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Abstract: ALl is a procedural language to specify VLSI layouts. It 
allows the designer to describe layouts without reference to the 
sizes and positions of the layout elements or to the distances 
between them. Among the interesting characteristics of ALI are, 
that it doesnot need design rule checking, is easy to extend, facili- 
tates the division of labor and permits the easy update of a layout 
to new design rules or to new processes. The general features of 
the language and the experience gained with a preliminary imple- 
mentation of it are described. 

1. Introduction 

This paper describes a procedural language to specify 
VLSI layouts. The main feature of this language is that it 
allows its user to design layouts at a conceptual level in 
which neither sizes nor positions (absolute or relative) of 
layout components may be specified. Mostly as a conse- 
quence of this, ALl simultaneously (i) makes the layout 
task more like programming than editing, (ii) eliminates 
the need for design rule checking after the layout is gen- 
erated, (iii) permits the creation of easy to use cell libraries 
and (iv) provides the designer with the mechanisms to 
describe a layout hierarchically so that most of the detail at 
one level of the hierarchy is truly hidden from all higher 
levels. 

The notion of not assigning sizes or positions to any 
object in a layout until the complete layout has been 
described (similar to the idea of delayed binding in program- 
ming languages), sets ALl apart not only from just about 
all of the graphics based layout editors we know of ([4], 
[7], [8], [14], [181) but also -- with the exception of [15] -- 
from most of the procedural languages for the layout task 
currently in use or recently proposed, whether or not they 
include a graphics interface ([11, [5], [6], [9], [10], [11], 
[16]). 

The issues that we tried to address with ALl are the 
following. 

• The creation of an open ended tool. Graphics editors tend 
to be closed tools in that it is hard to automate the layout 
process beyond what the original design of the system 
allowed. Procedural languages are generally much better 
in this respect. However, the fact that most such 
languages require the specification of absolute sizes and 
positions, makes the creation of a general purpose library 
of cells a hard task, since information about the sizes 
and positions of the cell elements that can interact with 
the outside world has to be apparent to the user of the 
library. The absence of absolute sizes and positions 
makes this problem much less severe in ALl. The 
extensibility of ALl derives from the fact that it has been 
built on top of Pascal, thereby making the full power of 
Pascal available to the designer. The generation of tools 
to automate the layout process, such as simple routers or 
PLA generators, involves writing Pascal routines to solve 
the problem that invoke ALl cells to generate the lay- 
outs. 

• Creating tools that are simple to use and easy to learn. In 
particular, we want to avoid tools whose behavior is 
unpredictable. Many programs which rely heavily on 
sophisticated heuristics respond to small changes in their 
input with wholesale changes in their output. We have 
maintained a simple correspondence between the text of 
an ALl program and the resulting layout so that changes 
in the layout can be easily related to changes in the pro- 
gram. This decision has simplified the system at the cost 
of making it less knowledgeable about MOS circuits. 

• Facilitating the division of labor. Large layouts have to be 
produced by more than one designer. If the piece pro- 
duced by each designer is specified in absolute positions, 
serious problems are likely to arise when the different 
pieces are put together, unless very tight interaction -- 
with its attendant penalties in productivity -- is main- 
tained throughout the design. ALl allows the partition- 
ing of tasks in such a way that the designer of a piece of 
the layout does not need to know anything about the 
sizes of other pieces of the complete layout. For 
instance, on the top of fig. 1 three simple cells are shown 
with the intended connections between them shown by 
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Fig. 1 
Three separate cells and the result of 

connecting them along the dotted lines 

dotted lines; on the bottom of the figure, the pieces have 
been brought together to form a larger piece. The 
stretching that has taken place has occurred without the 
designer having to plan for it explicitly while considering 
each individual cell. 

Q Facilitating hierarchical design. Even when a single 
designer is involved, the ability to view a layout as a 
hierarchy, with as much information about lower levels 
completely hidden from higher levels, is extremely use- 
ful. In ALl ,  the information about a given level, of the 
hierarchy needed at the level immediately above is 
reduced by the absence of absolute sizes and positions, 
to topological relations among the layout elements of the 
lower level visible to the higher one. 

• Reducing the life cycle cost of layouts. Modifying a lay- 
out to be fabricated on a new process, or to make it con- 
form to a new set of design rules, is currently a costly 
operation. Yet successful designs seem to be more or 
less continuously updated as improved processes become 
available during their lifetime. Fig. 5 (see the end of 
the paper) shows two instances of a simple layout pro- 
duced with ALl. The instances are the result of running 
an ALl  program twice changing exactly four constants in 
the program in between runs (those that specified the 
sizes of power and ground buses).  This type of flexibility 
addresses the problem directly. An ALl  program can be 
written naturally so that all layouts produced by it are 
completely free of design rule violations, no matter what 
the values of the constants used in the programs. There- 
fore the need for costly design rule checking of different 
instances of a layout (see fig. 5) can be avoided. The 
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same ALl  program can also generate layouts using 
different design rules by running it with a new module 
incorporating the new design rules. 

• To avoid the need for expensive, special purpose computing 
equipment. ALl  can be used effectively from a standard 
ASCII terminal in combination with a small plotter 
shared by several designers. All the algorithms used in 
the inner cycle of ALl  require linear time, therefore 
avoiding the need for large mainframes and permitting 
fast turnaround on small layouts. Fur thermore  ALl  
replaces design rule checking by a hierarchical process 
that can be performed separately on the individual pieces 
of the layout. For example,  after checking that each of  
the pieces shown on the top of  fig. 1 is free of design 
rule violatioias, their combination shown on the bot tom 
of the same figure will be guaranteed by ALl  to be free 
of rule violations regardless of the stretch that takes 
place as a consequence of connecting them. ALI in fact 
requires far fewer computing resources than many design 
rule checking programs. 

If one theme is to summarize our approach, it is that 
the VLSI layout task can be profitably thought of  as a pro- 
gramming task, and that much is to be gained by cons- 
ciously attempting to apply knowledge about of program- 
ming to this activity. To use a software metaphor,  we feel 
that ALl  elevates the work of the layout designer from 
absolute machine language programming, to programming 
in a relocatable assembler with subroutines. This not only 
makes the task more pleasant but makes new and more 
powerful tools possible such as loaders, linkers and com- 
pilers. 

The remainder of this paper is devoted to a survey of 
the main features of ALl  and a brief discussion of its 
current implementation. 

2. An  overview of ALl  

The basic principles of  ALl  are quite simple. A lay- 
out is regarded as a collection of  rectangular objects (with 
their sides oriented in the direction of  the axis of  a carte- 
sian coordinate system) and a set of  relations among these 
rectangles. The ALl  user specifies a layout by declaring the 
rectangles (also called boxes) of which it is composed,  and 
stating the relations that hold between them. ALl  then 
generates a minimum area layout that satisfies all the rela- 
tions between boxes specified in the program. For exam- 
ple, fig. 2 shows a trivial ALl  program and the layout it 
produces. This program looks very much like a Pascal pro- 
gram: it consists of a declarative part, followed by an exe- 
cutable part. To declare a box the user specifies its name 
(horizontal or vertical in the example),  and its type, (metal 
for instance). The standard box types correspond to the 
layers of  the physical layout. As the example also shows, 
the ALI user can define structured objects (an array in the 
example).  Fur ther  details on the type structure of ALl  can 
be found in section 3.1. 

The relations between the rectangles that make up a 
layout are specified in ALl  through calls to a small set of  
primitive operations in the executable part. All such opera- 
tions take as arguments boxes and possibly values of  stan- 
dard Pascal types (integers in our example).  In our exam- 
ple above, glueright and xmore are primitive operations. The 
primitive above specifies that its first argument must  appear 
above the second one in the final layout, the primitive 



chip simple; 
const 

hnumber i 10; 
length -- 20; 
width ~ 6; 

boxtype 
h(vpe : array [l..hnumber] of metal; 

vat 
i : integer; 

box 
horizontal : htype; 
vertical : metal; 

begin 
for i : ffi ] to hnumber-] do begin 

above ( horizontal[i], horizontal [i-t-l] ); 
glueright ( horizontal[i], vertical ); 
xmore ( horizontal [i], length ) 

end; 
glueright ( horizontal[hnumber], vertical ); 
xmore (horizontal[hnumber], length ); 
xmore ( vertical, width ) 

end. 

Fig.2 
A simple ALl program and the layout it produces 

3. Main features of the language 

This section describes how ALl appears to its user. 
Its three subsections deal, in turn, with the type structure, 
the primitive operations of the language and the cell mechan- 
ism. Familiarity with the general features of  Pascal will 
help the reader greatly, because ALI has been built on top 
of  Pascal and has inherited most of  its features. We have 
tried however, to make the section as self contained as pos- 
sible without going beyond the scope of  this paper. 

3.1. The type structure of A L l  

As the example of  fig. 2 shows, the objects manipu- 
lated by ALI are declared by stating their name and their 
type. The types of ALl have the same structure as the Pas- 
cal types. Objects can be of  a simple type (boxes) or of  a 
structured type. 

There are a small number of  standard types, all of  
them simple. The standard types correspond to the layers 
of  the process to be used to fabricate the layout (metal, 
po~,  d~ ,  impl, cut and glass in the NMOS version currently 
implemented) plus the type virtual, used to name bounding 
boxes and having no physical reality in the fabricated cir- 
cuit. For example, in the program of fig. 2, the declaration 

vertical : metal 

glueright extends its first argument to the right to intersect 
its second argument, and xmore makes the size of  its first 
arguments along the x axis at least as large as the value of 
the second argument. Note that in this example ALI has 
determined the minimum separation between the horizon- 
tal elements as well as the minimum sizes of  boxes not 
specified by xmore (such as the height of  the horizontal 
metal lines) by accessing a table of design rules. More 
information on the primitive operations of ALl is given in 
section 3.2. 

When an ALI program is executed it generates two 
kinds of information. It produces a set of linear inequali- 
ties involving the coordinates of  the corners of  the boxes in 
the layout as variables. These inequalities, which embody 
the relations between the rectangles of  the layout, are then 
solved to generate the positions and sizes of  the layout ele- 
ments. A brief description of the problems involved in this 
step can be found in section 4.2. The program also pro- 
duces connectivity information about the rectangles in the 
layout. This information is then used by a switch level 
simulator that predicts the behavior of  the circuit as laid 
out. 

In order for the layouts produced by an ALI program 
to be free of  design rules, the program must be complete, in 
that every pair of rectangles in it must be related in some 
way. ALI helps the designer to achieve this goal by gen- 
erating certain relations between layout elements in an 
automatic fashion, and by checking on request whether this 
condition is satisfied. It is however the responsibility of  the 
user to make an ALI program complete in this sense, as 
the computational cost of  doing any sophisticated inference 
(beyond the transitivity of  relations such as above) is prohi- 
bitive. The concept of  completeness of  layout descriptions 
is discussed briefly in section 4.3. 

specifies that the rectangle named vertical on the final lay- 
out should be on the metal layer. ALI will use this infor- 
mation to generate constraints on its minimum size and its 
separation from other layout elements. 

Structured types are of  two flavors: array (a collection 
o f  objects of  the same type) and bus (a collection of  objects 
of heterogeneous types), which correspond directly to the 
array and record structured types of  Pascal. ALI,  like Pas- 
cal, permits the creation of  new user defined types that can 
be either simple or structured. For example, in fig. 2, the 
fragment 

hope : array [1.. hnumber] o f  metal 

inside the boxtype section of  the program, creates a new 
type, hope, each object of  that type made up of  a number 
of  metal rectangles, and the fragment 

horizontal : hope 

inside the box section, creates an object of  that type named 
horizontal. 

In a similar fashion the type declaration 

shtftbus - bus 
phi ,  ph2 : metal; 
vdd : metal; 
data : d i ~  
g n d :  metal 

end 

creates a user defined type, allowing the user to create 
objects which consist of  four metal boxes and a diffusion 
box. The types of  the components of  structured types are 
arbitrary: the user can define arrays of  buses, or buses con- 
taining arrays. 
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The accessing of the elements of arrays and buses is 
done as in Pascal. Thus if x is of  type htype then x[i] refers 
to the i-th element  of x, and if y is of type shiftbus then 
y.data refers to the diffusion box of y. 

Although the structured objects are generally used by 
ALl  simply as a naming mechanism, they are used in con- 
junction with the cell mechanism to automatically generate 
separations between boxes. We will be more precise on 
this point when we describe the cell mechanism of ALl.  

Like Pascal, ALl  is a strongly typed language. The 
primitive operations know about certain type restrictions 
and generate type mismatch errors if operations are 
at tempted with rectangles of inappropriate types. 

3.2. The primitive operations of ALl 
The relations between the rectangles that make up a 

layout are specified in ALl  through calls to a small set of  
primitive operations. All such operations take boxes (i.e., 
objects of simple types) as arguments. In the program of 
fig. 2, above, glueright and xmore are primitive operations. 

It is not important  to know the actual primitive 
operations of  the current version of  ALl  to understand its 
operation. As a gross measure of its complexity we can say 
that the system currently implemented -- based on NMOS 
as described in [13] -- has about twenty primitive opera- 
tions which can be arranged in the following groups: 

1 Separation primitives: such as above in fig. 2, which specify 
that their arguments must  be separated in a certain direc- 
tion in the final layout. The min imum amount  of  space 
between boxes separated in this manner  depends on their 
types and is supplied by ALl  from a table of  design rules. 

2 Connection primitives: such as glueright in fig. 2, to specify 
that their arguments -- which must  be boxes in the same 
layer -- are to be joined in a particular manner.  

3 An inclusion primitive, inside, that specifies that one box 
is to be placed inside another. The min imum distances 
between their edges are again suplied by ALl  from a 
table of design rules. 

4 Minimum size primitives: such as xmore in fig. 2, which 
specify the min imum size of a box along a certain direc- 
tion. Default  min imum sizes are provided by ALl  from 
a design rule table. 

5 Transistor primitives, which create depletion mode and 
pass transistors. 

6 Contact Primitives, which create contacts between layers 
and connect boxes to them. 

Note that no absolute positions or dimensions for 
any rectangle can be specified with these primitives. All 
the rectangles of a layout can be stretched and compressed 
(up to a min imum size) and all can float in any direction. 
If one single characteristic is to be used to separate ALl  
from other layout systems, this must  be it. Most  of the 
power of ALl  and most of the problems one faces in its 
implementat ion are consequences of this fact. 

It is important  to remember  that in order for a layout 
produced by ALl  to be free of  design rule violations, any 
two rectangles in it must  be related in some way. ALl  will 
make no inferences as to the relations between boxes 
beyond those implied by the transitivity of  some primitive 
operations (i.e., if above (a, b) and above (b, c) are stated, 
Paper 29.2 
470 

above (a, c) need not be stated). Although the system gen- 
erates a good number  of relations automatically for the 
user, particularly in connection with the cell mechanism 
(see the next subsection),  there is still a fair amount  of 
drudgery left for the user in making sure that this require- 
ment  is met. A brief discussion on the computational com- 
plexity of the automatic generation of relations between 
boxes can be found in section 4.3. 

3.3. The cell mechan i sm of A L l  

Perhaps the most powerful feature of ALl  is its 
procedure-like mechanism for the definition and creation of 
ceils. A cell is a collection of related rectangles enclosed in 
a rectangular area. Rectangles that are inside a cell are of 
two types: local which are invisible to the outside, or 
parameters which can interact in a simple and well defined 
manner  with rectangles outside the cell. 

A cell is defined by specifying its local objects, its for- 
mal parameters and the relations among all of them. Once 
a cell has been defined, it can be instantiated as many times 
as desired by specifying the actual parameters for the 
instance, much the same way as one invokes a procedure 
or function in a procedural language. The result of instan- 
tiating a cell is to create a brand new copy of the prototype 
described in the cell definition with the formal parameters 
connected to the actual parameters.  

A cell definition is made up of a header, in which the 
formal parameters are described, a set of  local box declara- 
tions and a body in which the relationship between the 
parameters and the local boxes, as well as those among 
local boxes, are specified. 

The header describes the names and types of the 
parameters  and the side of  the bounding rectangle through 
which they come into contact with the inside of  the cell. 
The header of  a cell (using the type sh~ftbus defined in sec- 
tion 3.1) and an instance of  it are shown in fig. 3. 

cell shift (left I : shiftbus; rlRht r : sh~bus ) 

Fig. 3 
The header of a cell definition 

and an instance of the cell 

The body of a cell is very much like an ALl  program. 
For  example,  fig. 4 shows a complete cell definition that 
consists of  a variable number  of  sh~ft cell instances con- 
nected sequentially together with two of  its instances. Note 
that ceils are instantiated by the create statement,  and that 
the parameter  list of the cell contains both box parameters  
and other parameters (an integer in this case) in separate 
lists. 

When  an instance of a cell is created it can be given 
a name, provided that the name given has been declared as 



cell siffftregister ( left inbus : shiftbus; 
right outbus : s/tiftbus ) 

( length : integer ); 
const 

maxlength ~ ...; 
var 

i : integer; 
box 

corm : array [1.. maxlength] of shiftbus; 
begin 

if length = 1 then 
create shift (inbus, outbus ) 

else begin 
create shift ( inbus, conn[1] ); 
for i : ~ 2 to length-1 do 

create shift ( conn[i-1], conn[i] ); 
create shift ( conn[length-lJ, outbus ) 

end 
end; 

[] [] 

gl ~] [] 

Fig. 4 
A cell definition and two instances of it 

ALl design, very much like a well structured program, will 
consist of a hierarchy of cell instances with only a small 
amount  of information at a given level (the parameters of 
the cell instances at that level) being visible from the 
immediately higher level. For example, the layout given in 
fig. 5 consists of four instances of the same cell stacked 
vertically. That cell in turn is defined in terms of three 
other cells, one of them being the cell shown in fig. 1, 
which is in turn defined in terms of three other cells. 

Much of the power and generality of the cell 
mechanism of ALl comes from the absence of absolute 
positions and sizes in a layout specification. In particular, 
two instances of the same cell may have radically different 
sizes depending on the actual parameters used to create 
them, as exemplified by figs. 1, 4 and 5. We believe that 
no cell mechanism can be said to be truly general unless 
the sizes of its arguments and local rectangles, as well as 
their relative distances are determined at the time the cell 
is instantiated. 

There are some penalties involved in the use of the 
cell mechanism. In particular, ALl generates separations 
between cells in a manner which is oblivious to what is 
inside them. That is, the minimum separation between 
cells as far as ALl is concerned, is the maximum of all the 
minimum separations for two layers in the design rules, 
thus creating a certain wastage. We believe that this 
penalty will be generally a small percentage of the total area 
and is well worth the advantages gained by the ability to 
separate cell instances as units. 

Another source of wastage is the fact that cells are 
restricted to be bounded by a rectangle, so the packing of 
cells that have irregular shapes results in a certain amount 
of unused space. 

a rectangle of the standard simple type virtual. The rela- 
tionship of the rectangle bounding a newly created cell to 
any other rectangle of the layout can be specified in the 
standard manner  by calls to the primitive operations. This 
is a vital feature since in many cases (i.e., above, below...) 
stating a relation between two cell instances Cl and c2 
immediately implies a relation between every pair of rec- 
tangles r~ and r2 such that rl is part of c] and r2 part of c 2. 

There are two important ways in which the cell 
mechanism helps in the automatic generation of constraints 
between boxes. When a composite object is passed as a 
parameter to an cell, its component boxes are separated 
from top to bottom (if it is a left or right argument) or 
from left to right (if it is a top or bot tom argument). The 
order of the separation is determined by applying recur- 
sively the following rules: array elements are separated 
ordered by their indices and bus elements in the order in 
which they were specified in the bus declaration. Thus, in 
the example of fig. 4, the components of parameter inbus 
would be separated from top to bottom. The second 
mechanism involves the automatic separation of cells that 
share a parameter; thus in the example of fig. 4, the indivi- 
dual instances of shif t  are separated automatically, since 
adjacent instances share a parameter, 

The cell mechanism gives the ALl user the ability to 
describe layouts in a truly hierarchical manner. A proper 

4. I m p l e m e n t a t i o n  i s s u e s  

The previous section attempted to describe the user 
view of ALl. In this section we discuss briefly some of the 
problems to be solved when trying to go from an ALl pro- 
gram to a layout that satisfies the relations stated in it. We 
first give an overall description of the system as currently 
implemented, then discuss the method used to assign loca- 
tions and sizes to the layout elements and then the concept 
of comple teness  and how it is checked. 

4.1.  O v e r a l l  i m p l e m e n t a t i o n  

The current version of our system has been imple- 
mented as follows. The ALl program is first translated into 
standard Pascal. The resulting Pascal program is then com- 
piled and linked with a precompiled set of procedures that 
implement the primitive operations and the resulting object 
module is then run. The output of this program (gen- 
erated entirely by the primitive operations) is a set of linear 
inequalities and connectivity relations among the layout 
elements. The inequalities are then solved to generate a 
layout or examined by a program that checks their logical 
completeness, and the connectivity information can be 
used to simulate the circuit laid out. 

The design rules are incorporated as a table which is 
used by the primitive operations to produce the linear ine- 
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qualities. Thus changing the design rules for our system 
requires only to change this table and to recompile the 
module of primitive operations. 

4.2. Placement  
As explained above, one of  the results of running an 

ALl program is a set of linear inequalities that embody the 
relations between the layout elements. These inequalities 
are of the following simple form: 

x , -x j>/d  (d>/0) 

The variables are the coordinates of the corners of the 
boxes that form the layout. The constants are either user 
supplied (as in the second argument of the xmore primitive, 
for instance) or extracted from the table of design rules. 

The set of inequalities have to be solved to generate 
placements for the boxes that compose the layout in such a 
way as to minimize its total area. In order to perform this 
task efficiently, we require that no inequality in the set 
involve x and y coordinates. This restriction allows us to 
minimize the total area by minimizing the maximum x and 
y coordinates of any point independently,  at the cost of 
reducing the range of the relations between boxes that we 
can express. We cannot, for instance, handle rectangles 
whose sides are not parallel to the cartesian axes or express 
aspect ratios directly. 

We have now a sufficiently simple problem to be 
solved in time proportional to the number o f  inequalities in our 
set. This is done by a version of the topological sort algo- 
rithm [12] applied to the x and y coordinates indepen- 
dently. This algorithm assign~ to each point the lowest 
possible coordinate while minimizing the largest coordinate 
of all points. 

The form of the inequalities that we allow is rather 
restrictive; it is sufficient however, to describe the design 
rules given in [13] for NMOS, and the efficiency gained in 
return for this simplicity seem to us like a good tradeoff. A 
more subtle consequence of the simplicity of the inequali- 
ties and the method we use to solve them is that undesir- 
able stretching can occur, since we have no way to specify a 
maximum size for any object. This is not a common 
occurrence and the user can in all cases guard against such 
stretching by the careful selection of the primitive opera- 
tions used. It is nonetheless an additional burden placed 
on the designer. 

The choice of an efficient placement algorithm over 
expressibility power and a reduced degree of user conveni- 
ence has been quite conscious in this particular case. We 
feel that every reasonable measure should be taken to keep 
the complexity of the placement problem linear, given that 
the size of layouts is currently large (10 7 rectangles) and is 
growing fast. Widening the class of linear inequalities 
acceptable is almost certain to make linear time solutions 
impossible [2]. 

4.3. Completeness  
ALl programs do not involve absolute sizes or posi- 

tions of boxes, and are, to a great extent , independent  of 
the design rules. These characteristics make it clearly 
desirable to insure that the layout described by a program 
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will be free of design rule violations in a way other than 
checking the finished layout. The following paragraphs 
describe a way of insuring freedom from design rule viola- 
tions in a manner that is independent of the actual design 
rules used to generate the final placement. The description 
may be somewhat cryptic; the interested reader is referred 
to [17] for further details. 

A layout generated by an ALl  program is complete if 
for any two boxes a and b whose types make it possible 
for them to interact in the final layout, either 

(i) a and b are explicitly stated to be in contact by some 
primitive operation, or 

(ii) a and b are, explicitly or through the transitivity of 
primitive relations, stated to be separated in either 
the x or the y direction by a min imum amount  
which depends on their types. 

From this definition, it should be clear that testing 
completeness of a cell instance involves computing the 
transitive closure of a graph. Therefore the complexity of 
the operation will be O(n3),  where n is the number  of 
boxes in the cell. It is thus not feasible to test a large lay- 
out for completeness in a direct way. 

Fortunately,  completeness can be checked hierarchi- 
cally. Let us look only at the objects at the highest level of 
the hierarchy of boxes that defines a layout: those boxes 
(including cell boundaries) defined globally in the ALl  pro- 
gram that generated the layout. If  these objects are related 
in a complete manner  and the cell instances used at this 
level are also complete, then the whole layout is complete. 

Thus one can check the completeness of a layout by 
successively checking cell instances for completeness,  
thereby reducing the complexity of the process to O(m 3) 
where m is the largest number  of boxes local to a cell 
instance in the layout. This process can be reduced 
further,  since not every cell instance needs to be checked. 
For  instance, if a cell is defined by a straight line program, 
checking one instance for completeness suffices, as one 
instance of the cell will be complete if and only if all of its 
instances are. Although the case of cells with branches and 
iteration is not as simple, we have failed to write a single 
cell of which more than three different instances need to be 
checked in order to guarantee its completeness. 

The end result is that completeness has the flavor of 
a static, almost syntactic, property for all non malicious 
examples,  and is much easier to check in a well structured 
layout than design rule freedom by the standard means on 
the final layout. 

Finally, a word about the possibility of taking an 
incomplete layout specification and automatically complet- 
ing it. The general problem of generating an optimal com- 
pletion is NP.Complete ,  but  the simpler version of generat- 
ing any completion for graphs embedded in a grid (as our 
layouts are) seems to be solvable in O(n  2) steps. The 
question of  how much area will be wasted by such a com- 
pletion algorithm will have to wait for some exlberimenta- 
tion, but  there is no question of its usefulness. 



5. Experience with ALl 
The current implementation of ALl has shown the 

soundness of most of our original ideas. The layouts pro- 
duced are relatively dense, the whole process efficient and 
the language easy to learn. Unfortunately, this evidence 
has been gathered mostly from people who had a hand in 
designing or implementing ALl, Perhaps a more reliable 
response to the utility of ALl, ought to wait until a sub- 
stantial number of users not involved in its design can give 
an informed opinion. We hope to obtain this evidence 
before long, since ALl is currently being used in a VLSI 
design course. 

The fact that very little effort was invested in error 
recovery for the sake of expediency in getting a prototype 
running, and that no mechanism for integrating separately 
produced layout pieces was provided make the current sys- 
tem useful mostly for teaching purposes and experimenta- 
tion. It must be emphasized that this is a result of imple- 
mentation choices, and not of any intrinsic limitation on 
the approach we have taken. We expect to implement a 
new system over the summer which can be distributed and 
will be able to handle full sized layouts. 

The problems of the current system which we plan to 
address with the next version are the following: 

(1) Memory requirements. The solving process requires 
very large memory. We will use a different algorithm 
for solving the linear inequalities which is slightly 
less efficient in terms of time but requires an order 
of magnitude fewer memory locations for a typical 
large layout. 

(2) Pascal problems. The current ALl has exactly the 
same type structure as Pascal. The lack of generic 
types and dynamic arrays has made the task of writ- 
ing general purpose tools (PLA generators, 
routers...) inside ALl more difficult than it ought to 
be. The next ALl will have the notions of generic 
types and dynamic arrays. 

(3) Connecting primitives. Certain objects, such as con- 
tacts, are used frequently enough to warrant making 
them part of the language. 

(4) Separate "compilation" facilities. A must for large 
layouts. 
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Fig. 5 
Two ALl layouts generated by programs 

differing only in the values of four constants 
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