STOC(Milwaukee 1981),300-307

Lower Bounds for VLSI

Richard J. Lipton 1

Princeton University
Princeton, New Jersey 08344

Robert Sedgewick + 1

Brown University
Providence, R1 02912

1. Introduction

Increased use of Very Large Scale Integration (VLSI)
for the fabrication of digital circuits has led to increased
interest in complexity results on the inherent VLSI difficulty
of various problems. Lower bounds have been obtained for
problems such as integer multiplication [1,2], matrix mulipli-
cation [7], soriing (8], and discrete Fourier transform {9}, ali
within VLSI models similar 10 one originally developed by
Thompson [8.9]. The lower bound results all pertain to a
space-lime trade-off measure that arises naturally within this
model. In particular, for all the problems listed above, the
results show that if 4 is the area used by a VLSI circuit to
compute one of the n-input, n-output functions listed above,
and 7T is the time required for the computation, then the
bound :

AT > 0 (n?)

must hold. Vuillemin [10] has recenily unified most of these
results by showing that they share a simple mathematical
structure. In this paper, we extend the model and the class of
functions for which non-trivial bounds can be proved.

In Section 2, we give a more general model than has
been proposed previously. In Section 3 we show how to
reduce the derivation of lower bounds within the model 10 a
problem in distributed computing similar to that proposed by
Yao [11}. It is interesting 1o note that this problem can be
solved by a ‘‘crossing sequence’” technique similar to that
commonly used to prove lower bounds for one-tape Turing
machines [4].

In Section 4, we consider lower bounds for a number
of predicates: n-inpul, l-output functions (as contrasied with
the n-input, n-output

functions which have been studied previously). The tech-
niques of Section 3 make it possible 10 prove that
AT2 > Q(n?) for a variety of predicates. Furthermore, we
show that union, composition, and alphabet change can
transform ‘‘easy’’ functions into ‘*hard’’ ones. which makes
the VLSI computational model quite different from classical
ones where these operations are easy.

In Section 5, we show that previous lower bound
results (for n-input, n-output functions) also apply even
when the model is extended to allow nondeterminism. ran-
domness, and multiple arrivials. The predicates of Section 4
are more sensilive: some are significantly easier. others are
not affected by these extensions (but the fower bounds are
more difficult 1o prove.) We also consider the affects of other
variations in the model.

Finally, the full details of the results presented here
will appear in the final version of this paper.

2. The Model

In this section, we will present the basic mode! of VLSI
computation used in this paper. Since we are interested in
proving lower bounds, we will allow the model great general-
ity: it allows features which certainly are not even contem-
plated in the near future. But the generality of the model
allows it to be specialized to incorporate the particular
features of a much wider range of actual systems than allowed
by previous models, and all the old lower bound still hold. In
its generality, the model is in many ways simpler than previ-
ous ones, and admits cleaner Jower bound proofs.

There are three main components: the boolean function
S/ which is to be computed, a synchronous circuit C that com-
putes f, and a VLS/ layour V thai realizes C.

We assume that C is a network of wires attached to

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 ACM 0-89791-041-9 /80/0500/0300 $00.75

each other and 10 gates. The gates of C can be **and’’, “‘or™,
or ‘‘not’’ gates of arbitrary fan-in and fan-out, or they can
implement more general decomposable functions with arbitrary

numbers of inputs and outputs. (These possibilities are dis-

+ Supporied in part by NSF #170C938
t t Supporied in pari by NSF

300

cussed further in the next section.) Such a circuit, which may
have feedback, computes S provided there is an inpur-outpur
schedule that decides how the inputs and outputs of f are
mapped onto the input and output wires of C. In all previous
work it has always been assumed that the input-output
schedule satisfies:

(1) each inpul arrives once and each output leaves once;
(2) when and where this takes place is daa independent.

We will, for now, assume (1) but we will not assume (2).
The motivation for (1) is that otherwise we would be allowing
the circuit *‘free’” memory. However, (2) is an unnecessary
restriction, and we will allow quite a larger class of inpuit-
output schedules.

Definition: An input-output schedule is where-oblivious
(when-oblivious) provided where (when) the inputs arrive and
the outputs leave is independent of the values of the daia.

Thus, all previous models consider only when and
where oblivious input-output schedules. Note, of the 1wo
types of schedules the first is the more common: often it is
natural to assume that where an input goes is fixed; however,
when it arrives may depend on a variety of things. For exam-
ple. consider a micro- processor. As it feiches data from a
RAM, where the inputs go is fixed and hence is data indepen-
dent, but when inputs arrive depend on what addresses the
micro-processor generates and when it generates them.

These new types of inpui-output schedules are not just
of theoretical interest. Recently, Lipton and Valdes have
proved:

Theorem: There is a where-oblivious VLSI layout for the
transitive closure of graphs that has AT72= 0(n32*¢) (any
e > 0).

It is an interesting open question whether or not such a
layout can be made when-oblivious.

The crucial part of the model has to do with the
assumptions imposed on the VLSI layout, so we will give a
more formal definition:

Definition: A VLSI layout V is a (A.u(.u3)—layour of the
sequential circuit C if there is a map that assigns to each gate
g {wire w) of C a closed connected region of the plane g’
(w’) so that

(1) If w is an input or output wire of gate g, then g~ inter-
sects w ' and

(2) For each A x A square S of the plane,

(a) al most u, gates g map lo regions g’ that inter-
sect S, and

(b) at most u, wires w map to regions w’ that inter-
sect S

We further assume that all of the g and w° lie in a convex
region R, the region of the layout.

Note that no assumption is made about the location of
circuit inputs or outputs, or even how they are assigned to
gates (except that the assignment must satisfy the schedule).
Different inputs could be assigned to the same gates, at
different times. For convenience we will call gates in the lay-
out which have inputs or outputs that correspond 1o inputs or
outputs in the circuil inpur or ourpui gaies. We will assume
that circuits use all their inputs, and the parameter which
describes the ‘‘size’’ of the circuit is n, the number of inputs.

301

As mentioned above, this definition is quite general
and allows VLSI layouts that could never be fabricated: but
the generality of the definition only reinforces the lower
bounds that we will prove. Indeed, it is the restrictions in the
definition that need 10 be examined carefully.

Clearly, it is reasonable to assume that gates and wires
are connecied regions: otherwise they could not carry electri-
cal charge. The assumption that they are closed regions is
purely a mathematical convenience with no practical
ramifications. The assumption that R is convex could be
relaxed somewhal. but it is a very modest restriction (VLSI
layouts are always rectangles).

Condition (1) simply forces electrical connections 1o
correspond to 1opological connections. Note carefully. how-
ever, that the converse is not true: g~ and w can intersect
without any connection beiween g and w in C. This is of
course possible in actual layouts, because muliiple layers are
allowed. We have chosen not to explicitly model which layer
a gale or wire in on: gates and wires can be mapped 10 inter-
secting regions yet not be connected. The lower bound
results can be proved even within this much simplified model.

Condition (2) is a direct result of the limits of VLSI
fabrication. Think of the A x A square § as a “‘window™"
onto the plane. This condition ensures that in any such win-
dow we can only “‘see’ a fixed number of gates and wires.
This has 1wo implications. First, it limits the number of
layers used: No more than x, + u, layers can be used at the
same point, because if they were, more than u, + u, gates or
wires would intersect at that point, violating either {2a) or
(2b). Second. condition (2) gives a bound on how tightly
gates and wires can be packed. Note. however. there is no
explicit bound on the size of any individual gate or wire.
Again, this is unreasonable. but it only makes our lower
bounds that much stronger.

As mentioned above. it is straightforward 10 specialize
this mode! 10 less general models. For example. if we take
uy=1 and u, = 2, only allow gaies 10 be on lattice points.
and only allow wires to run along a laitice. our model
becomes essentially the same as previous models. But by
eliminating virtually all such geometric restrictions and aliow -
ing unlimited fan-in and fan-out, we are able 10 mode!l a
much richer class of actual VLSI layouts.

We are almost ready to begin to prove lower bounds
on the VLSI complexity of functions. but we must first define
our complexity measure. Let C be a circuil that computes f
in time T and let ¥ be a VLS! layout with area A that real-
izes C. Then central 10 all that follows is the assumption:

A and T measure the complexity of

The justification for A is simple. In any of the current
VLSI techniques the area of a VLSI layout is a critical param-
eter. As the area increases the difficulty in fabricating the lay-
out also increases; hence. it is natural 10 require that 4 be
kept as small as possible. Just as the number of gates of (
was a reasonable cost measure in classic models of complex-
ity, the area 4 now plays that role.

The justification for T is more complex. The VLSI lay-
out ¥ takes time r x T to compute / where 7 is the time
required for one clock period of the sequential circuit (.
What is somewhat surprising is that we can assume that = is
independent of the layout I and only depends on the given
technology. The key is that the time it takes to send a signal
down a wire is not limited by the speed of light but by the

parasitic capacitance of the wire. By increasing the size of the
driving gate it is possible to keep r independent of the layout
and only effect the area by a constant facior. One further
comment is in order: for lower bounds clearly the use of T is
justified. It is only when we turn 10 upper bounds that we
must carefully check the validity of T as a measure of speed.
(See {2,8].)

As modeled here the central problem facing a VLSI
designer is as follows:

Given a boolean function /'

Find a sequential circuit C that computes f in time T and
a VLSI layout of C with area 4 so that A and T are
“*minimized”’

Thus the key problem facing the VLSI designer is 10
minimize both the time and area of the VLSI layout. How-
ever, in all but the most trivial cases a designer is unlikely to
be able to minimize both simultaneously. The designer will
therefore have to minimize some derived function u(4.7):
here #(A.T) is the complexity of a VLSI layout with area A
and time 7. There are many possible such funciions.

Examples.
1. u(4,T)=1. This corresponds to a simpie situation where

any implementation is useful. Perhaps it models the way a
beginning designer feels - if it works, ils a success'

2. u(A.T)=A. This corresponds roughly 1o the situation of
the designer of small calculators. Here speed is unimportant -
the whole key is size and hence cost.

3. w(A.T)=T. This is “‘dual 10 the last example. It
corresponds 10 the situation in the design of supercomputers.

T
4. u(A,T)=AT. This is a measure that weights both area

and time. It is similar 1o the measures used previously in
studying time and space in sequential computations.

0, ifA < Agand T T,

u(4.T) = 1. otherwise

This might correspond to the task of a real VLSI designer. If
she meets her constraints, i.e., A £ A5 and T < T, then
her design is a success; if not, then it is a failure.

We are faced with a crucial question: which complexity
functlions do we use? The way out of our embarrassment of
riches is 10 add a few constraints on such functions, since not
all complexity functions are equally interesting.

First, it is natural 10 assume that (4 ,T) is monorone,
ie.,

ulA,7) € ul(4'.T")
if A < A'and T £ T'. Surely it is reasonable 10 assume

that fess area or less time do not raise the complexity of a
design.

Secondly, it is natural 10 assume that u(A4,T) is rescal-
able, i.e., there is a function g (k./) so that

ulkA IT) = glk 4) u(A.T)

for all positive k./,4, and T. The intuitive meaning of this is
that v depends on the choice of units used 10 measure A and

302

T only up 10 a constant factor. Thus,
ul(A,T)=cu(A' T

for some constant c, if A and T are measured in ¢m? and
seconds and 4'and T’ are measured in f12 and microseconds.
It is imporiant 10 note that physical laws are almost always
rescalable in our sense. Since we wish 10 discover such basic
laws for VLSI, we will only study such complexity functions.
Continuing the last examples we observe that 1,2,3, and 4 are
all rescalable while 5 is not.

Theorem: Let u(A4.T) be a monotone, rescalable map from
pairs of positive number 10 non-negative ones. Then

u(A,T) = agd"'T"2 for some ag.a .a,
This is an imporiant theorem, since it allows us 10

focus all our attention on the complexity functions apd” ' 772
(We omit its proof which is based on simple functional
analysis.)
Let us again summarize. in light of this theorem. the
VLSI designer's problem:
Given a boolean funciion / and a complexily measure «
(recall v is assumed 10 be monotone and rescalable).

Find a sequential circuit C that computes f/ in time T and
has area 4 so that (4.7} is minimized.

5"

By this theorem, we can assume that # (4. T) = a4 'T"? for
some ag.a;.ay. For the purpose of the minimization of A4
and T, there are only three classes of complexity measures:

(Mu=0;
(2) u T.
3) u AT" for some a.

l

By this we mean that given any u (4. T) = ag4™ ' T"? we can
find a u, from one of these three classes so that

A.,T makes u;(4.7T) a minimum
if and only if

A.T also makes «,(A4.7) a minimum.

Since we are primarily interesied in 4 and T we will only
study « from class three. Indeed AT? will play a special role.

3. Proof Techniques

The general technigue used by Thompson and others to
prove lower bounds for VLSI layouts involves a “‘cut
theorem™ relating area and time 10 the '‘information flow™"
across a line which divides the layoul into 1wo parts.
Roughly, the theorem is proved as follows: Draw a linc
which divides the layout into two parts, with about half of the
inpuis to the circuit in each part. Some restrictions about the
geometry of the layout and the nature of the inpuis are
needed to ensure that this can be done. Suppose that the hne
cuts through aboutl w wires (the linc could also cut through
gates, a complication which must be handied carefully): then
under some assumptions about the geometry of the liyout
and the line. it is possible 10 show that 4 > 0 (w?). Further-
more, the value w can be thought of as a bound on the

*‘information’" that can flow across the boundary: if the total
amount of information that must flow across the boundary
during the entire computation is /, then the time taken must
satisfly T > //w. This leads immediately to the bound
AT? > QU?Y). The proofs for specific problems are com-
pleted by showing that / > Q (n) for any division of the cir-
cuit that puls half the inputs on either side of the dividing
line.

This line of reasoning leads to lower bound arguments
very similar 10 those used for one-tape Turing Machines [4}.
Proving lower bounds for AT? is reduced to constructing
appropriate sets of input assignments. The *‘planarity’ res-
triction for VLSI is, in some sense, as severe as the one-tape
restriction for Turing machines. The lower bound proofs do
not carry through directly, however, because for VLS| the
result must be proved for any possible division of the inputs
into two halves, while for Turing machines a single division is
inherent in the problem. For example, the set of strings xy
with x = y is **hard” for one-tape Turing Machines: they
need time at least 2 (n2). On.the other hand, there is a VLSI
layout for this predicale with AT? at most 0(n). The ieason
for this difference is clear: for some partitions a great deal of
‘information must flow' and for others very little is needed.

We will now make these notions more precise. Let f
be a boolean function with » inpuis. It is convenient to
assume that n is even. The first siep is to cover the layout
for / with the smallest enclosing rectangle. I is easy to see
that this at most doubles the area. and therefore only affects
the AT? product by a constant factor.

The second step is to assume that the input-output
schedule is where-oblivious. Because of this and the fact that
each input arrives exactly once, we can assign inputs uniquely
to input wires. Next construct a line parallel 10 the short side
of the rectangle so that / < n/2and / + m > n/2 where

! = the number of inputs that arrive 10 gales strictly to
the left of this cut;

m = the number of inpuis that arrive to gates thai are
hit by this cut.

Note carefully that the definition of these quaniities are well
defined since the input-ouiput schedule is where-oblivious.
One constructs this cut as follows: start on one of the short
edge of the reciangle covering the layout (say the layout is
oriented so that this is the left edge), then scan across until a
point is reached where / < n/2and I + m > n/2. (It is an
easy geomelric argument to prove that such a point must
exist.)

The key now is to partition the inputs of f into two
equal classes: L and R. All L’s musi arrive 1o inpul gales
that are either 1o the left or hit by the cut; all R’s must arrive
to inpul gates that either to the right or hit by the cut. Since
I < n/2and ! + m > n/2 this is clearly possible.

Afier this has been established, the two halves of the
inpuls can be treated as cooperating distributed algorithms as
in [11). The problem of computing lower bounds for AT? is
then reduced 1o the problem of finding lower bounds for /,
the amount of “‘information’’ that L and R must exchange in
order 10 compute /. But this notion can be made precise.

Define a crossing value as including the following:

(1) for each wire hil by the cut, its value;

303

(2) for each wire input 1o a **not’’ gate which is hit by the

cut, its value;

(3) for each **and’’ gate that is hit by the cul, the value of
uyN..ANu, and v AN v, where uy,....u, are sirictly
1o the left of the cut and vy,...,v, are either 1o the righ!
of it or hit by it and w,,...,u,. v|,...,v, are all the inpul

wires to this gate.

(4) for each “*or'’ gate that is hit by the cul. the value of
u V..V u, and vyV..V v, where u),....u, and v,.....,

are as in (3).

A crossing sequence is then the sequence of T crossing values
that appear during the history of the computalion on some
particular computation. Let w be the length of the cut.
Note, w2 € 4.

Lemma 1: There are at most ¢*7 crossing sequences. (c is a
constant that depends on the VLSI technology only.)

Proof. This follows direcily from the definition of a crossing
value and the definition of a VLSI layout.

A few comments are in order. The definition of a
crossing value was complicated by our desire to allow arbi-
trary fan-in ‘*and’ and ‘“‘or’" gates. If we replace part (3) of
the definition of a crossing value by: (similarly for part (4))

for each **and™ gate that is hit by the cutl. the values of the
input wires,

we would find that lemma | would be false! This is the case
since a large fan-in gate can touch the cut in a very small
area. One of the advaniages of our model is that we do allow
arbitrary fan-in while all previous models do not. It is impor-
tant to aliow this since current VLSI technologies do indeed
support such gates, although such gates will grow in area as
the number of inputs increases. Moreover, all the old lower
bqunds are still true for layouts with such gates.

Finally, we can allow even more complex gales with
arbitrary fan-in. For example. suppose we wish 10 allow
threshold functions:

X+t X, > m

Then we can repair the definition of crossing value so the
bound in lemma | becomes

¢ Twign

This will only affect the lower bounds we obiain by a Jgn fac-
tor. In general, a new family of gates can be allowed pro-
vided the definition of crossing values can be repaired so that
there are not **100 many™' crossing sequences.

Just as in the analysis of one-tape Turing Machines the
following is the key. Let x be an input: we use x; to denote
the input that equals x on the L part and are 0 elsewhere: we
use xz lo denote the input that equals X on the R part and
are 0 elsewhere. Note x = x; + xp (usual addition).

Lemma 2: If x and » are inpuls with the same crossing
sequence, then

X+ g

behaves the same as x on all oulput wires that are 1o the lef
of the cut.

A corresponding lemma is true for the right side of the lay-
outl. Both these lemmas are proved by a simple induction on
the number of steps in the computation. Part (3) and (4) of
the definition of a crossing value allow the induction 10 work
correctly.

We can use lemmas] and 2 as follows 10 prove lower
bounds on AT72. Assume thal we can show thal there must
be at least ¢/ crossing sequences. Then by lemma 1,

T > c!

and so wlT?2> J? and since wl?< 4 it follows that
ATY > 12, The key then is 10 use lemma 2 to get a lower
bound on the number of crossing sequences needed. For the
n-input, n-output functions of [10] it is easy 10 see that
I > ¥ (n). For predicates as considered in the next section
we argue as follows:

Assume that output wire is 10 the left of the cut. Then
construct a family of inputs x,....x,, with m = 2’7 (5 > 0)
so that each x, has a unigue L and R part and so all are
accepted by the predicate. (There is a dual method when all
are rejected.) Now assume that some way exists 1o do this in
less than m crossing sequence. Then for some i# j, by the
pigeon-hole principle,

), + (x))g “)

is accepted. But if we have construcied the family so that this
is impossible, then we have proved that at least 2*" crossing
sequence are needed. We can even generalize this technique.
Suppose we could do the predicate in only 2" crossing
sequence ¢ < &, then (*) would not only be true but would
hold for many i,j pairs. Indeed. this technique is used in
proving a number of our lower bounds.

While the above proof techniques are applicable 10
many problems, it must be noted that with one simple added
restriction, the same type resullts can be proved in a trivial
way (within a mode! that describes the way VLSI circuits are
currently built.) The added restriction is that each input gate
must touch the boundary of the region of the layout at some
point {call such a layout a boundary layout). Then

Theorem: AT? > € (n?) for boundary layouts whose bound-
ing rectangle has sides that are in a constant ratio.

This is true for all existing layouts. Note, it assumes nothing
about the input-output schedule: it need not even be where-
oblivious. In other words, in order to do better than the n?
bound (and require the intricate proof technique above), a
VLSI layout must either be a non-boundary layout or it must
be exceeding narrow (say /gn by n/lgn). Some real VLSI it
appears, will be non-boundary layouts. In any event, it does
offer a new technique for obtaining non-trivial lower bounds.
For boundary layouts, we can show that

AT2 > QUn).

This can give good lower bounds for problems where
I > 1 (n?) may be 100 difficult 10 prove or even false! We
actually use this technique in the nex1 section.

304

4. Lower Bounds for Predicates

Previous lower bounds for VLSl have been for n-
input, n-output functions. The proofs have depended on
showing that a large amount of information must flow
between the inputs and the outputs because each output must
depend in some non-trivial way on all inputs. This 1ype of
proof obviously will not work when there is only one output.
However, the proof technique of the previous section is more
general than this and aliows AT? > Q(n2) for a variety of
predicates. Because we have obtained many such results we
will only state them here and will only give a detailed proof of
one of the more interesting ones. All lower bounds assume
where-oblivious input-output schedules.

Selection/Equality testing: Given 2n input bits. divide them
into two halves of »n bits each. The first half is used for selec-
tion: it has n/2 zeros and n/2 ones. The value of the predi-
cate is 1 if the n/2 bit number obtained by selecting those bils
in the second half of the input at positions corresponding to
the zero bits in the selection mask is equal to the n/2 bit
number obiained in the same way from the one bit positions
in the selection mask.

A deterministic contexi-free language: The value of the predi-
cate is 1 if the inputs belong 10 the DCFL xcx®. with x a
word from {0,1}°, but *'s can occur anywhere in the input
and must be ignored. This problem can be encoded 10 be a
predicate n binary strings for which AT2 > € (n) (This result
obtained with M. Harrison.)

Panern Marching: Given a binary text string of (1—a)n biis
and a pattern of an bits, with 0 < a < 1, determine if the
patiern occurs in the 1ext.

Facior Verification: Given binary numbers x.v. and - of un.
Bn, and (l~a—B)n (with 0 < o8 < 1) determine whether
or not Xy = =. A harder problem: given an » bit number x.
determine whether or not x = 32 for some integer v. (This
result obtained with Ravi Kannan.)

The proof techniques in Section 3 allow AT> > Q(x°)
lower bounds 10 be proved for all of the above problems.
though each proof is detailed and requires some probicm-
specific facts. Typically the proofs break into two paris
depending on whether the two parts of the input which arise
naturally in the problem fall mainly on opposite sides of the
dividing line (in which case information aboui the inputs must
be transferred across the cut), or mainly on both sides of the
dividing line (in which case information about intermediate
computations must be transferred across the cut).

The 100!s of the previous section can also be used 10
prove weaker lower bounds for more difficult problems. For
example. an interesting problem for which no non-trivial
lower bound has previously been known is

Binary Determinani: Given a square binary matrix with a 1ol
of n bits, compute the value of its determinant (mod 2).

We have been able to show that the lower bound
ATY > n3 2 must hold for this problem. using the combincd
*‘boundary’’ argument mentioned at the end of the last sec-
tion. This is a rare example of a lower bound which could
not be obtained using the trivial argument for “*boundary lay-
outs’’ mentioned above. We believe the true bound 10 be »-
for this problem. but the question remains open.

Another problem which remains open is Primaliy:
Given an n-bit number, determine whether or not it is prime.
This problem leads, after the ‘‘crossing sequence’’ argument
has been applied, to an open conjecture in number theory,
which seems difficult 10 prove, though likely 10 be true.

Finally, it is possible to prove some general results
about combining simple functions that provide strong evi-
dence that the VLSI complexity is unusual. In particular, we
have n-input functions f and g which can be computed in
ATY = 0(n) but which become difficull when combined
according to the fundamental rules:

Union: The predicate which is 1 if either f(x) or g(x) is 1.
Composition: The function f (g (x)).

(Of course different functions are used for each of these
results.)

These results seem to suggest that the ‘‘top-down’’
design philosophy of decomposing complicated functions into
simpler ones, then combining the results, may not be a good
strategy for VLSI: it may be harder 10 combine results than 1o
compute them. The “‘integration’ in VLS] may need to apply
10 algorithm design as well as fabrication technology. It is
also possible to show that alphaber change can dramatically
decrease the complexity. There is a function f(x) with
AT2 > 02 (n?) if inputs can take on values from (a.b,c.d}):
but if these are represented as two bits, then AT2 = 0(n). In
the first case it is equivalent 10 allow the inputs to be
representied as two bits but require them to be near each
other on the layout. It is interesting to note that in Thomp-
son [8] it is assumed that inputs to a FFT layout come from a
non-binary alphabet. This result shows that such assumptions
can affect the complexity greatly.

We will now prove that there are two f and g so that
each can be done in AT2 = 0(n) and yet their union requires
AT?2 > 0 (n?). But first we note that the existence of such
funciions allows us to easily construct F,G so that each is
easy but whose composition is hard. To do this just define:

Glilx)= (x,g(x))

and
Fixy)= f(x)Vy
Then the point of these definitions is that

F(Gx))= f(x)V glx).

Lemma 1: For each n there is a n-vertex cubic graph G,
such that
t G,
(2) for any partition of the vertices into two sets of size at

least n/3 there are at least en edges between these
classes where ¢ is an absolute positive constant.

, is 3-edge colorable;

Part (2), of course, means that G, is not easily separated.
We will not give a detailed proof now: a full proof can be
based on the probabilistic method of Erdos [3].

We plan 10 use G, 10 construct our functions S and g.
Let G, be 3-edge colored with the colors red, green, and
blue. Also, let us associate an input x, with each vertex i of
" G,. Then define the predicate S, (a is red or green or blue)
as follows:

S, il and only if each edge (/,/) that is colored a has x, = x,.

305

Thus, S, if and only if all the red edges have their end
points equal.

Lemma 2: For each n and any a.8 colors the predicale
S,V §; can be done in AT? = 0(n).

Thus, the union of any two of these predicates is easy.
(Note, this lemma uses one gate with large fan-in; without
this the bound becomes O(nig2n).) The proof of our result
depends then on:

VS

rreen

Lemma 3:
AT > Q(nd).

Clearly, once this is proved we are done: just let f(x) be S,
and g(x) be S,,. V S,

Lreen

For each n, S,V S, requires

Proof of Lemma 3:

Consider a layout for S,., V S, V Syeen- Construct
the L,R partition as described in Section 3 (assume n even).
Now by lemma 1, there are at least en edges with ong L end
point and one R end point. Clearly, at least 1/3 of these are
the same color: without loss of generality let us assume that it
is red. Let these red edges form the set E.

We can now select (assuming n is large enough) one
blue edge (b,.b,) and one green edge (g,.,g,). Now fix these
inputs so &, = b, and g, # g,. Then §,., V Sy V Sipeen If
and only if S,,. If we fix all those red edges (r,.ry) with
both endpoints L or R, so that ry = ry, then finally,

Sn'd \Y Sblm' VS

Rreen
if and only if
X, =X, for all (i,j) in E.

Moreover, these x;'s are all unspecified and unrelated. Thus.
the computation of S,., V Sy, V S, fequires the checking
of en/3 distinct pairs of inputs for equality. Since in each
such equality, one is L and one is R, a simple crossing
sequence argument completes the proof of the lemma.

5. Extensions to the Model

In this section, we will discuss a number of extensions
to the model of Section 3. The first two of these are sug-
gested by the analogy with one-tape Turing Machines.

(a) Nondeterminism

A careful examination of our lower bounds shows that
they still hold if the VLSI layouts are nondeterministic. While
the idea of nondeterministic VLSI is faniasy. it is a comment
on the basic nature of the lower bounds that they would hold
even if nondeterministic VLSI layouts could be built. In a
sense our lower bounds make no assumption on how things
are computed on the left and right part of the layout. only
about how they exchange information about their results. We
will return 10 this later in this section.

(b) Rsndomness

In a similar vein. it is possible to prove that the lower
bounds that have been proved for n-input, n-output functions
also hold when randomness is aliowed. This resull is more
difficult 10 prove. and it is more relevant to practical situa-

tions, since efficient algorithms which exploit randomness
have recently been invented for some problems, and it is rea-
sonable to contemplate the fabrication of VLSI circuits that
implement randomness {probably more reliably than the
*‘random number generators’' in widespread use on general-
purpose computers today).

The crux of this result is the following problem: can we
use randomness to move an n-bit number from one place to
another with less than 27 crossing sequences. Note, random-
ness does help with the related but simpler problem: verify
that two n-bit numbers are equal.

Now assume that randomness does help and it is possi-
ble 10 do it with m < 2” crossing sequence. Let

P,j = Prob [on input i the j' crossing sequence occurs]

(i=1,..2"and j = 1,....m). Clearly,

Sp -1 m

i=1
for alt i = 1,....2". Also let

SA_/ = Prob [the k' crossing sequence outputs j]

(k=1,....mand j=1,.,2").

By output we of course mean that j is transferred. Again, it
is clear that

t"s‘, -1 2)

a=1

for all k = 1.....m. We insist that the probability of correctly
answering is 2 & > 1/2. Thus,

ﬁP,‘S‘, P (3)
A=l

for all i = 1....,2". We next claim that for each input j. there
is a crossing sequence k so that §;, = 8. Fix an input j and
assume that S,, < & for all k. Then by (1),

ipiksh <b
hel

which contradicts (3). hence, our claim is true. Let »(j)
satisfy for all inputs j,

Sy, = 6 (@)

h(j) exists by our claim. Since m < 2" by the pigeon-hole-
principle it follows that

hij)) = hijy

for some j; = j,. Therefore, it follows that

"
25‘_, 2 Suupdi ¥ Suyia 2 2%
=1
where k = h(j,) = h(j,). however, this contradicts (2) and it
follows the assumption that m < 27 is false.

Thus, randomness does not help in transferring infor-
mation from one place 10 another. However, the results of
Section 4 on predicates are more sensitive. For example. the
lower bound on the facior verification predicate does not hold
when randomness is allowed. That such examples should
exist is of course suggested by the analogy to one-tape Turing
Machines. There, as here, randomness is sometimes more

306

powerful than nondeterminism.

(¢) Multi-arrivals

Still more realistic is the possibility of enhancing the
efficiency of VLSI circuits by allowing for more general
input-output schedules. If schedules are not where-oblivious,
then it is possible 10 do the **hard’’ n-input, n-outputs func-
tions in AT? = 0(n). A more fruitful and realistic direction i
to weaken one of our basic assumptions an allow inputs 10
arrive multiple times. Again, we can show that the lower
bounds which have previously been proved for n-input, n-
output functions still hold. The proof of this result is some-
what more complicated than our other VLS! lower bound
proofs, because it requires multiple culs of the VLSI fayout.

This last extension is interesting since the results on
union, composition, and alphabet change do nor hold if such
multiple arrivals of the inputs are allowed.

(d) Other Measures

. So far, we have exclusively measured VLSI layouts by
AT, What about other measures, such as 47*? The follow-
ing general meta principle turns out to be useful:

If AT? > 0 (n?) is proved by the crossing sequence method for
where-oblivious layouts. then AT+ > 2 (n' = 2)
for layouts thait are also when-oblivious provided 0 € o € 2.

Thus, provided we are willing 10 assume that only when-
oblivious input-outpul schedules are allowed. we can to see
how well 4 can be traded-off for T.

Another class of measures for VLSI is the data rate D
notion of Vuillemin. He shows for certain n-inpui. n-outputl
functions that 4 > 0 (D2). He claims that AT2 > Q(n)is
weaker, but this is open as far as we can see. The following
melta principle may also be of interest:

If AT2 > 2 (n?) is proved by the crossing sequence method. then
A > 0D,

Thus, his results on data rate are really just results about AT?
unless he can introduce a new proof technique.

We can also relate 472 to a notion of boolean circuit
complexity. Let P(/) denole the size of the smallest planar
boolean circuit for / (see [6]). Then,

Theorem: AT > Q(P(f)) for when and where oblivious
layouts.

The proof of this is a simple one: we musit just show how 10
simulation a VLSI layout of area 4 and time T by a boolean
planar circuit. The only difficulty is that the layout may use
feedback and this is not allowed in the planar circuit. Thus.
the 0 (n?) results obtained in [6] can be used 10 get lower
bounds on 472, However, note that these results are weaker
than those obtained here by crossing sequences. (This
resuit had been obtained earlier by J. Savage.)

Finally, a word on the limitations of the crossing
sequence method. Consider the problem of connectivily:

Given an Van xVu adjacency matrix of a graph
(undirected).

Determine whether or not the graph is connected.

For awhile, we tried in vain (o use the crossing sequence
method to prove that this problem takes 4T° >) (n°). We
then made two simple observations. Fix an arbitrary L.R
partition of the entries of the input (the adjacency maltria):

(1) If the graph is connecied, there is a short sequence of
messages between L and R that can prove this.

(2) If the graph is disconnected, there is also a short
sequence of messages between L and R that can prove
this.

In (1) we have L guess a spanning tree and send it to R along
with those edges he has; R then checks that he has all the
remaining edges. In (2), we have L guess the two connected
components. Afier checking that none of his edges join
them. he sends the components to R for a similar check.
Clearly. both require at most 0('n Ign) bits.

The key then is 10 see that this means that there is a
non-deterministic VLS1 layout with 472 = ¢ (n?) for both con-
nectivity and its complement. Since the crossing sequence
method cannot distinguish deterministic from non-
deterministic layouts, we have proved:

Either
AT2 > 1 (n?) for connectivity by a new proof technique
or
ATY = 0(n?).

It has turned out, especially among graph properties. that this
is not an isolated phenomenon. We can prove a similar faith
for the following predicates:

has a cvcle

planarity

strong connectivity

2-colorability

has a perfect maiching
and others. Thus, each of these and their complements can
be recognized with AT2 = 0(n?) by non-deterministic VLSI
layouts. Either AT2 > Q(n?) by a new proof technique or
ATY = 0(n?) for a real VLSI layout. For connectivity. as we

pointed out in Section 2, the answer is known; for the rest it
remains open.

6. Acknowledgements

We wish 10 thank J. Vaides and B. Arden for the help-
ful comments on this work. We also thank R. Kannan and
M. Harrison and A. Odlyzko for allowing us 10 include resulis
oblained earlier with them. Finally, we thank the Princeton
students of "511" for their helpful comments.

7. References

(1) H. Abelson and P. Andreae, ‘‘Information Transfer
and Area-Time Tradeoffs for VLSI Muliiplication,”
CACM 23 pp. 20-23 (January 1980).

[2] R. P. Brent and H. T. Kung, “‘The Area-Time Com-
plexity of Binary Multiplication,”” Report No. CMU-
CS-79-136, Dep1. of Comp. Sci., Carnegie-Mellon U.,
Piusburgh, Penn. (July, 1979).

307

131

)

(s

l6]

17

(8

{9]

[10]

1

P. Erdos and J. Spencer, Probabilisiic Methods in Com-
binatorics Academic Press, 1974.

F. C. Hennie, **On-line Turing Machine Computa-
tions,”" IEEE Transaciions on Elecironic Computers EC-
15 pp. 35-44 (1966).

J. E. Hopcroft and J. D. Ullman, Formal Languages and
Their Relation 10 Automara, Addison-Wesley (1969).

R. J. Lipton and R. E. Tarjan, ‘‘Applications of a
Planar Separator Theorem.” S/4M J. of Computing
August 1980, vol. 9 no. 3 pp. 615-627.

J. E. Savage, **Area-Time Tradeoffs for Mairix Muhi-
plication and Related Problems in VLSI Models.”” Proc.
17th Allerion Con/f. on Communication, Control, and Com-
puting, pp. 670-676 (Oct. 10-12, 1979),

C. D. Thompson. **A Complexity Theory for VLSI,™
Report No. CMU-CS-, Dept. of Comp. Sci.. Carnegie-
Mellon U., Piusburgh, Penn. (Sep1. 16, 1979).

C. D. Thompson, **Area-Time Complexity for VLSI.™
Procs. 11th ACM Ann. Symp. Th. Comp.. pp. 81-88
(April 1979).

J. Vuillemin, **A Combinatorial Limit 10 the Comput-
ing Power of VLSI Circuits.”" Procs. 2/st Ann. Symp. on
Foundations of Comp. Sci., pp. 294-300 (Oct. 12-14.
1980).

A. C. Yao, *‘Some Complexily Questions Related 10
Distributed Computing,’ Procs. 11th ACM Ann. Symp.
Th. Comp., pp. 209-213 (May 1979).

