any algorithm for
the cycle problem.

THEOREM 2. Let k be a positive real and no a positive integer. Suppose that A is
an algorithm for the cycle problem, for which F(f,x)(A) < (1 + k)n(f,x) whenever

n(f,x) >- no. Then

> ntf,x)
8kM(l+4k)2

for all (f,x) with ntf,x sufficiently large.
Proof. Consider the algorithm A working on an input (f,x) with n(f,x)= . Let

tm be the time when fm(x) is first computed by an F-move and stored into the array.
Let s(m, rn’) denote the number of S-moves performed in the time interval [tm, tm’).
The method of proof will be to bound s(m, m’) for appropriate m, m’, and then sum
these results over a large range of intereals to prove the theorem.

First we shall show that if rn-> no and m’_> (1 + k)m then we must have

s(m, m’) >- m2

4(M- 1)m’
To prove this, suppose that A has not yet halted at time tm,. Then the S-moves made
so far must have given enough information to establish that fm(x)=/:fm-c(x) for
1-< c-< m, otherwise there would exist an instance (f,x) of the cycle problem on which
A would perform more than m’ -> (1 + k)n (1 + k)n(f,x) F-moves.

We shall proceed by determining how many inequalities must be found in order
to discount those cycle sizes in the range am<_c<_m for some a to be determined
later. For each such c, let fic(x):/:fJC(x) with jc<ic<m be the "witness" that
fm(x):/:fm-(x). Then ic-Jc=hcc for some integer he-> 1. Since i<m’ and c>-am,
we must have h<_rn’/am. Thus each inequality fi(x)=/:fJ(x) can eliminate at most
rn’/am cycle sizes in the range am <-c<-m. Because each S-move can supply up to
M-1 inequalities, we have
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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 385

s(m,m)(M 1) m’ > (1-ot)m.
otm

Taking ot 16 yields the bound claimed in the statement of the theorem.
Next we shall bound the total number of S-moves made before time tn,.. Since

we already know that algorithmr1Acannot halt before time tn,x, this will suffice to

the theorem. Define mi [no(l+2k)i[, 0-<i<. We may assume, without lossprove
of generality, that no -> 1+ 1/k, and so, l+k -< mi+l/m -<1+3k. Thus we have

mi
s(mi, mi+ 1)

4M(l+3k)
For any nf,x)> no, define to be the largest integer such that m < nff,x). We thus
have

Stf,x)(A) >-- , s(mi,mi+l) >-- 1 no(l+2k)i= 1 (l+2k)t-1
O<_i<t 4M(1 + 3k) o<_i<t 8M---"n 1 + 3k

If nf,x) is sufficiently large, then is large enough to guarantee that

..(l+2k)’-i > .(l+,2k),t,, > (l+2k)/+
1 + 3k 1 + 4k (1 + 4k)2

Thus

1 (l+2k)’+1 1 n(f,x)
Sff,x)(a ) > no >

8mk (1 + 4k)2 8Mk (1 + 4k)2’

which completes the proof. []

The reader should note that if our model of computation is altered to allow an
unbounded supply of memory, and the basic operations changed to allow F-moves and
simple comparisons, that is, in one step, test whether some specified pair of memory
locations contain equal elements of D, then our proof techniques imply that any algo-

n(f,x)rithm satisfying the hypotheses of Theorem 2 must perform at least com-
8k(l+4k)2

parisons. It should also be noted that Theorem 2 has an alternate proof which is only
valid when k<16 but which improves the constant in the bound on Sf,x). The alter-

nate bound is S(I,xl(A) > k(1 + k)M n(f,x.

COOLLAIY 4. If tJtf=O(M), then the running time for any algorithm for the
cycle detecting problem is

Proof. Let k be the square root of ts/tfM. For any cycle detecting algorithm,
there are two cases"

Case 1. The algorithm performs more than n(l+ k) F-moves for infinitely many
n. Thus the algorithm has a running time of at least

n(l+k)tf ntf 1+

for infinitely many n.
Case 2. The algorithm uses no more than n(l+k) F-moves for all n greater than

some no. In this case, Theorem 2 applies, and the running time of the algorithm is at
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386 ROBERT S.EDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

least

ntf + ntf 1+
8kM(1 + 4k)2 8(1 + 4k)2

for all instances of the problem with ntf, sufficiently large. Since ts/tf=O(M), k is
bounded from above as M varies, and thus 1/(1+4k) is bounded from below. This
gives us the claimed result. []

The above results are asymptotic statements about the performance of algorithms
for the cycle problem for instances (f,x) with n(f,x) large. Of course, it is implicit in
these statements that the size of the domain D must also be large since we have the
constraint that ntf,,-< 91. If 91 is known to be small, an algorithm might be able to
make use of that information.

The lower bounds derived in this section shed some light on the possibility of
extending further the algorithms in 2. The cycle finding algorithm has a running
time of

1+cl ntf + C2g

for small positive constants 1, 2, but only under the constraint that g<M. It is
interesting to inquire whether algorithms can be found which extend this range.

For example, if one is willing to use many more, say Mn extra function evalua-
tions, can the number of searches be lowered to O(n/M2)? Theorem 2 provides part
of the answer, since it says that with this many extra function evaluations, one still has
to perform (n/M2) table searches. We do not know of any algorithm that achieves
this lower bound.

Another direction of research involves finding a non-trivial lower bound on the
number of function evaluations independent of the number of searches performed. It
is easy to show, for example, that any algorithm which uses memory M must perform
at least

function evaluations in the worst case for sufficiently large n(f,x). This can be proved
by considering the contents of memory at time tn-1 and choosing the cycle size so that
ft(x) is at least n/2M "away" from any stored element. Details are left to the reader.

5. Concluding remarks. We have dealt exclusively with algorithms with good
worst case performance for solving a particular instance of the cycle problem on an
unknown function. The problem is also interesting under other variations of the
model.

One variation is to take the function to be random (in some sense) and to talk
about an average case measure of complexity. R. W. Floyd has pointed out that
studying the probabilistic structure of random functions over D can lead to savings on
the average. For example, is known to be relatively large in the case of a random
function, so it may not be worthwhile to save or search for values at the beginning.

Another variation is to let the cost of computing fJ(x) be independent of j. A
famous factoring algorithm due to Shanks [4] is based on this problem. Shanks’ solu-
tion, which uses the additional knowledge that =0 and n is bounded by some con-
stant N, finds n in time proportional to using Vn memory. The method is simi-
lar to the,dual algorithm mentioned in 2: one saves the first values generated,
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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 387

then does table searches at subsequent intervals of -n. Our cycle detecting algorithm
also works in this case, but it runs slightly longer due to its need to discover that 0
and its need to adapt to the value of c. A rough analysis for this case follows. From
the program, we see that the function evaluation cost will be about the same as the
table update cost, so the expression for the total running time in Theorem 1 tells us
that the best thing to do is to pick g as large as possible (about M), for a running time
of

0 + (tu + tf)Mlog2 --This expression is minimized to O(X/gzN) by choosing M to be O(X/n/logzN) if
enough memory is available and we know that n is bounded by N.

A generalization of the c3’cle problem arises when all the points of the domain D
are to be studied. In general, D is partitioned by f into disjoint sets with the property
that all points in each set lead to the same cycle. Properties of the cycle structure

(e.g., the number of sets, their sizes, the sizes of their cycles) can be found by solving
the cycle problem on all points of D. The algorithms of this paper can be adapted to
avoid retraversing long cycles by maintaining versions of TABLE for each cycle.

Another generalization of the cycle problem can be formulated in the following
way. As before we are given a unary function f, only now we allow the domain of f
to be infinite. We suppose that we are also given a binary predicate P on D D. The
problem is to find the smallest n for which there exists an l<n such that
P(f"(x), ft(x)). In the absence of any further information, it is easy to show that this

problem requires () evaluations of P. However, if P is preserved by f, that is,

P(a, b) implies P(f(a), f(b)), then the algorithms of this paper can be made to run in
time n(tf+ O(tp)) where tp is the time needed’to evaluate P. It is interesting to note
that the algorithms of [1] and [2] simply do not work for this problem.

An earlier version of this paper [3] left open the question of whether an algo-
rithm exists for the cycle prcblem which used a bounded amount of memory and an
optimal number of function evaluations. We have resolved this question in 4, with
the somewhat surprising result that the algorithm of 2 may be viewed as optimal for
the range of problem parameters for which it is applicable.

Appendix. In this appendix, we give a detailed proof of the complete result
about the termination time of the cycle finding algorithm, Lemma 2 from 2 of the
paper. The main purpose of including this proof in detail is that it precisely illustrates
why the result given is the most general available for the problem: in fact, each of the
cases below was essentially discovered as a counterexample during the search for a
simpler or better version of Lemma 2.

A key fact needed to establish the correctness of the algorithm is that at least one
complete block of searches on b consecutive values of the function is performed
between any two consecutive calls on purge. Let the consecutive purges take place at
i=2k- 1M and 2kM. During this time interval b 2k. The following fact implies that
at least one block of searches will be started early enough in this interval to be com-
pleted before the latter purge. More specifically, the search block will start no later
than 2kM 2k.

FaCT 1. Let M and g be integers with l<-g<M and M>-2. For any integer k>0
there exists an integer i, 2k-lM<-i<-2M-2, such that i=-O (mod 2kg).

Proof. If [M/2]<_g<M, then 2kg clearly has the required properties. If
1-< g-< [M/2], simply count the number of multiples of 2 in the specified interval. If
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388 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

M is even, there are precisely M/2 such multiples, whereas if M is odd, there are
(M-1)/2 of them. In either case, the interval contains [M/2] consecutive multiples of
2k so one of them must be congruent to 2kg. []

The next fact is a technical result which will be useful in determining the amount
by which the algorithm can overshoot n.

FACT 2. Let M, g, and x be positive integers. Then [M/g] is even if and only if the
smallest multiple of gx that is at least Mx is an even multiple of gx.

Proof. (If) By hypothesis, there exists an even integer z such that
(z-1)gx < Mx <- zgx. But then, z-1 <M/g <- z and so [M/g] <_ z. Thus [M/g] is
even.

(Only if) By hypothesis, there exists an even integer z such that z [M/g].
Then z-1 < M/g z and so (z-1)gx < Mx <- zgx. Since (z-1)gx and zgx are con-
secutive multiples of gx, zgx must be the smallest multiple of gx that is at least Mx.
Since z is even, zgx is an even multiple of gx. []

At this point we are ready to prove the result of Lemma 2 from the text, which
states precisely when the algorithm halts. The key idea is that termination is
guaranteed to occur during the execution of the first block of consecutive searches ini-
tiated after the time when i= n. As mentioned in the text, the proof is complicated
substantially by the necessity to account for the effects of purges which could delay the
start of the last search block. Fact 1 will be used to show that the delay cannot be
indefinite and Fact 2 will be used to establish a bound on the amount of the delay.

LEMMA 2. Let bn be n/M rounded up to the next power of 2 (i.e., bn is the value of
b when is assigned the value of n). Then if, the value of at the termination of the
cycle detecting algorithm, obeys:

n if < n + (g + 1)bn if [M/g] is even,

n <-- if < n+(2g+ 1)bn if [M/g] is odd.

Moreover, these bounds on if are as tight as possible.
Proof. Let ip--bnM and let is be the (unique) multiple of gbn for which

n <- is<n + gbn. By Corollary 1, ip >- n. Thus ip is the first moment after n at which
a purge operation can occur, and is is the first moment after i=n at which a new
block of search operations can commence. A number of cases now arise.

Case 1. is<ip. Since is and ip are both multiples of bn, is+ bn <: ip and the algo-
rithm performs searchs for fi(x), is<-i<is+bn, during which time the value of b
remains fixed at bn. Since is>-n, the values searched for are equal, respectively, to
fJ(x), is- c <-j < is + bn c, exactly one of which, by Lemma 1 (b), must be in TABLE.
The algorithm therefore immediately terminates after one of these searches with

if < is + bn < n + gbn + bn n + (g + l)bn.
Case 2. ip<-is and [M/g] is even. By definition, is is the smallest multiple of gbn

that is at least as great as n. Since the condition of this case requires that n <-ip <-is, is
is the smallest multiple of gbn that is at least ip Mbn. Fact 2 thus guarantees that is
is an even multiple of gb and hence is=O (mod 2gbn). Fact 1 guarantees that no
additional purges take place between the times when =ip and is. Thus the algo-
rithm performs search operations for fi(x), is<-i < is + 2b,, during which time b 2bn.

Since is>-n, at least one of these function values is in TABLE and the algorithm halts
with if< is + 2bn. Thus n <-- if( n + (g + 2)b,.

We shall conclude this case by demonstrating by contradiction that we must actu-
ally have if<n+(g+l)bn. To do this, suppose that if>-n+(g+l)bn Consider
ips is-gb, and ipf= if-gb,--bn, ips is the point where the previous search block
began. We shall show that a previous find would have occurred at ipf, terminating the
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THE COMPLEXITY OF FINDING CYCLES IN PERIODIC FUNCTIONS 389

algorithm and giving us the desired contradiction. Observe that ips<n because
< n + gbn. Moreover, n < ipf because n + (g + 1)bn <-- if. Notice that ipf< ips + b,,

because if< is + 2b,,. Finally, observe that ips + b,, <-ip because both ips and ip are multi-
ples of b. with ip < n <- ip. Putting these together we have
ips < n <- ipf < ips+b,, <-ip. Since ips=-O (mod gb,,), this implies that the algorithm

-<i<" +b. during which time b remains constant atperforms searches for f’(x) ps ps
bn. By definition of if, if-c=O (mod 2bn), and so ipf-=-O (rood b,). Thus the
search for f%(x) should have caused the algorithm to terminate with i= ipf.

Case 3. ip<-is and [M/g] is odd. As in case 2 above, is is the smallest multiple
of gb,, that is at least ip. This time, however, Fact 2 tells us that is is an odd multiple
of gbn and hence isO (mod 2gb,,). The first block of searches starting after i= n
must therefore begin at is+gb,,. Since b at this time is 2b,, we see that if <
is + gbn + 2bn < n + (2g + 2)b.

As in case 2, we can next argue that the last bn values in this range are not really
possible. To do this, suppose that if>-n+(2g+l)b,,. Consider l’ps=is-gb,, and
ipf if-2gbn-bn. Once again, algebra reveals that ips < n <- ipf < ips+ bn <- ip and
we can argue that the algorithm would have terminated earlier.

To see that the stated bounds are the tightest possible, let us suppose that M and
g are given, with l<-g<M. We shall show how to construct an infinite set of
instances of the cycle finding problem in which if is at the extreme high end of the
ranges given in the statement of the lemma.

For any integer k_>0, let ip be 2kM, and let is be the largest multiple of 2kg that

is less than ip. Let n be is+2k. Since both n and ip are multiples of 2k, n<_ip and

bn 2k"
If [M/g] is even, let is2 be isl + 2’g n + gb,,- b,, and let be 1 + gb,,- b,,. If

[M/g] is odd, let is2 be is+2’+lg n+2gb,,-b,, and let be l+b,. These choices for

are possible because n is at least gb,, + b,,. It can be shown through the use of Fact 2
that, in either case, is2 is the smallest multiple of 2k+ lg that is at least ip. Now con-

sider the operation of the algorithm on an instance of the cycle finding problem whose
solution is given by the n and defined above. The algorithm will perform searches

<i<is +b,,=n These searches all fail. A purge then occurs at ipfor fi(x), ls--
increasing b to 2bn=2k+l. The next block of searches is performed for fi(x),
is.,<-i<is2+2b,,. Since the cycle size c=n-1 is sufficiently large, the algorithm will

-<i<" +2b, and for which i-c=O (mod 2bn). Let usterminate for the first with s2 IS2
write this if as is2+j with 0-<j<2bn.

If [M/g] is even, then if- c is2+j- c n + gb,, b,, +j- c + gb,,- b,, +j
l+2gbn-2b,,+j. Thus if-c=-O (mod 2b) when j= 2b-1 and the search halts at if

is2+2b-i n+(g+l)b,-1. If [M/g] is odd, then if-c is2+j-c
n+2gbn-b,,+j-c l+2gb,,-b,,+j l+2gb,,+j. Thus if-c=-O (mod 2bn) when
j 2bn-1 and the search halts at if is2+ 2b,-1 n + (2g + 1)bo-1. In either case,

if is the largest value permitted in the ranges given in the statement of the lemma. []

Acknowledgments. The authors take pleasure in thanking A. V. Aho, W. Beck-
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Postscript. F. E. Fich has recently shown [5] that the cycle problem is also
interesting to study under a complexity measure that counts only the number of func-
tion evaluations. Memory. references are not counted explicitly in the cost, but
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390 ROBERT SEDGEWICK, THOMAS G. SZYMANSKI AND ANDREW C. YAO

algorithms must respect the limitation of using only a fixed amount of memory. She
proves a lower bound of n(1 + 1/(M-1)) function evaluations for algorithms restricted
to M memory cells, while the algorithm in this paper uses n(l+2/(M-1)) function
evaluations. Also, she gives upper and lower bounds for M 2 and various other res-
trictions.
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