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1, Introduction 

Increased use of Very Large Scale Integration (VLSI) 
for the fabrication of digital circuits has led to increased 
interest in complexity results on the inherent VLSI difficulty 
of  various problems. Lower bounds have been obtained for 
problems such as integer multiplication [1,2], matrix multipli- 
cation [7], sorting [8], and discrete Fourier transform [9], all 
within VLSI models similar to one originally developed by 
Thompson [8,9]. The lower  bound results all pertain to a 
space-time trade-off measure that arises naturally within this 
model, in particular, for all the problems listed above, the 
results show that if A is the area used by a VLS! circuit to 
compute one of the n-input, n-output functions listed above, 
and T is the time required for the computation, then the 
bound 

A T  2 > l'~ (n 2) 

must hold. Vuillemin [10] has recently unified most of these 
results by showing that they share a simple mathematical 
structure. In this paper, we extend the model and the class of 
functions for which non-trivial bounds can be proved. 

In Section 2, we give a more general model than has 
been proposed previously. In Section 3 we show how to 
reduce the derivation of lower bounds within the model to a 
problem in distributed computing similar to that proposed by 
Yao t i l l  it is interesting to note that this problem can be 
solved by a "'crossing sequence"  technique similar to that 
commonly used to prove lower bounds for oneqape Turing 
machines [4]. 

In Section 4, we consider lower bounds for a number 
of  predicates: n-input, I-output functions (as contrasted with 
the n-input, n-output 
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functions which have been studied previously). The tech- 
niques of  Section 3 make it possible to prove that 
AT 2 > N (n 2) for a variety of  predicates. Furthermore, we 
show that union, composition, and alphabet change can 
transform "'easy" functions into "'hard" ones, which makes 
the VLSI computational model quite different from classical 
ones where these operations are easy. 

In Section 5, we show that previous lower bound 
results (for n-input, n-output functions) also apply even 
when the model is extended to allow nondeterminism, ran- 
domness, and multiple arrivials. The predicates of  Section 4 
are more sensitive: some are significantly easier, others are 
not affected by these extensions (but the lower bounds are 
more difficult to prove.) We also consider the affects of  other 
variations in the model. 

Finally, the full details of the results presented here 
will appear in the final version of this paper. 

2. The Model 

in this section, we will present the basic model  of VLSI 
computation used in this paper. Since we are interested in 
proving lower bounds,  we will allow the model great general- 
ity: it allows features which certainly are not even contem- 
plated in the near future. But the generality of  the model 
allows it to be specialized to incorporate the particular 
features of a much wider range of actual systems than allowed 
by previous models,  and all the old lower bound still hold. In 
its generality, the model is in many ways simpler than previ- 
ous ones, and admits cleaner lower bound proofs. 

There are three main components:  the boolean function 
f which is to be computed,  a synchronous circuit C that com- 
putes f ,  and a VLSI layout V that realizes C. 

We assume that C is a network of wires attached to 
each other and to gates. The gates of C can be " a n d " ,  " 'or" ,  
or " 'not"  gates of arbitrary fan-in and fan-out, or they can 
implement more general decomposable functions with arbitrary 
numbers  of  inputs and outputs. (These possibilities are dis- 
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cussed further in the next section.) Such a circuit, which may 
have feedback, computes f provided there is an input-output 
schedule that decides how the inputs and outputs of f are 
mapped onto the input and output wires of C. In all previous 
work it has always been assumed that the input-output 
schedule satisfies: 

(1) each input arrives once and each output leaves once; 

(2) when and where this takes place is data independent. 

We will, for now, assume (1) but we will not assume (2). 
The motivation for (1) is that otherwise we would be allowing 
the circuit " f r e e "  memory. However, (2) is an unnecessary 
restriction, and we will allow quite a larger class of input- 
output schedules. 

Definition: An input-output schedule is where-oblivious 
(when-oblivious) provided where (when) the inputs arrive and 
the outputs leave is independent of the values of the data. 

Thus, all previous models consider only when and 
where oblivious input.output schedules. Note, of  the two 
types of schedules the first is the more common: often it is 
natural to assume that where an input goes is fixed; however,  
when it arrives may depend on a variety of things. For exam- 
ple, consider a micro- processor. As it fetches data f rom'a  
RAM, where the inputs go is fixed and hence is data indepen- 
dent, but when inputs arrive depend on what addresses the 
micro-processor generates and when it generates them. 

These new types of input-output schedules are not just 
of theoretical interest. Recently, Lipton and Valdes have 
proved: 

Theorem: There is a where-oblivious VLSI layout for the 
transitive closure of graphs that has AT 2 -  0(n 3 2 . ~ )  (any 
~ > 0 ) .  

h is an interesting open question whether or not such a 
layout can be made when-oblivious. 

The crucial part of  the model has to do with the 
assumptions imposed on the VLSI layout, so we wil l give a 
more formal definit ion: 

Definition: A VLSI layout Y is a O,,iZt,lJ2)-Iayout of the 
sequential circuit C if there is a map that assigns to each gate 
g (wire m') of C a closed connected region of the plane g" 
(w ' )  so that 

(1) i f  w is an input or output wire of gate g, then g" inter- 
sects w ' :  and 

(2) For each A x ,~ square S o f  the plane, 

(a) at most P.t gates g map to regions g" that inter- 
sect S, and 

(b) at most/~2 wires w map to regions w" that inter- 
sect S 

We further assume that all of  the g" and w" lie in a convex 
region R,  the region of the layout. 

Note that no assumption is made about the location of 
circuit inputs or outputs, or even how they are assigned to 
gates (except that the assignment must satisfy the schedule). 
Different inputs could be assigned to the same gates, at 
different times. For convenience we will call gates in the lay- 
out which have inputs or outputs that correspond to inputs or 
outputs in the circuit input or outpul gates. 'We will assume 
thai circuits use all their inputs, and the parameter which 
describes the " s i ze"  of the circuit is n, the number of  inputs. 
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As mentioned above, this definit ion is quite general 
and allows VLSI layouts that could never be fabricated: but 
the generality of the definit ion only reinforces the lower 
bounds thai we wil l prove. Indeed, it is the restrictions in the 
definit ion that need to be examined carefully. 

Clearly, it is reasonable to assume thai gates and wires 
are connected regions: otherwise they could not carry electri- 
cal charge. The assumption that they are closed regions is 
purely a mathematical convenience with no practical 
ramifications. The assumption that R is convex could be 
relaxed somewhat, but it is a very modest restriction (VLSI 
layouts are always rectangles). 

Condit ion ( l )  simply forces electrical connections to 
correspond to topological connections. Note carefully, h o t -  
ever, that the converse is not true: g"  and w" can intersect 
without any connection between g and w in C. This is of 
course possible in actual layouts, because multiple layers are 
allowed. We have chosen not to explici t ly model which laver 
a gate or wire in on: gates and wires can be mapped to inter- 
secting regions yet not be connected. The lower bound 
results can be proved even within this much simplified model. 

Condi t ion (2) is a direct result of  the l imits of VLSI 
fabrication. Think of  the ,~ x ~ square S as a " 'w indow"  
onto the plane. This condit ion ensures that in any such win- 
dow we can only " 'see" a fixed number of gates and wires. 
This has two implications. First, it l imits the number of 
layers used: No more than /~] + lu 2 layers can be used at the 
same point, because i f  they were, more than/~t + ~.~ gates or 
wires would intersect at that point, violating either (2al or 
(2b). Second, condition (2l gives a bound on how t ightb 
gates and wires can be packed. Note, however, there is no 
explicit bound on the size of any individual gate or wire. 
Again, this is unreasonable, but it only makes our I o te r  
bounds that much stronger. 

As mentioned above, it is straightforward 1o specialize 
this model to less general models. For example, i f  ~e take 
P-t " I and /.L 2 - 2, only allow gates to be on lattice points. 
and only allow wires to run along a lattice, our model 
becomes essentially the same as previous models. But b.~ 
el iminating virtual ly all such geometric restrictions and a l l o t -  
ing unlimited fan-in and fan-out, we are able to model a 
much richer class of actual VLSI layouts. 

We are almost read)' to begin to prove Io~er bounds, 
on the VLSI complexity of functions, but we must first define 
our complexity measure. Let C be a circuit that computes ! 
in time T and let I / be a VLSI layout with area A that real- 
izes C: Then central to all 1hat follows is the assumption: 

A and T measure the complexi ty of  f 

The justif ication for A is simple. In an)' of  the current 
VLSI techniques the area of  a VLSI layout is a critical param- 
eter. As the area increases the dit~culty in fabricating the la.v. 
out also increases; hence, it is natural to require that .4 bc 
kept as small as possible. Just as the number of  gates of (" 
was a reasonable cost measure in classic models of  complex- 
ity, the area A now plays that role. 

The justification for T is more complex. The VLSI la.~- 
out I '  takes time ~" x T to compute .I where r is the time 
required for one clock period of  the sequential circuit ( .  
What is somewhat surprising is that we can assume that 7 is 
independent of the layout I" and only depends on the given 
technology, The key is that the time it takes to send a signal 
down a wire is not l imited by the speed of  light but by the 



parasitic capacitance of the wire. By increasing the size of the 
dr iving gale it is possible to keep T independent of the layout 
and only effect the area by a constant factor. One further 
comment is in order: for lower bounds clearly the use of T is 
justified, i1 is only when we turn to upper bounds that we 
must carefully check the validity of  T as a measure of  speed. 
(See [2,8].) 

As modeled here the central problem facing a VLSI 
designer is as follows: 

Given a boolean function f ;  

Find a sequential circuit C that computes f in t ime T and 
a VLSI layout of  (" with area .4 so that ,4 and T are 
" 'm in imized"  

Thus the key problem facing the VLSI designer is to 
minimize both the time and area of the VLSI layout. How- 
ever, in all but the most tr ivial cases a designer is unlikely to 
be able to minimize both simultaneously. The designer wil l  
therefore have to minimize some derived function u(.4,T) :  
here u ( A , T )  is the complexity of a VLSI layout with area .4 
and time T. There are many possible such functions. 

Examples. 

!. u(.4,T)----1. This corresponds to a simple situation where 
any implementation is useful. Perhaps it models the way a 
beginning designer feels - if it works, its a success! 

2. ul.4,T)--=.4. This corresponds roughly to the situation of 
the designer of small calculators. Here speed is unimportant - 
the whole key is size and hence cost. 

3. u ( . 4 , T ) = T .  This is " 'dua l "  to the last example, h 
corresponds 1o the situation in the design of supercomputers. 

4. u(A,T)=---.4T. This is a measure that weights both area 
and time. It is similar to the measures used previously in 
studying time and space in sequential computations. 

5. 

0, if A ~< A 0 and T ~ T O 

u ( A , T I  ~ I, olherwise 

This might correspond to the task of a real VLSI designer, if 
she meets her constraints, i.e., A ~< A o and T <~ T O , then 
her design is a success; i f  not, then it is a failure. 

We are faced with a crucial question: which complexi ty 
functions do we use? The way out of  our embarrassment of  
riches is to add a few constraints on such functions, since not 
all complexi ty functions are equally interesting. 

First, it is natural 1o assume that u ( A , T )  is mottolone, 
i.e., 

u ( A , T )  <, u (A ' ,T ' )  

i f  A ~< A '  and T ~ T'. Surely it is reasonable to assume 
that Jess area or less time do not raise the complexi ty o f  a 
design. 

Secondly, it is natural to assume thai u(.4 ,T )  is rescal- 
able. i.e., there is a function g (k , I )  so that 

u (k .4 ,1T ) -  g ( k , I )  u ( A , T I  

for all positive k , I ,A ,  and T. The intuit ive meaning of this is 
thai u depends on the choice of  units used to measure A and 

T only up to a constant factor. Thus, 

u ( A , T ) -  cu(.4' ,T') 

for some constant c, i f  A and T are measured in cm "~ and 
seconds and A '  and T ° are measured in f l  z and microseconds. 
It is important to note that physical laws are almost always 
rescalable in our sense. Since we wish to discover such basic 
laws for VLSI, we wil l only study such complexi ty functions. 
Continuing the last examples we observe that 1,2,3, and 4 are 
all rescalable while 5 is not. 

Theorem: Let u (A ,T )  be a monotone, rescalable map from 
pairs of positive number to non-negative ones. Then 

u ( A , T )  -, uoA" lT  ''z for some uo,at,c~ 2. 

This is an important theorem, since it allows us to 

focus all our attention on the complexi ty functions unA"JT ''~-. 
(We omit  its proof which is based on simple functional 
analysis. ) 

Let us again summarize, in light of this theorem, the 
VLSI designer's problem: 

Given a boolean function .[ and a complexi ty measure , 
(recall u is assumed to be monotone and rescalablel. 

Find a sequential circuit C that computes .[ in time T and 
has area A so thai u ( A , T I  is minimized. 

By this theorem, we can assume that u ( A , T )  ~ ctt~.4"t T "-" for 
some ao,al,ct ~, For the purpose of the minimizat ion of .4 
and T, there are only three classes of complexiLv measures: 

( i )  u = O, 

(2) u ---- T; 

(3l u = AT" for some o. 

By this we mean that given any u I ( A , T )  - aoA" lT  ' '" we can 
find a u 2 from one of these three classes so thai 

A , T  makes u t ( A , T I  a min imum 

if  and only if 

A , T  also makes u2(A,T)  a minimum. 

Since we are primarily interested in A and T ~e wil l only 
study u from class three, indeed AT: will play a special role. 

3. Proof Techniques 

The general technique used by Thompson and others to 
prove lower bounds for VLSl  layouts invoh,,es a "'cut 
theorem"  relating arc:, and l ime 1o the " in fo rmat ion  flow'" 
across a line which divides the layout into two part~,. 
Roughly, the theorem is proved as follows: Draw a line 
which divides the layout into t~o parts, with about half of  th,~ 
inputs to the circuit in each part. Some restrictions about the 
geometry of the layout and the nature of the inputs arc 
needed to ensure that this can be deme. Suppose that the hnc 
cuts through about (u wires (the line could also cut through 
gates, a complication which must be handled carefull.~ I: then 
under some assumptions about the gcnmetry of the layout 
and the line, it is possible to show that .4 >, l !  (,oz). Further- 
more, the value ~ can be thought of as a bound on the 
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"' information" that  can flow across  the boundary :  if the total 
a m o u n t  o f  in fo rmat ion  that m u s t  flow across  the  bounda ry  
dur ing  the  ent ire  compu t a t i on  is l ,  t hen  the  t ime taken  m u s t  
satisfy T > I/o,. This  leads immedia t e ly  to the b o u n d  
A T  ~ > f~ (12). The  proofs  for specific p rob l ems  are com-  
pleted by showing  that I > fl (n )  for any divis ion o f  the cir- 
cuit that  puts  half  the  inputs  on e i ther  side o f  the  dividing 
line. 

This  line o f  r eason ing  leads to lower b o u n d  a r g u m e n t s  
very similar  to those  used for one- tape  Tur ing  Mach ines  [4]. 
Proving lower b o u n d s  for A T  2 is reduced  to cons t ruc t ing  
appropriate  se ts  o f  input  a s s i g n m e n t s .  T he  " 'p lanar i ty"  res-  
triction for VLSI is, in s o m e  sense ,  as severe  as the one- tape  
restr ic t ion for Tur ing  mach ines .  The  lower bound  proofs  do 
not  carry th rough  directly, however ,  because  for VLSI the 
resul t  mus t  he proved  for any possible divis ion o f  the  inputs  
into two halves ,  while for Tur ing  m a c h i n e s  a single divis ion is 
i nhe ren t  in the problem.  For exampl e ,  the  set  o f  s t r ings  xy 
with x = y is " h a r d "  for one- tape  Tur ing  Mach ines :  they 
need  t ime at least f~ (n2). On.-the o ther  hand ,  there  is a VLSI 
layout for this predicate with A T  2 at mos t  0 (n ) .  The  ~'eason 
for this  difference is clear: for s o m e  part i t ions a great  deal o f  
" ' i n fo rma t ion  m u s t  f low" and  for o the r s  very little is needed .  

We will now make  these  no t ions  more  precise. Let  f 
be a boolean func t ion  with n inputs ,  it is conven ien t  to 
a s s u m e  that n is even .  The  first s tep is to cover  the  layout 
for f with the smal les t  enclos ing  rectangle.  It is easy to see 
that this at mos t  doub les  the area,  and  the re fo re  onl)' affects  
the  A T  2 product  by a cons tan t  factor.  

The  second step is to a s s u m e  that the inpu t -ou tpu t  
schedule  is where-obl iv ious .  Because  o f  this and the fact that 
each input ar r ives  exactly once,  we can assign inputs  uniquely  
to input wires. Next  cons t ruc t  a line parallel to the shor t  side 
o f  the rectangle  so that / < n / 2  and  I + m > n / 2  where  

I -- the  n u m b e r  o f  inputs  that arr ive to ga tes  strictly to 
the  left o f  this  cut;  

m - the n u m b e r  o f  inputs  that arr ive to ga tes  that  are 
hit by this  cut.  

Note  carefully that  the  defini t ion o f  these  quant i t i es  are well 
def ined since the  inpu t -ou tpu t  schedu le  is where -ob l iv ious .  
One  cons t ruc t s  this  cut  as follows: start  on one  o f  the  shor t  
edge o f  the  rectangle  cover ing  the  layout (say the  layout  is 
o r ien ted  so that this is the  left edge) ,  t hen  scan across  unti l  a 
point  is reached where  I < n/2  and I + m > n/2.  (It is an 
easy geomet r i c  a r g u m e n t  to prove that such  a point m u s t  
exis t . )  

The  key now is to part i t ion the  inputs  o f  f into two 
equal  classes:  L and  R .  All L ' s  m u s t  arr ive  to input  ga tes  
that  are e i ther  to the  left or hit by the cut;  all R ' s  m u s t  arr ive 
to input  ga tes  that  e i ther  to the  right or hit by the  cut. Since 
I < n /2  and  I + m > n / 2  this is clearly possible.  

Af ter  this  has  been es tab l i shed ,  the  two ha lves  o f  the  
inputs  can be t reated as coopera t ing  d is t r ibuted  a lgo r i t hms  as 
in [11). The  prob lem of  c o m p u t i n g  lower b o u n d s  for A T  2 is 
t hen  reduced  to the p rob lem of  f inding lower b o u n d s  for I ,  
the  a m o u n t  o f  "' information" that  L and  R m u s t  e x c h a n g e  in 
order  to c o m p u t e  f .  But this  no t ion  can be m a d e  precise.  

Define a crossing value as including the  following: 

(!,~ for each wire hit by the  cut ,  its value', 

(2) fo r  each wire input  to a " ' n o t "  gate which is hit by the 
cut, its va lue;  

(3) fo r  each " ' a n d "  gate that is hit by the cut, the value o f  
u I A.. .A u, and v I A.. .A v~ where  u I ..... u, are strictl~ 
to the left  o f  the cut and v I . . . . .  v~ are e i ther  to the r ighl  
o f  it or  hit by it and u]  . . . . .  u , ,  v l , . . . , v  ~ are all the input  
wires to this gate. 

(4) fo r  each " ' o r "  gate that is hit  by the cut,  the value o f  
u I V. . .V u, and v I V. . .V ~, where  u I . . . . .  u, and ~l . . . . .  ~, 

are as in (3). 

A crossing sequence is then  the  s equence  o f  T cross ing  va lues  
that  appear  dur ing  the  his tory o f  the  c o m p u t a t i o n  on s o m e  
part icular  computa t ion .  Let  w be the  length  o f  the cut, 
Note ,  w 2 ~< A .  

L e m m a  1: The re  are at mos t  c "T cross ing  sequences .  (c is a 
cons t an t  that  d e p e n d s  on the VLSI technology  only.)  

P r o o f .  This  follows directly f rom the defini t ion o f  a c ross ing  
va lue  and  the defini t ion o f  a VLSI layout.  

A few c o m m e n t s  are in order .  The  defini t ion o f  a 
c ross ing  value  was complicated by our  desire  to alloy, arbi- 
trary fan-in "'and" and " ' o r "  gates,  i f  we replace part (3) o f  
the  defini t ion o f  a c ross ing  value  by: (similarly for part (41) 

for each " ' a n d "  gate that is hit by the  cut ,  the va lues  o f  the 
input wires,  

we would find that l e m m a  I would be false! Th i s  is the case 
since a large fan-in gate can touch the cut  in a ' ,er~ small  
area.  One  of  the  advan t ages  o f  our  mode l  is [hat we do a l l o t  
arbi t rary fan-in while all p rev ious  mode l s  do not. It i s i m p o r -  
t am to allow this  since cur ren t  VLSl t echnolog ies  do indeed 
suppor t  such  gates ,  a l though  such gates  will grow in area ab 
the  n u m b e r  o f  inputs  increases .  Moreove r .  all the old lo~er  
b o u n d s  are  still t rue for layouts  with such  gates.  

Finally,  we can allow even  m o r e  complex  ga tes  with 
arbi t rary fan- in .  For  e x a m p l e ,  suppose  we ~ i s h  to a l l o t  
t h r e sho ld  func t ions :  

Xl + . . . +  X t > m. 

T h e n  we can repair  the  defini t ion o f  c ross ing  value  so the  
bound  in l e m m a  I b e c o m e s  

C 7 ~/,~ 

Th is  wi l l  on ly  af fect the lower  bounds  we obta in  by a I gn  fac- 
tor.  in  genera l ,  a new fami l y  o f  gates can be allov, ed pro-  
v ided the de f in i t i on  o f  crossing va lues can be repai red so that 
there are not " ' too  m a n y "  crossing sequences. 

Just as in the analysis o f  one- tape Tu r i ng  Mach ines  the 
f o l l ow ing  is the key. Let x be an input :  we use x L to deno te  
the input  that equals x on the L part  and are 0 e l s e w h e r e -  we 
use x R to deno te  the input  that equals x on the R part and 
are 0 e l sewhere .  N o t e  x - :eL + XR (usual  addi t ion) .  

L e m m a  2: If x and  y are  inputs  with the  s a m e  c ross ing  
s e q u e n c e ,  t hen  

'XL + .|'R 

b e h a v e s  the  s a m e  as x on  all ou tpu t  wires thai are to the  left 
o f  the  cut.  
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A cor re spond ing  l e m m a  is t rue for the right side o f  the  lay- 
out .  Both these  l e m m a s  are proved  by a s imple  induct ion  on 
Ihe n u m b e r  o f  s teps in the  compu ta t i on .  Part (3) and  (4) o f  
the defini t ion o f  a c ross ing  value  allow the induct ion  to work 
correctly.  

We can use  l e m m a s  ! and  2 as fol lows to prove  lower 
b o u n d s  on AT 2. A s s u m e  that  we can show that  there  m u s t  
be at least c t cross ing  sequences .  T h e n  by l e m m a  1, 

C¢,T >,~ C I 

and so w2T 2 ~ 12 and since w 2 < A it follows that 
AT 2 >/ 12. The key Ihen is to use lemma 2 to get a lower 
bound on the number of crossing sequences needed. For the 
n-input, n-output functions of II01 it is easy to see that 
/ > [I (nL  For predicates as considered in the next section 
we argue  as follows: 

A s s u m e  that  ou tpu t  wire is to the  left o f  Ihe cut.  T h e n  
cons t ruc t  a family o f  inputs  x t . . . . .  x~,, with m = 2;'" (6 > 0) 
so that each x, has  a un ique  L and  R part and  so all are 
accepted by Ihe predicate.  (There  is a dual  m e t h o d  w h e n  all 
are rejected.)  Now a s s u m e  that  s o m e  way exis ts  Io do Ibis in 
less than  m cross ing  sequence .  T h e n  for s o m e  i ~ j ,  by the 
p igeon-hole  principle,  

(x,) L + (X,)R (*) 

is accepted. But if we have constructed the family so that this 
is imposs ib le ,  t hen  we have  p roved  that at least 2 '~" c ross ing  
s equence  are needed .  We can even  genera l ize  this  t echnique .  
Suppose  we could do Ihe predicate in only 2"" c ross ing  
s equence  ~ < ~, t hen  (*) would not  only be true but  would 
hold for m a n y  i , j  pairs, i ndeed ,  this  t echnique  is used  in 
proving  a n u m b e r  o f  our  lower bounds .  

While  the  above  p roof  t echn iques  are applicable Io 
m a n y  p rob lems ,  it m u s t  be noled  that with one  s imple  added  
res t r ic t ion,  Ihe s a m e  type resu l t s  can be proved  in a trivial 
way (within a mode l  that descr ibes  the way VLSi circuits  are 
cur ren t ly  bu ih . I  The  added res t r ic t ion is that  each input  gate  
m u s t  touch  the  bounda ry  o f  the  region o f  the  layout  at s o m e  
point  (call such  a layout a boundary layout). T h e n  

Theorem: AT 2 > [~ (n2l  for bounda ry  layouts  whose  b o u n d -  
ing rectangle  has  s ides  that  are in a cons t an t  ratio. 

Th i s  is t rue for all exis t ing layouts .  Note ,  it a s s u m e s  no th ing  
about  the  inpu t -ou tpu t  schedule :  it need  not  even  be where-  
obl ivious .  In o the r  words ,  in order  to do bet ter  than  the  n 2 
b o u n d  (and require  the  intr icate p roof  t echn ique  a b o v e ) ,  a 
VLSI layout m u s t  e i ther  be a n o n - b o u n d a r y  layout or  it m u s t  
be exceed ing  nar row (say Ign by n/Ign).  S ome  real VLSI it 
appears ,  will be n o n - b o u n d a r y  layouts.  In any even t ,  it does  
offer a new techn ique  for ob ta in ing  non- t r iv ia l  lower bounds .  
For b o u n d a r y  layouts ,  we can show that  

AT 2 > [1 ( In) .  

This can give good lower bounds for problems where 
/ > [1 (n 2) may be too difficult to prove or even false! We 
actually use this technique in the next section. 

4. Lewer Bounds for Predic=tes 

Previous lower bounds for VLSI have been for n- 
input, n-output functions. The proofs have depended on 
showing that a large amount of information must flov, 
between the inputs and the outputs because each output must 
depend in some non-tr ivial way on all inputs. This lype of 
proof obviously wil l not work when there is only one output. 
However, the proof technique of the previous section is more 
general than this and allows AT 2 > I[1 (n 2) for a variety of 
predicates. Because we have obtained many such results we 
wil l only stale them here and wil l  only give a delailed proof of 
one of  the more interesting ones. Al l  lower bounds assume 
where-obl ivious input-output schedules. 

Selection/Equality testing: G i v e n  2n input  bits,  divide t h e m  
into lwo ha lves  o f  n bits each.  The  first ha l f  is used  for selec- 
tion: it has  n / 2  ze ros  and  n/2  ones .  The  value  of  the predi- 
cate is ] if the  n/2  hit n u m b e r  ob ta ined  by select ing those  bits 
in the  second  half  o f  the  input  at pos i t ions  co r r e sp o n d in g  to 
the  zero  bits in the  se lect ion m a s k  is equal  to the  n / 2  bit 
n u m b e r  ob ta ined  in the  s a m e  way f rom the  one  bit pos i t ions  
in the  se lect ion mask .  

A deterministic context-free language: The  value  o f  the  predi-  
cate is i if the  inputs  be long to the  D C F L  xcx R. ~i th  x a 
word  f rom {0 ,1 ) ' ,  but  ° ' s  can occur  a n y w h e r e  in the input 
and  m u s t  be ignored.  This  p rob lem can be encoded  to be a 
predicate n binary s t r ings  for which AT 2 > Q l n l  (This  result  
ob ta ined  with M. Har r i son . )  

Pattern Matching: G i v e n  a binary text s t r ing of (l--ok In bit:,. 
and  a pa t te rn  o f  an  bits, with 0 < c~ < 1, d e t e r m i n e  if the 
pa t te rn  occurs  in the  lext .  

Foctor Verification: Given binary numbers x , y ,  and : of  ,t n. 
Bn,  and ( I - a - , 8 ) n  (with 0 < 0,/3 < 11 determine whether 
or not x:r = -.  A harder problem: given an n bit number x .  
determine whether or not x - - y 2  for some integer X. (Thb, 
result obtained with Ravi Kannan.) 

The proof techniques in Section 3 allow AT2 > [ } ( n : l  
lower bounds to be proved for all of  the above problems. 
though each proof  is detailed and requires some problem- 
specific facts. Typically the proofs break into tv;o part.,, 
depending on whether the two parts of  the input which arise 
naturally in the problem fall mainly on opposite sides of the 
div iding line (in which case information about the inputs must 
be transferred across the cut), or mainly on both sides of the 
div id ing line (in which case information about intermediate 
computations must be transferred across the curl. 

The tools of  the previous section can also be used to 
prove weaker lower bounds for more difficuh prob lems. .For  
example, an interesting problem for which no non-tr ivial  
lower bound has previously been known is 

Binarr Dererminam: Given a square binary matr ix with a total 
of  n bils, compute the value of  ils determinant Imod 21. 

We have been able Io show Ihat the Iov.er bound 
AT 2 > n 3 2 must hold for this problem, using the combined 
" 'boundary"  argument mentioned at Ihe end of the last see- 
l ion. This is a rare example of a Iov,er bound which could 
not be obtained using the tr ivial argument for "'boundar.~ lab- 
ou ts"  mentioned above. We believe the true bound to be n" 
for this problem, but the question remains open. 
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Another problem which remains open is Primafity: 
Given an n-bit number,  determine whether or not it is prime. 
This problem leads, after the "crossing sequence" argument 
has been applied, to an open conjecture in number theory, 
which seems difficult to prove, though likely to be true. 

Finally, it is possible to prove some general results 
about combining simple functions that provide strong evi- 
dence that the VLSI complexity is unusual. In particular, we 
have n-input functions f and g which can be computed in 
A T  2 -  0(n)  but which become difficult when combined 
according to the fundamental rules: 

Union: The predicate which is I if either f ( x )  or g ( x )  is 1. 

Composinon: The function f (g (x)). 

(Of course different functions are "used for each of these 
results. ) 

These results seem to suggest that the " ' top-down" 
design philosophy of decomposing complicated functions into 
simpler ones, then combining the results, may not be a good 
strategy for VLSI: it may be harder to combine results than to 
compute them. The "'integration" in VLSI may need to apply 
to algorithm design as well as fabrication technology. It is 
also possible to show that alphabet change can dramatically 
decrease the complexity. There is a function f ( x )  with 
A T  2 > f l l n2 i  if inputs can take on values from [ a , b , ¢ , d ) :  
but if these are represented as two bits, then A T  2 - O(n).  In 
the first case it is equivalent to allow the inputs to be 
represented as two bits but require them to be near each 
other on the layout, h is interesting to note that in Thomp- 
son [8] it is assumed that inputs to a FFT layout come from a 
non-binary alphabet. This result shows that such assumptions 
can affect the complexity greatly. 

We will now prove that there are two f and g so that 
each can be done in A T  2 . ,  O(n)  and yet their union requires 
A T  2 > N (n2). But first we note that the existence of such 
functions allows us to easily construct F , G  so that each is 
easy but whose composition is hard. To do this just define: 

G ( X ) - -  (A ' .g (x ) l  

and 

F ( x , y )  - f (x )  V y. 

Then the point of these definitions is that 
F ( G ( x ) )  - f ( x )  V g ( x ) .  

Lemma I :  For each n there is a n,vertex cubic graph G,, 
such that 

(1) G, is 3-edge colorable; 

(2} for any partition of the vertices into two sets of size at 
least n / 3  there are at least e n edges between these 
classes where e is an absolute positive constant. 

Part (2), of course, means that G, is not easily separated. 
We will not give a detailed proof now: a full proof can be 
based on the probabilistic method of Erdos [3]. 

We plan to use G, to construct our functions f and g. 
Let G, be 3-edge colored with the colors red, green, and 
blue. Also. let us associate an input Jr, with each vertex i of 
G,,. Then define the predicate S (~, is red or green or blue) 
as follows: 

S,, i fand  only if each edge ( i , j )  that is colored a has x, - x~. 

Thus, arc d if and only if all the red edges have their end 
points equal. 

Lemma 2: For each n and any a,/~ colors the predicate 
S,  V S# can be done in A T  2 - O(n). 

Thus, the union o f  any two of  these predicates is easy. 
(Note, this lemma uses one gate with large fan-in; wi thout  
this the bound becomes O(nlg2n).) The proof  o f  our result 
depends then on: 

[ ,emma 3: For each n, S,e d V Sbh,e V Sx,e,. . requires 
A T  2 > 1") (n2). 

Clearly,  once this is proved we are done: just let f ( x )  be 5 , :  
and g ( x )  be Sb,,e V S x ..... • 

Proof of Lemmt 3: 

Consider a layout for S,e d V Sbh w V Sxre,. . .  Construct 
the L , R  part i t ion as described in Section 3 (assume n even}.  
Now by lemma 1, there are at least en edges with one L end 
point and one R end point. Clearly, at least 1/3 o f  these are 
the same color: wi thout  loss of  general i ty let us assume that it 
is red. Let these red edges form the set E. 

We can now select (assuming n is large enoughl  one 
blue edge (b j ,b  2) and one green edge (gt,g2).  Now fix these 
inputs so bl :;~ b 2 and gl :~e g2. Then S,c d V Sb/,, ̀ , V S~,,,.e, , if 
and only if S,,. d. If we fix all those red edges ( r l , r~ l  with 
both endpoints L or R ,  so that rj - r 2, then finally, 

s,,.~ v s,,,,,, v s~,,.,.,, 

if and only if 

Jr, - Xl for all ( i , j )  in E. 

Moreover, these x i 's  are all unspecified and unrelated. Thus. 
the computation of S,,. d V Sl, h, c V SK,,.,. , requires the checking 
of  e n / 3  distinct pairs of inputs for equality. Since in each 
such equality, one is L and one is R, a simple crossing 
sequence argument completes the proof of the lemma. 

S. Extensions to the Model 

In this section, we will discuss a number of extensions 
to the model of Section 3. The first two of these are sug- 
gested by the analogy with one-tape Turing Machines. 

(a) NondetermJnism 

A careful examination of  our lower bounds shows that 
they stil l hold i f  the VLSI layouts are nondewrminism. While 
the idea o f  nondeterminist ic  VLSI  is fantasy, it is a comment  
on the basic nature o f  1he lower bounds that the)  would hold 
even i f  nondeterminist ie VLSI  layouts could be built. In a 
sense our lower bounds make no assumption on how things 
are computed on the left and right part of  the layout, only 
about how they exchange information about their results. We 
wil l  return to this later in this section. 

(b) Randomness 

in a similar vein, it is possible to prove that the lower 
bounds that have been proved for n-input, n-output functions 
also hold when randomness is al lowed. This result is more 
diff icult to prove, and it is more relevant to practical situa- 
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l ions, since efficient algor i thms which exploi t  randomness 
have recently been invented for some problems, and it is rea- 
sonable to contemplate the fabrication o f  VLSi  circuits that 
implement  randomness (probably more rel iably than the 
" ' random number  generators"  in widespread use on general- 
purpose computers today).  

The  crux o f  this result  is the following problem:  can we 
use r a n d o m n e s s  to move  an n-bi t  numbe r  f rom one place to 
ano ther  with less than 2" crossing sequences.  Note ,  r andom-  
ness  does  help with the related but s impler  problem:  verify 
that two n-bi t  num be r s  are equal. 

Now assume that r a n d o m n e s s  does  help and it is possi- 
ble to do it with m < 2" crossing sequence.  Let 

P , j  - P r o b  Ion input i the j,/, crossing sequence  occurs] 

( i -  1 . . . . .  2" a n d j -  1 . . . . .  m) .  Clearly, 

:~ , ,P , / -  i ( I )  
i - I  

for all i - I ..... 2". Also let 

S~/  - P r o b  [the k 'h crossing sequence  outputs  j ]  

( k -  ! . . . . .  m and j -  I . . . . .  2").  

By output  we o f  course mean that j is t ransferred.  Again,  it 
is clear that 

~"~ S.~, - 1 (2) 
J -  I 

for all k - l . . . . .  m. We insist that the probability o f  correctly 
answer ing is t> G > I/2. Thus,  

:~P,~ S~, i> ~ (3) 
/ , - I  

for  all i - l ..... 2". We next claim that for each input j ,  there 
is a crossing sequence k so that S~, >~ b. Fix an input j and 
assume that St/ < 8 for all k .  Then by ( I ) ,  

£ P , ~  St, < G 
/ , - I  

which contradicts (3); hence, our claim is true. Let h ( j )  
satisfy for all inputs j ,  

S/ , I I  ~ >/ ~; (4) 

h ( j )  exists by our claim. Since m < 2" by the pigeon-hole- 
principle it fol lows that 

h ( j j ) -  h ( j  2) 

for some Jl  ~ J2- Therefore,  it fo l lows that 

i - I  

where /L' - h ( j l )  -,, h(J2);  however,  this contradicts (2) and it 
fo l lows the assumption that m < 2" is false. 

Thus, randomness does not help in transferr ing infor- 
mat ion f rom one place to another.  However ,  the results o f  
Section 4 on predicates are more sensitive. For example,  the 
lower bound on the factor veri f icat ion predicate does not hold 
when randomness is al lowed. That such examples should 
exist is of  course  suggested by the analogy to one- tape  Tur ing 
Machines.  There ,  as here ,  r a n d o m n e s s  is s o m e t i m e s  more  

powerful  than nondeterminism. 

(e) Mu l t i - a r r i va l s  

Stil l more realistic is the possibil i ty o f  enhancing the 
efficiency o f  VLSI  circuits by al lowing for more general 
input-output  schedules. I f  schedules are not where-obl iv ious.  
then it is possible to do the " ' ha rd "  n- input ,  n-outputs func- 
l ions in AT 2 - 0(n) .  A more f ru i t fu l  and realistic direct ion i 
to weaken one o f  our basic assumptions an al low inputs to 
arr ive muhiple limes. Again, we can show that the lower 
bounds which have previously been proved for n- input ,  n- 
output  funct ions stil l hold. The proo f  o f  this result is some- 
what more complicated than our  o ther  VLSI lower bound 
proofs, because it requires mul t ip le cuts o f  the VLSI  layout. 

This last extension is interest ing since Ihe results on 
union,  composi t ion,  and alphabet change do not hold i f  such 
mul t ip le arr ivals o f  the inputs are al lowed. 

(d) Other Measures 

• So far, we have exclusively measured VLSI  layouts by 
AT 2. What about other  measures, such as AT"?  The fo l low- 
ing general meta principle turns out to be useful: 

i f  AT z > N (n z) is proved by the crossing sequence method for 
where-ob l iv ious layouts, then AT" > 1~ (n I - "  2) 

for  layouts that are also when-ob l iv ious provided 0 ~ , ~ 2. 

Thus, provided we are w i l l ing  to assume that only when- 
obl iv ious input-output  schedules are al lowed, we can to see 
how wel l  A can be t raded-of f  for T. 

Another  class o f  measures for VLSI  is the data rate D 
not ion o f  Vui l lemin.  He shows for certain n- input ,  n -output  
funct ions that A > 1~ (D2). He claims that AT 2 > ~ (n ' )  is 
#'eoker, but this is open as far as we can see. The fo l lowing 
recta principle may also be o f  interest: 

I f  AT 2 > I) (n 2) is proved by the crossing sequence method,  then 
A > f ) (D2 ) .  

Thus, his results on data rate are really just results about AT 2 
unless he can introduce a new proof  technique. 

We can also relate AT 2 to a not ion o f  boolean circuit 
complex i ty .  Let P(.I ' )  denote the size o f  the smallest p/a,ar 
boolean circuit for  f (see [6]).  Then,  

Theorem:  AT 2 > l ] ( P ( f ) )  for when and where obl iv ious 
layouts. 

The proof  o f  this is a simple one: we must just sho~ ho~ to 
s imulat ion a VLSI layout o f  area A and t ime T by a boolean 
planar circuit. The only  dif f iculty is that the layout may use 
feedback and' this is not al lowed in the planar circuit. Thus. 
the l'l (n 2) results obtained in 16] can be used to get lo~er  
bounds on A T 2. l l owever ,  note that these results are weaker 
than those obtained here by crossing sequences. (Th is  
r~suit had b ~ n  obt~kitted ear l ie r  by J. Savage.)  

Finally', a word  on the l imitat ions o f  the crossing 
sequence  me thod .  Cons ider  the problem of  connect ivi ty:  

Given an ~ x ~ adjacency matr ix  o f  a graph 
(undirected). 

De te rm ine  whether  or not the graph is connected. 

For awhi le,  we tr ied in vain to use the crossing sequence 
method to prove that this problem takes AT 2 > l } (n2) .  Wc 
then made two simple observations. Fix an arbi t rary L . R  
part i t ion o f  the entries o f  the input (the adjacency ma l r i x l :  
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( l )  If the graph is connected,  there is a short sequence of 
messages between L and R that can prove this. 

(2) If the graph is disconnected, there is also a short 
sequence of messages between L and R that can prove 
this. 

in ( i )  we have L guessa spanning tree and send it to R along 
with those edges he has; R then checks that he has all the 
remaining edges, in (2), we have L guess the two connected 
components.  After checking that none of his edges join 
them, he sends the components  to R for a similar check. 
Clearly, both require at most 0(v~n Ign) bits. 

The key then is to see that this means that there is a 
non-determmis#c VLSI layout with AT 2 - o(n 2) for both con- 
nectivity and its complement.  Since the crossing sequence 
method cannot distinguish deterministic from non- 
deterministic layouts, we have proved: 

Either 

AT 2 > fl (n2l for connectivity by a new proof technique 

or 

A T  2 , o (n2). 

It has turned out, especially among graph properties, that this 
is not an isolated phenomenon. We can prove a similar faith 
for the following predicates: 

has a c vcle 

plonority 

strong tom,activity 

2-colorabi/ity 

has a perfect matching 

and- others. Thus, each of these and their complements  can 
be recognized with A T ' - o ( n  2) by non-determinist ic VLSI 
layouts. Either AT 2 > fl (n 2) by a new proof technique or 
A T  ~" - o(n 2) for a real VLSI layout. For connectivity, as we 
pointed out in Section 2, the answer is known; for the rest it 
remains open. 
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