
ALl: a Procedural Language to Describe VLSI Layouts

Richard J. Lipton?"
Stephen C. North?"
Robert Sedgewick¢

Jacobo Valdest
Gopalakrishnan V~iayan t

tDepartment of Electrical Engineering and Computer Science
Princeton University

Princeton, NJ

~;Computer Science Department
Brown University

Providence, R1

Abstract: ALl is a procedural language to specify VLSI layouts. It
allows the designer to describe layouts without reference to the
sizes and positions of the layout elements or to the distances
between them. Among the interesting characteristics of ALI are,
that it doesnot need design rule checking, is easy to extend, facili-
tates the division of labor and permits the easy update of a layout
to new design rules or to new processes. The general features of
the language and the experience gained with a preliminary imple-
mentation of it are described.

1. Introduction

This paper describes a procedural language to specify
VLSI layouts. The main feature of this language is that it
allows its user to design layouts at a conceptual level in
which neither sizes nor positions (absolute or relative) of
layout components may be specified. Mostly as a conse-
quence of this, ALl simultaneously (i) makes the layout
task more like programming than editing, (ii) eliminates
the need for design rule checking after the layout is gen-
erated, (iii) permits the creation of easy to use cell libraries
and (iv) provides the designer with the mechanisms to
describe a layout hierarchically so that most of the detail at
one level of the hierarchy is truly hidden from all higher
levels.

The notion of not assigning sizes or positions to any
object in a layout until the complete layout has been
described (similar to the idea of delayed binding in program-
ming languages), sets ALl apart not only from just about
all of the graphics based layout editors we know of ([4],
[7], [8], [14], [181) but also -- with the exception of [15] --
from most of the procedural languages for the layout task
currently in use or recently proposed, whether or not they
include a graphics interface ([11, [5], [6], [9], [10], [11],
[16]).

The issues that we tried to address with ALl are the
following.

• The creation of an open ended tool. Graphics editors tend
to be closed tools in that it is hard to automate the layout
process beyond what the original design of the system
allowed. Procedural languages are generally much better
in this respect. However, the fact that most such
languages require the specification of absolute sizes and
positions, makes the creation of a general purpose library
of cells a hard task, since information about the sizes
and positions of the cell elements that can interact with
the outside world has to be apparent to the user of the
library. The absence of absolute sizes and positions
makes this problem much less severe in ALl. The
extensibility of ALl derives from the fact that it has been
built on top of Pascal, thereby making the full power of
Pascal available to the designer. The generation of tools
to automate the layout process, such as simple routers or
PLA generators, involves writing Pascal routines to solve
the problem that invoke ALl cells to generate the lay-
outs.

• Creating tools that are simple to use and easy to learn. In
particular, we want to avoid tools whose behavior is
unpredictable. Many programs which rely heavily on
sophisticated heuristics respond to small changes in their
input with wholesale changes in their output. We have
maintained a simple correspondence between the text of
an ALl program and the resulting layout so that changes
in the layout can be easily related to changes in the pro-
gram. This decision has simplified the system at the cost
of making it less knowledgeable about MOS circuits.

• Facilitating the division of labor. Large layouts have to be
produced by more than one designer. If the piece pro-
duced by each designer is specified in absolute positions,
serious problems are likely to arise when the different
pieces are put together, unless very tight interaction --
with its attendant penalties in productivity -- is main-
tained throughout the design. ALl allows the partition-
ing of tasks in such a way that the designer of a piece of
the layout does not need to know anything about the
sizes of other pieces of the complete layout. For
instance, on the top of fig. 1 three simple cells are shown
with the intended connections between them shown by

19th Design Automation Conference

0420-0098/82/0000/0467500.75 © 1982 IEEE
Paper 29.2

467

m

i
m

Fig. 1
Three separate cells and the result of

connecting them along the dotted lines

dotted lines; on the bottom of the figure, the pieces have
been brought together to form a larger piece. The
stretching that has taken place has occurred without the
designer having to plan for it explicitly while considering
each individual cell.

Q Facilitating hierarchical design. Even when a single
designer is involved, the ability to view a layout as a
hierarchy, with as much information about lower levels
completely hidden from higher levels, is extremely use-
ful. In ALl , the information about a given level, of the
hierarchy needed at the level immediately above is
reduced by the absence of absolute sizes and positions,
to topological relations among the layout elements of the
lower level visible to the higher one.

• Reducing the life cycle cost of layouts. Modifying a lay-
out to be fabricated on a new process, or to make it con-
form to a new set of design rules, is currently a costly
operation. Yet successful designs seem to be more or
less continuously updated as improved processes become
available during their lifetime. Fig. 5 (see the end of
the paper) shows two instances of a simple layout pro-
duced with ALl. The instances are the result of running
an ALl program twice changing exactly four constants in
the program in between runs (those that specified the
sizes of power and ground buses). This type of flexibility
addresses the problem directly. An ALl program can be
written naturally so that all layouts produced by it are
completely free of design rule violations, no matter what
the values of the constants used in the programs. There-
fore the need for costly design rule checking of different
instances of a layout (see fig. 5) can be avoided. The

Paper 29.2
468

same ALl program can also generate layouts using
different design rules by running it with a new module
incorporating the new design rules.

• To avoid the need for expensive, special purpose computing
equipment. ALl can be used effectively from a standard
ASCII terminal in combination with a small plotter
shared by several designers. All the algorithms used in
the inner cycle of ALl require linear time, therefore
avoiding the need for large mainframes and permitting
fast turnaround on small layouts. Fur thermore ALl
replaces design rule checking by a hierarchical process
that can be performed separately on the individual pieces
of the layout. For example, after checking that each of
the pieces shown on the top of fig. 1 is free of design
rule violatioias, their combination shown on the bot tom
of the same figure will be guaranteed by ALl to be free
of rule violations regardless of the stretch that takes
place as a consequence of connecting them. ALI in fact
requires far fewer computing resources than many design
rule checking programs.

If one theme is to summarize our approach, it is that
the VLSI layout task can be profitably thought of as a pro-
gramming task, and that much is to be gained by cons-
ciously attempting to apply knowledge about of program-
ming to this activity. To use a software metaphor, we feel
that ALl elevates the work of the layout designer from
absolute machine language programming, to programming
in a relocatable assembler with subroutines. This not only
makes the task more pleasant but makes new and more
powerful tools possible such as loaders, linkers and com-
pilers.

The remainder of this paper is devoted to a survey of
the main features of ALl and a brief discussion of its
current implementation.

2. An overview of ALl

The basic principles of ALl are quite simple. A lay-
out is regarded as a collection of rectangular objects (with
their sides oriented in the direction of the axis of a carte-
sian coordinate system) and a set of relations among these
rectangles. The ALl user specifies a layout by declaring the
rectangles (also called boxes) of which it is composed, and
stating the relations that hold between them. ALl then
generates a minimum area layout that satisfies all the rela-
tions between boxes specified in the program. For exam-
ple, fig. 2 shows a trivial ALl program and the layout it
produces. This program looks very much like a Pascal pro-
gram: it consists of a declarative part, followed by an exe-
cutable part. To declare a box the user specifies its name
(horizontal or vertical in the example), and its type, (metal
for instance). The standard box types correspond to the
layers of the physical layout. As the example also shows,
the ALI user can define structured objects (an array in the
example). Fur ther details on the type structure of ALl can
be found in section 3.1.

The relations between the rectangles that make up a
layout are specified in ALl through calls to a small set of
primitive operations in the executable part. All such opera-
tions take as arguments boxes and possibly values of stan-
dard Pascal types (integers in our example). In our exam-
ple above, glueright and xmore are primitive operations. The
primitive above specifies that its first argument must appear
above the second one in the final layout, the primitive

chip simple;
const

hnumber i 10;
length -- 20;
width ~ 6;

boxtype
h(vpe : array [l..hnumber] of metal;

vat
i : integer;

box
horizontal : htype;
vertical : metal;

begin
for i : ffi] to hnumber-] do begin

above (horizontal[i], horizontal [i-t-l]);
glueright (horizontal[i], vertical);
xmore (horizontal [i], length)

end;
glueright (horizontal[hnumber], vertical);
xmore (horizontal[hnumber], length);
xmore (vertical, width)

end.

Fig.2
A simple ALl program and the layout it produces

3. Main features of the language

This section describes how ALl appears to its user.
Its three subsections deal, in turn, with the type structure,
the primitive operations of the language and the cell mechan-
ism. Familiarity with the general features of Pascal will
help the reader greatly, because ALI has been built on top
of Pascal and has inherited most of its features. We have
tried however, to make the section as self contained as pos-
sible without going beyond the scope of this paper.

3.1. The type structure of A L l

As the example of fig. 2 shows, the objects manipu-
lated by ALI are declared by stating their name and their
type. The types of ALl have the same structure as the Pas-
cal types. Objects can be of a simple type (boxes) or of a
structured type.

There are a small number of standard types, all of
them simple. The standard types correspond to the layers
of the process to be used to fabricate the layout (metal,
po~, d~ , impl, cut and glass in the NMOS version currently
implemented) plus the type virtual, used to name bounding
boxes and having no physical reality in the fabricated cir-
cuit. For example, in the program of fig. 2, the declaration

vertical : metal

glueright extends its first argument to the right to intersect
its second argument, and xmore makes the size of its first
arguments along the x axis at least as large as the value of
the second argument. Note that in this example ALI has
determined the minimum separation between the horizon-
tal elements as well as the minimum sizes of boxes not
specified by xmore (such as the height of the horizontal
metal lines) by accessing a table of design rules. More
information on the primitive operations of ALl is given in
section 3.2.

When an ALI program is executed it generates two
kinds of information. It produces a set of linear inequali-
ties involving the coordinates of the corners of the boxes in
the layout as variables. These inequalities, which embody
the relations between the rectangles of the layout, are then
solved to generate the positions and sizes of the layout ele-
ments. A brief description of the problems involved in this
step can be found in section 4.2. The program also pro-
duces connectivity information about the rectangles in the
layout. This information is then used by a switch level
simulator that predicts the behavior of the circuit as laid
out.

In order for the layouts produced by an ALI program
to be free of design rules, the program must be complete, in
that every pair of rectangles in it must be related in some
way. ALI helps the designer to achieve this goal by gen-
erating certain relations between layout elements in an
automatic fashion, and by checking on request whether this
condition is satisfied. It is however the responsibility of the
user to make an ALI program complete in this sense, as
the computational cost of doing any sophisticated inference
(beyond the transitivity of relations such as above) is prohi-
bitive. The concept of completeness of layout descriptions
is discussed briefly in section 4.3.

specifies that the rectangle named vertical on the final lay-
out should be on the metal layer. ALI will use this infor-
mation to generate constraints on its minimum size and its
separation from other layout elements.

Structured types are of two flavors: array (a collection
o f objects of the same type) and bus (a collection of objects
of heterogeneous types), which correspond directly to the
array and record structured types of Pascal. ALI, like Pas-
cal, permits the creation of new user defined types that can
be either simple or structured. For example, in fig. 2, the
fragment

hope : array [1.. hnumber] o f metal

inside the boxtype section of the program, creates a new
type, hope, each object of that type made up of a number
of metal rectangles, and the fragment

horizontal : hope

inside the box section, creates an object of that type named
horizontal.

In a similar fashion the type declaration

shtftbus - bus
phi , ph2 : metal;
vdd : metal;
data : d i ~
g n d : metal

end

creates a user defined type, allowing the user to create
objects which consist of four metal boxes and a diffusion
box. The types of the components of structured types are
arbitrary: the user can define arrays of buses, or buses con-
taining arrays.

Paper 29.2
469

The accessing of the elements of arrays and buses is
done as in Pascal. Thus if x is of type htype then x[i] refers
to the i-th element of x, and if y is of type shiftbus then
y.data refers to the diffusion box of y.

Although the structured objects are generally used by
ALl simply as a naming mechanism, they are used in con-
junction with the cell mechanism to automatically generate
separations between boxes. We will be more precise on
this point when we describe the cell mechanism of ALl.

Like Pascal, ALl is a strongly typed language. The
primitive operations know about certain type restrictions
and generate type mismatch errors if operations are
at tempted with rectangles of inappropriate types.

3.2. The primitive operations of ALl
The relations between the rectangles that make up a

layout are specified in ALl through calls to a small set of
primitive operations. All such operations take boxes (i.e.,
objects of simple types) as arguments. In the program of
fig. 2, above, glueright and xmore are primitive operations.

It is not important to know the actual primitive
operations of the current version of ALl to understand its
operation. As a gross measure of its complexity we can say
that the system currently implemented -- based on NMOS
as described in [13] -- has about twenty primitive opera-
tions which can be arranged in the following groups:

1 Separation primitives: such as above in fig. 2, which specify
that their arguments must be separated in a certain direc-
tion in the final layout. The min imum amount of space
between boxes separated in this manner depends on their
types and is supplied by ALl from a table of design rules.

2 Connection primitives: such as glueright in fig. 2, to specify
that their arguments -- which must be boxes in the same
layer -- are to be joined in a particular manner.

3 An inclusion primitive, inside, that specifies that one box
is to be placed inside another. The min imum distances
between their edges are again suplied by ALl from a
table of design rules.

4 Minimum size primitives: such as xmore in fig. 2, which
specify the min imum size of a box along a certain direc-
tion. Default min imum sizes are provided by ALl from
a design rule table.

5 Transistor primitives, which create depletion mode and
pass transistors.

6 Contact Primitives, which create contacts between layers
and connect boxes to them.

Note that no absolute positions or dimensions for
any rectangle can be specified with these primitives. All
the rectangles of a layout can be stretched and compressed
(up to a min imum size) and all can float in any direction.
If one single characteristic is to be used to separate ALl
from other layout systems, this must be it. Most of the
power of ALl and most of the problems one faces in its
implementat ion are consequences of this fact.

It is important to remember that in order for a layout
produced by ALl to be free of design rule violations, any
two rectangles in it must be related in some way. ALl will
make no inferences as to the relations between boxes
beyond those implied by the transitivity of some primitive
operations (i.e., if above (a, b) and above (b, c) are stated,
Paper 29.2
470

above (a, c) need not be stated). Although the system gen-
erates a good number of relations automatically for the
user, particularly in connection with the cell mechanism
(see the next subsection), there is still a fair amount of
drudgery left for the user in making sure that this require-
ment is met. A brief discussion on the computational com-
plexity of the automatic generation of relations between
boxes can be found in section 4.3.

3.3. The cell mechan i sm of A L l

Perhaps the most powerful feature of ALl is its
procedure-like mechanism for the definition and creation of
ceils. A cell is a collection of related rectangles enclosed in
a rectangular area. Rectangles that are inside a cell are of
two types: local which are invisible to the outside, or
parameters which can interact in a simple and well defined
manner with rectangles outside the cell.

A cell is defined by specifying its local objects, its for-
mal parameters and the relations among all of them. Once
a cell has been defined, it can be instantiated as many times
as desired by specifying the actual parameters for the
instance, much the same way as one invokes a procedure
or function in a procedural language. The result of instan-
tiating a cell is to create a brand new copy of the prototype
described in the cell definition with the formal parameters
connected to the actual parameters.

A cell definition is made up of a header, in which the
formal parameters are described, a set of local box declara-
tions and a body in which the relationship between the
parameters and the local boxes, as well as those among
local boxes, are specified.

The header describes the names and types of the
parameters and the side of the bounding rectangle through
which they come into contact with the inside of the cell.
The header of a cell (using the type sh~ftbus defined in sec-
tion 3.1) and an instance of it are shown in fig. 3.

cell shift (left I : shiftbus; rlRht r : sh~bus)

Fig. 3
The header of a cell definition

and an instance of the cell

The body of a cell is very much like an ALl program.
For example, fig. 4 shows a complete cell definition that
consists of a variable number of sh~ft cell instances con-
nected sequentially together with two of its instances. Note
that ceils are instantiated by the create statement, and that
the parameter list of the cell contains both box parameters
and other parameters (an integer in this case) in separate
lists.

When an instance of a cell is created it can be given
a name, provided that the name given has been declared as

cell siffftregister (left inbus : shiftbus;
right outbus : s/tiftbus)

(length : integer);
const

maxlength ~ ...;
var

i : integer;
box

corm : array [1.. maxlength] of shiftbus;
begin

if length = 1 then
create shift (inbus, outbus)

else begin
create shift (inbus, conn[1]);
for i : ~ 2 to length-1 do

create shift (conn[i-1], conn[i]);
create shift (conn[length-lJ, outbus)

end
end;

[] []

gl ~] []

Fig. 4
A cell definition and two instances of it

ALl design, very much like a well structured program, will
consist of a hierarchy of cell instances with only a small
amount of information at a given level (the parameters of
the cell instances at that level) being visible from the
immediately higher level. For example, the layout given in
fig. 5 consists of four instances of the same cell stacked
vertically. That cell in turn is defined in terms of three
other cells, one of them being the cell shown in fig. 1,
which is in turn defined in terms of three other cells.

Much of the power and generality of the cell
mechanism of ALl comes from the absence of absolute
positions and sizes in a layout specification. In particular,
two instances of the same cell may have radically different
sizes depending on the actual parameters used to create
them, as exemplified by figs. 1, 4 and 5. We believe that
no cell mechanism can be said to be truly general unless
the sizes of its arguments and local rectangles, as well as
their relative distances are determined at the time the cell
is instantiated.

There are some penalties involved in the use of the
cell mechanism. In particular, ALl generates separations
between cells in a manner which is oblivious to what is
inside them. That is, the minimum separation between
cells as far as ALl is concerned, is the maximum of all the
minimum separations for two layers in the design rules,
thus creating a certain wastage. We believe that this
penalty will be generally a small percentage of the total area
and is well worth the advantages gained by the ability to
separate cell instances as units.

Another source of wastage is the fact that cells are
restricted to be bounded by a rectangle, so the packing of
cells that have irregular shapes results in a certain amount
of unused space.

a rectangle of the standard simple type virtual. The rela-
tionship of the rectangle bounding a newly created cell to
any other rectangle of the layout can be specified in the
standard manner by calls to the primitive operations. This
is a vital feature since in many cases (i.e., above, below...)
stating a relation between two cell instances Cl and c2
immediately implies a relation between every pair of rec-
tangles r~ and r2 such that rl is part of c] and r2 part of c 2.

There are two important ways in which the cell
mechanism helps in the automatic generation of constraints
between boxes. When a composite object is passed as a
parameter to an cell, its component boxes are separated
from top to bottom (if it is a left or right argument) or
from left to right (if it is a top or bot tom argument). The
order of the separation is determined by applying recur-
sively the following rules: array elements are separated
ordered by their indices and bus elements in the order in
which they were specified in the bus declaration. Thus, in
the example of fig. 4, the components of parameter inbus
would be separated from top to bottom. The second
mechanism involves the automatic separation of cells that
share a parameter; thus in the example of fig. 4, the indivi-
dual instances of shif t are separated automatically, since
adjacent instances share a parameter,

The cell mechanism gives the ALl user the ability to
describe layouts in a truly hierarchical manner. A proper

4. I m p l e m e n t a t i o n i s s u e s

The previous section attempted to describe the user
view of ALl. In this section we discuss briefly some of the
problems to be solved when trying to go from an ALl pro-
gram to a layout that satisfies the relations stated in it. We
first give an overall description of the system as currently
implemented, then discuss the method used to assign loca-
tions and sizes to the layout elements and then the concept
of comple teness and how it is checked.

4.1. O v e r a l l i m p l e m e n t a t i o n

The current version of our system has been imple-
mented as follows. The ALl program is first translated into
standard Pascal. The resulting Pascal program is then com-
piled and linked with a precompiled set of procedures that
implement the primitive operations and the resulting object
module is then run. The output of this program (gen-
erated entirely by the primitive operations) is a set of linear
inequalities and connectivity relations among the layout
elements. The inequalities are then solved to generate a
layout or examined by a program that checks their logical
completeness, and the connectivity information can be
used to simulate the circuit laid out.

The design rules are incorporated as a table which is
used by the primitive operations to produce the linear ine-

Paper 29.2
471

qualities. Thus changing the design rules for our system
requires only to change this table and to recompile the
module of primitive operations.

4.2. Placement
As explained above, one of the results of running an

ALl program is a set of linear inequalities that embody the
relations between the layout elements. These inequalities
are of the following simple form:

x , -x j>/d (d>/0)

The variables are the coordinates of the corners of the
boxes that form the layout. The constants are either user
supplied (as in the second argument of the xmore primitive,
for instance) or extracted from the table of design rules.

The set of inequalities have to be solved to generate
placements for the boxes that compose the layout in such a
way as to minimize its total area. In order to perform this
task efficiently, we require that no inequality in the set
involve x and y coordinates. This restriction allows us to
minimize the total area by minimizing the maximum x and
y coordinates of any point independently, at the cost of
reducing the range of the relations between boxes that we
can express. We cannot, for instance, handle rectangles
whose sides are not parallel to the cartesian axes or express
aspect ratios directly.

We have now a sufficiently simple problem to be
solved in time proportional to the number o f inequalities in our
set. This is done by a version of the topological sort algo-
rithm [12] applied to the x and y coordinates indepen-
dently. This algorithm assign~ to each point the lowest
possible coordinate while minimizing the largest coordinate
of all points.

The form of the inequalities that we allow is rather
restrictive; it is sufficient however, to describe the design
rules given in [13] for NMOS, and the efficiency gained in
return for this simplicity seem to us like a good tradeoff. A
more subtle consequence of the simplicity of the inequali-
ties and the method we use to solve them is that undesir-
able stretching can occur, since we have no way to specify a
maximum size for any object. This is not a common
occurrence and the user can in all cases guard against such
stretching by the careful selection of the primitive opera-
tions used. It is nonetheless an additional burden placed
on the designer.

The choice of an efficient placement algorithm over
expressibility power and a reduced degree of user conveni-
ence has been quite conscious in this particular case. We
feel that every reasonable measure should be taken to keep
the complexity of the placement problem linear, given that
the size of layouts is currently large (10 7 rectangles) and is
growing fast. Widening the class of linear inequalities
acceptable is almost certain to make linear time solutions
impossible [2].

4.3. Completeness
ALl programs do not involve absolute sizes or posi-

tions of boxes, and are, to a great extent , independent of
the design rules. These characteristics make it clearly
desirable to insure that the layout described by a program

Paper 29.2
472

will be free of design rule violations in a way other than
checking the finished layout. The following paragraphs
describe a way of insuring freedom from design rule viola-
tions in a manner that is independent of the actual design
rules used to generate the final placement. The description
may be somewhat cryptic; the interested reader is referred
to [17] for further details.

A layout generated by an ALl program is complete if
for any two boxes a and b whose types make it possible
for them to interact in the final layout, either

(i) a and b are explicitly stated to be in contact by some
primitive operation, or

(ii) a and b are, explicitly or through the transitivity of
primitive relations, stated to be separated in either
the x or the y direction by a min imum amount
which depends on their types.

From this definition, it should be clear that testing
completeness of a cell instance involves computing the
transitive closure of a graph. Therefore the complexity of
the operation will be O(n3), where n is the number of
boxes in the cell. It is thus not feasible to test a large lay-
out for completeness in a direct way.

Fortunately, completeness can be checked hierarchi-
cally. Let us look only at the objects at the highest level of
the hierarchy of boxes that defines a layout: those boxes
(including cell boundaries) defined globally in the ALl pro-
gram that generated the layout. If these objects are related
in a complete manner and the cell instances used at this
level are also complete, then the whole layout is complete.

Thus one can check the completeness of a layout by
successively checking cell instances for completeness,
thereby reducing the complexity of the process to O(m 3)
where m is the largest number of boxes local to a cell
instance in the layout. This process can be reduced
further, since not every cell instance needs to be checked.
For instance, if a cell is defined by a straight line program,
checking one instance for completeness suffices, as one
instance of the cell will be complete if and only if all of its
instances are. Although the case of cells with branches and
iteration is not as simple, we have failed to write a single
cell of which more than three different instances need to be
checked in order to guarantee its completeness.

The end result is that completeness has the flavor of
a static, almost syntactic, property for all non malicious
examples, and is much easier to check in a well structured
layout than design rule freedom by the standard means on
the final layout.

Finally, a word about the possibility of taking an
incomplete layout specification and automatically complet-
ing it. The general problem of generating an optimal com-
pletion is NP.Complete , but the simpler version of generat-
ing any completion for graphs embedded in a grid (as our
layouts are) seems to be solvable in O(n 2) steps. The
question of how much area will be wasted by such a com-
pletion algorithm will have to wait for some exlberimenta-
tion, but there is no question of its usefulness.

5. Experience with ALl
The current implementation of ALl has shown the

soundness of most of our original ideas. The layouts pro-
duced are relatively dense, the whole process efficient and
the language easy to learn. Unfortunately, this evidence
has been gathered mostly from people who had a hand in
designing or implementing ALl, Perhaps a more reliable
response to the utility of ALl, ought to wait until a sub-
stantial number of users not involved in its design can give
an informed opinion. We hope to obtain this evidence
before long, since ALl is currently being used in a VLSI
design course.

The fact that very little effort was invested in error
recovery for the sake of expediency in getting a prototype
running, and that no mechanism for integrating separately
produced layout pieces was provided make the current sys-
tem useful mostly for teaching purposes and experimenta-
tion. It must be emphasized that this is a result of imple-
mentation choices, and not of any intrinsic limitation on
the approach we have taken. We expect to implement a
new system over the summer which can be distributed and
will be able to handle full sized layouts.

The problems of the current system which we plan to
address with the next version are the following:

(1) Memory requirements. The solving process requires
very large memory. We will use a different algorithm
for solving the linear inequalities which is slightly
less efficient in terms of time but requires an order
of magnitude fewer memory locations for a typical
large layout.

(2) Pascal problems. The current ALl has exactly the
same type structure as Pascal. The lack of generic
types and dynamic arrays has made the task of writ-
ing general purpose tools (PLA generators,
routers...) inside ALl more difficult than it ought to
be. The next ALl will have the notions of generic
types and dynamic arrays.

(3) Connecting primitives. Certain objects, such as con-
tacts, are used frequently enough to warrant making
them part of the language.

(4) Separate "compilation" facilities. A must for large
layouts.

Acknowledgements
We would like to thank Jose Mata, Vijaya

Ramachandran and Jerry Spinrad for their help in the
implementation of ALl and the simulator, and Jean Vuille-
min and Scot Drysdale for their comments. We also want
to thank Bruce Arden for his advice and support.

The work of Richard Lipton has been partially sup-
ported by grants MCS8023-806 from NSF and N00014-81-
K-0681 from ONR. Stephen C. North is being supported
by Bell Laboratories. Robert Sedgewick's work was par-
tially supported by NSF grant MCS80-17579. The work of
Jacobo Valdes has been supported by ONR grant N00014-
81-K-0681.

6. References
[1] Ackland, B., Weste, N., "A pragmatic approach to

topological symbolic IC design, design," VLSI'81, pp
117-129, John P. Gray ed., Academic Press.

[2] Apsvall, B. and Shiloach Y., "A Polynomial Time
Algorithm for Solving Systems of Linear Inequalities
with Two variables per Inequality", pp 205-217, Proc.
of the twentieth IEEE Symp. on Foundations of Com-
puter Science, 1979.

[3] Baker, C. M., "Artwork Analysis Tools for VLSI
Circuits," M. S. Thesis, MIT, EECS Department,
June, 1980.

[4] Batali, J., Mayle, N., Shrobe, H., Sussman, G.,
Weise, D., "The DPL/Daedalus Design Environ-
ment," VLSI'81, pp 183-192, John P. Gray ed.,
Academic Press.

[5] Davis, T., Clark, J., "SILT: A VLSI Design
Language (Preliminary Draft)", unpublished
manuscript, Digital Systems Laboratory, Stanford
University.

[6] Eichemberger, P., "Lava: an IC layout language",
unpublished manuscript, Electronics Research
Laboratory, Stanford University.

[7] Fairbairn, D., Rowson, "Icarus: an Interactive
Integrated Circuit Layout Program", pp 188-192,
15th Design Automation Conference Proceedings, 1978.

[8] Franco, D., Reed, L., "The Cell Design System", pp
240-247, 18th Design Automation Conference Proceed-
ings, 1981.

[9] Holt, D., Shapiro, S., "BOLT -- A Block Oriented
Design Specification Language", pp 276-279, 18th
Design Automation Conference Proceedings, 1981.

[10] Johannsen, D., "Bristle-Blocks", pp 310-313, 16th
Design Automation Conference Proceedings, 1979.

[11] Johnson, S. C., "The LSI Design Language i",
unpublished manuscript.

[12] Knuth, D. E., The Art of Computer Programming, vol.
1, FundamentalAIgorithms, Addison-Wesley, 1971.

[13] Mead, C., Conway, L., Introduction to VLSI Systems,
Addison-Wesley, 1980.

[14] Mosleller, R.C., "REST: A leaf cell design system,"
VLSI'81, pp 163-172, John P. Gray ed., Academic
Press.

[151 Sastry, S., Klein, S., "PLATES: A Metric Free VLSI
Layout Language", pp 165-169, Proceedings of the
1982 Conference on Advanced Research in VLS1, 1982.

[16] Trimberger, S., "Combining Graphics and a Layout
Language in a Simple Interactive System," 18th
Design Automation Conference Proceedings, 1981.

[17] Vijayan, G., "Completeness of VLSI Layouts'"
Princeton University, Department of Electrical
Engineering and Computer Science Technical Report
(in preparation).

[18] Williams, J., "STICKS, A Graphical Compiler for
High Level LSI design", pp 289-295, Proceedings of
the 1978 NCC, 1978.

Paper 29.2
473

Fig. 5
Two ALl layouts generated by programs

differing only in the values of four constants

Paper 29.3
474

