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Abstract 

Given a function f over a finite domain D and an arbitrary starting point z, the sequence 

~c, f(z), f ( f (x) ) , . . ,  is ultimately periodic. Such sequences typically are used for constructiong 

random number generators. The cycle problem is to detemfine the first repeated element fn(~) 
in the sequence. Previous algorithms for this problem have required 3n operations. In this 

paper we present an algorithm which only requires n ( 1 - 1 - O ( 1 / v / M ) )  steps, if M memory 

cells are available to store values of the function. By increasing M,  this running time can be 

made arbitrarily close to the information-theoretic lower bound on the running time of any 

algorithm for the cycle problem. Our treatment is novel in that we explicitly consider the 

pertbrmance of the algorithm as a function of the amount of memory available as well as the 

relative cost of evaluating f and comparing sequence elements for equality. 

1. INTRODUCTION 

Suppose that we are given an arbitrary function 

f /which maps some finite domain D into D. If we 

take an arbitrary element z from D and generate 

the infinite sequence fo(,~), f l  (z), f2(z), . . . .  then we 

are guaranteed by the "pigeonhole principle" and 

the finiteness of D that the sequence becomes cyclic. 

That is, for some l and c we have l q--e distinct 

values . /°Cz) , f 'Cz) , . . . , , f t+c-ICz ) but f t+c(z)  -~ 

ft(z). This implies, in turn. that fi+c(z) = fi(z) 
for all i > l. The problem of finding this unique 

pair (l, c) will be termed the cycle problem for f and 

z. Tile integer c is the cycle length of the sequence, 

and l is termed the leader length. Similarly, tlie ele- 

ments f~(z), f tWl (z ) , . . . ,  f t + c - I ( z )  are said to form 

the cycle of f on :~ and f°(z),  f t ( x ) , . . . ,  f t - I ( x )  are 

said to form the leader" of f on x. For notational 
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convenience, the number l --{- c of distinct values in 

the sequence will be denoted by n. 

The cycle problem arises when analyzing the 
effectiveness of certain random number generators 
that produce successive "random" values by applying 

some function to the previous value in the sequence 

[1, Section 3.1]. Solving the cycle problem gives 
the number of distinct random numbers which are 

produced from a given seed. It is often possible to 
design functions that'have null leaders and maximum 

cycles for all starting values, but such functions may 

be difficult to implement correctly, An algorithm 
for the cycle problem can be of use in checking 

the cl3aractefistics of an unknown random number 

generator. 

One method for cycle detection has been given 

by Floyd [1, Exercise 3.1-7]. The idea is to have two 

wlriables taking on the values in sequence, one being 

advanced twice as fast as the other, as shown in the 

program of Figure 1. 
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y~-'--Z~--X;" 
repeat 

Y ~ f(Y); 
y(y(.)): 

until y ~-- z ; 

Figure 1. Floyd's algorithm. 

This algorithm stops with y = fi(x) ~ f2i(z) = z, 
where i is the smallest multiple of e which is greater 

than or equal t o l .  I f l  = c.n t - I  then a total of  
i 

6c = 3(n - -  1) function evaluations are performed. 

This is particularly objectionable when the cost of 

evaluating f is high relative to the cost of comparisons. 

Another method, due to Gosper, et. al., was 

designed to circumvent the overhead of advancing 

two independently operating "copies" of the gener- 

ating function as required in Floyd's method. Their 

method is to save certain values of the sequence in 

a small table and to lookup each new value to see if 

it has previously been generated. The table update 

rule is to save the ith value generated in TABLE~'], 

where j is the number of trailing zeroes in the bi- 

nary representation of i. This method can require 

as many as I + 2c function evaluations, which, in 

the worst case, can be ~n. Moreover, it requires an 

equal number of table lookups, which is undesirable 

when the cost of  comparisons is high relative to the 

cost of  evaluating .L 

These algorithms are suitable for detecting the 

existence of a cycle, and the value of c can be 

found by proceeding around the cycle one additional 

time. Of course, this may be undesirable if c is very 

large. Furthermore, neither algorithm has provision 

for directly finding l except by starting back at the 

initial value. 

In this paper, we develop an algorithm that solves 

the cycle problem using n ( l  .q-O(l/v/- l~))  function 

evaluations in the worst case, where M is the amount 

of memory awtilable for storing gcnerated function 

values. The algorithm does O ( n / ~  -t- M log ~ r )  

memory operations. In Scction 2, it is shown that 

any algorithm for the cycle problem requires at least 

n fimction evaluations, so the new algorithm can be 

made as close to optimal as desired. Our algorithm 

is developed in Section 3 in two parts: one algorithm 

detects the cycle and a companion algorithm recovers 

the values o f / a n d  c. The worst case analysis is given 

in Section 4. A generalization of the problem and 

some concluding remarks are offered in Section 5. 

2. A LOWER BOUND 

In this section we establish a lower bound on 

the complexity of the cycle problem by showing that 

any algorithm for the problem must generate each 

of the values on the leader and the cycle at least 

once. It should be emphasized here that we regard 

the function f as a "black box". The only method 

for obtaining information about its behavior is by 

evaluating f on points of  D. 

Theorem 1. Let A be an algorithm for the cycle 

problem, and let (f, x) be an instance of the cycle 

problem with solution (l, c). Then A evaluates f at 

• least l ~ c times when run with input (f, x). 

Proof." Let yl, ~ , . . . ,  yi be the sequence of elements 

of the domain o f / o n  which f is evaluated during 

A's execution on (f, x). (Clearly it must generate 

at least one value, so we may assume that i > 0 

and l + c > I for the rest of the proof.) Since the 

only information that A can obtain about a function 

is obtained by sampling the value of that function 

for various arguments, it must be that any function 

agreeing with f on the V'S has the same period and 

leader as f .  

However, if i ~ l + c it is possible to find a con- 

tradiction by constructing a function f which agrees 

with f on the y's but wllich has a different leader. To 

construct such an ],  consider the sequence of elements 

.l°(x), f '  (x ) , . . . ,  fl+'~--'(a;) which by definition of l 

and c, contains l 4- c distinct values. If i ~ l .~- c 

then, by the "pigeonhole principle" there exists some 

/o, with 0 < / o  ~ l n t- c - -  I, for which f~'(x) does 

not occur among the y's. If I = 0, define ] by 
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?(fi°(~:)) = f(x) and 7(z) =: f(z) for z ~4 rio(z). 
This function has a leader of 1, not zero. If I > 0, 

define .f by ](fi"(x)) == x and y(z) = f(z) for z 5¢ 

fin(x). This function has a leader of O, not greater. 

The assumption i <i l + c implies that A could 

not have solved the cycle problem, so we must have 

i > t + c .  I 

3. THE ALGORITHM 

Theorem 1 says that any algorithm for the cycle 

problem must have a lamning time exceeding ntf 
where tf is the (assumed constant) time to perform 

one evaluation of f .  Clearly, an algorithm could be 

designed which achieves a running time of ntf-t-  
O(n log n) by employing, for example, a balanced 

tree scheme to save all the generated elements. Such 

an algorithm is unsatisfactory for at least two reasons. 

First, it is unrealistic to assume an unlimited supply 

of memory. Second, the analysis does not take into 

consideration the relative cost of evaluating f and 

comparing two domain elements for equality. Let us 

therefore construct a framework in which these latter 

considerations can be addressed. We shall be par- 

ticularly interested in the tradeoff between memory 

size and execution time. 

Let TABLE be an associative store capable of 

storing up to M pairs (y, i) of domain elements and 

integers. Both elements of the pair are keys in the 

sense that at most one pair can occur in TABLE with a 

given first (or second) component. Let t~ be the time 

needed to insert or delete a pair from the TABLE, i.e., 

to update the TABLE, and let t~ be the time needed 

to search the TABLE for a given key. Depending 

on the implementation of TABLE, t,, and t, might 

be constants, logarithmic functions of M or even 

linear functions of M. (See Section 5.) As mentioned 

above, tf is assumed to be a constant, and all other 

operations of the algorithm are assumed to be free. 

Within this model, we are ready to consider an 

efficient algorithm for the cycle problem. The idea 

is to limit the number of operations performed on 

TABLE by avoiding the store and lookup operations 

for most generated fi.mction values. Rather, these 

operations will be performed only sufficiently oRen to 

guarantee detection of the cycle. To this end, we shall 

introduce two parameters, b and g. Figure 2 exhibits 

an algorithm which only stores every bth function 

value in TABLE and which only does lookups after 

every g stores (at which point it does lookups on b 

consecutive values). 

i ~-- O; 
y + - x ;  
repeat 

if i ~ 0 (rood b) then insert (y, i); 
y ~-- f(y); 
i4-- i -~- l ;  
if i • b (rood gb) then lookup (y, j ) ;  

until found; 

Figure 2. Preliminary version of the algorithm. 

Here the procedure lookup sets found to false if y 

is not in TABLE, otherwise it sets found to true and 

j to the minimum value of j for which (y, j )  is in 

TABLE. The procedure insert puts (y, i) into TABLE 

without checking to see if there is another entry with 

y as the first component. The modulus computations 

in this program are used for clarity: an actual im- 

plementation would use simple counters instead. 

The program must halt because once the cycle is 

reached, at least one value out of every block of b 

consecutive values looked up must be in TABLE. It is 

possible for the algorithm to overshoot the point at 

which the cycle first returns to itself, but the algorithm 

will always detect the cycle before the (n %-gb)th 
evaluation o f f .  The running time is thus bounded by 

t. 

It is interesting to note that a dual algorithm can be 

developed by interchanging the roles of lookup and 

insert in Figure 2. Many of the results of this paper 

can be carried through for the dual algorithm as well 

(with the roles of b and g interchanged). In fact, for 

many search strategies, insert might be implemented 

76 



by doing a lookup first, so it is ternpting to contemplate 

an algorithm which involves only one operation on 

TABLE. However, the memory management and the 

analysis become quite complicated in this case, and it 

is convenient to keep the lookup and insert lhnctions 

separated. 

We could arrange to have the algorithm spend 

virtually all its time doing the (unavoidable) task of 

stepping f by choosing b and g suitably, were it not 

for the fact that TAB L E will soon fill up. Accordingly, 

we introduce the following memory management 

mechanism: whenever TABLE gets filled, remove 

every other entry from TAB h E, double b and continue. 

This has the same effect as restarting the program 

from the beginning with the larger value orb, with no 

additional function evaluations being rcquii'ed. The 

algorithm thus adapts its behavior to the problem at 

hand. The final version of the algorithm is shown 

in Figure 3. Note that b is now a variable of the 

algorithm, while g is still a parameter. We shall See 

later how to best choose the value of g. 

i ~ 0 ;  
y~- -x ;  
b ~--- 1; 
r n ~ 0 ;  
repeat 

i f i ~ 0 ( m o d b )  a n d m = M  then 
begin 

purge (b); 
b ~ 2b; 
rn ~ m/2;  

end; 
if i _~ 0 (rood b) then 

begin 
insert (y, i); 
m ~ m - - ~ - l ;  

end; 
v , -  [ (u);  
i ~ - - i - t - l ;  
if i < b (mod g b) the,, lookup (y,j);  

mltil found; 

Figure 3. The cycle detecting algorithm. 

Memory management is conlrollcd with a wlriable 

m, which counts the number of  items currently in 

TABLE, and a procedure purge (b), which removes 

all cntries (z, j) with j /b  odd fiom TABLE. 

This algorithm does not perfbrm cxactly as if the 

simple algorithm of Figure 2 had been run from 

the bcginning with the final value of  b, because of 

subtle interactions between the lookup, insert, and 

purge procedures. To make the algorithm perform 

properly, we need to  introduce suitable restrictions 

on the choice of g, as shown in the fbllowing lemmas. 

Lemlna 1. If M is a multiple of 29, then the value 

of i when purge is called satisfies i _~ 0 (rood 2gb) 
and i = 2~M for some integer k :~ 0. 

Proof: By induction on the number of memory purges, 

it is clear that the (H -q- 1)st call to purge happens 

with i =: 2kM, and changes b from 2 t: to 2 k+l.  That 

is, purges occur when i ~ bM. If M is a multiple 

of 2g, then bM is certainly a multiple of 2gb. | 

Lemma 2. The value of b when lookup is called is 

i / M  rounded up to the next power of  2. 

Proof." As in the proof of Lemma 1, we have b = 
2 k+t  for 2kM < i ~ 2k-HM. | 

Lemma 3. Whenever lookup, insert, and purge are 

called during the execution of the cycle detecting 

algorithm, we have (if(x), j )  G TABLE if and only 

i f O ~ j < : i  a n d j _ ~ O ( m o d b ) .  

Proof." Obvious by the definition of purge. | 

Lemma 4. If M is a multiple of  2g, then the cycle 

dctccting algorithm terminates with 

n _< i < 2)bn, 

where bn is n / M  rounded up to the next powcr of  

2 (i.e., the value of b when i is n). 

Proof: Since we must have i 2> j and f i ( x )  = fJ (x)  
at tem~ination, it is clear fi'om tlie definition of  n 

that i cannot be less than n. To complete the proof, 

we shall show that i .< n-~-(g+2)b,, by contradiction. 

Suppose, therefore, that the algorithm is still run- 

ning when i becomes n q- (g -t-- 2)b,,. Let ~ be the 
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unique integer such that n < io ~ n + gb,~ and 

/o ~ 0 (rood gbn). Then io is the first value of i 

past i = n for which file algorithm might attempt to 

lookup an entire block of b,, consecutive values. By 

Lemma 1,/o is also the first value of i past i = n at 

which a memory purge could take place. Two cases 

now arise. 

I f /o  ~ 2kM then Lemma 1 guarantees that a 

purge will not occur during the block of b,, lookups 

which are performed starting at /o. Since /o ~ n, 

the values looked up arc: the same as the bn values 

starting at / o -  c and, by Lemma 3, one of them 

must be in TABLE, so the algorithm must halt with 

i ~ /o + b,~ -< n + (g + 1)bn. This contradicts 

the assumption that the algorithm is still running at 

i -~. n + (g + 2)bn, 

I f /o  ~ 2 kM then a memory purge will occur 

after the lookup for fio(:~). By Lemma 1, we also 

know that /o -~- 0 (rood 2gb~). Thus, immediately 

after the purge, b -~- 2b,~ and io ~ 0 (mod gb), The 
algorithm will therefore proceed to perform Iookups 
on 2b,~ values starting at/o. As before, one of these 

values must bc in IABt.E, causing the algorithm to 

halt with i ~ / o  + 2bn ~ n + (g + 2)bn, again in 

contradiction to our assumption. | 

The condition that M must be a multiple of 2g 

provides a convenient bound on the overshoot and is 

csscntial for the proper performance of the algorithm. 

If this condition does not hold, it is possible to find 

l and c for which the algorithm gets caught in a long 

loop where each block of lookups misses finding the 

cycle because of the previous purge. 

These lemmas describe the performance of the 

algorithm well enough for us to calculate its worst 

case running time. Intuitively, we expect that the 

time required should decrease as g and M increase. 

A small lookup interval implies frcqucnt lookups but 

a short overshoot past the bcginning of the cycle; a 

large interval limits the numbcr of lookups but at the 

risk of allowing a long overshoot. 

Befbre proceeding to the detailed analysis we need 

to finish the solution to the problem: determine l 

and c once the cycle has been detected. 

The cycle detection algorithm halts as soon as it 

discovers a pair i > j of  integers for which f/(x) = 
fJ(z). This implies that j > l and i ~ j (modc) ,  

but we need to use our stored TABLE values to find 

the exact values of l and c. The variety of possible 

situations makes it n,ecessary to design this part of  
the algorithm carefully. Figure 4 shows a companion 

algorithm to the algorithm of Figure 3 which recovers 

the solution (l, c) once the cycle detection algorithm 

has terminated. 

i t 4---- gb[i/gb] - -  gb; 
j '  j - (i  - it); 
if i I > j 

then c ~ i - - j ;  
else  c  smaUest c with/ ( ) 

l ~ f +smallest l' with fJ'+t'(x) = fe+e(x); 

Figure 4. The recovery algorithm. 

In this program, i t points to the beginning of the first 

full  block of lookups previous to the block containing 

i and f is the same distance behind j as i t is behind i. 

Since i t =_ 0 (rood gb), we know from Lemma 3 that 
fi'(:~) is in TABLE. Although fJ'(x) is not necessarily 

stored in TABLE, it can be found by doing a lookup 
for f~[J'/bJ(x) and then applying f exactly f (mod b) 

times. This takes at most to + 2b,,tf time because the 

final value of b is either b,~ or 2bn. 

Lemma 5. The recovery algorithm correctly finds e. 

Proof" Since f i (x)  = fJ(x), we have i ~ j (mode) ,  

that is, the cycle size c divides i -  j .  If  i t 
j ,  then i - - j  < gb + b < (g + 1)2b,, and the 

algorithm proceeds by brute force. If i t > j .  

then an entire block of unsuccessful lookups for 
r e ( x ) , . . . ,  fi,+b,,--I (z) was performed between j and 

i, and the cycle must have been traversed only once. 

Thus c is exactly i - - j .  | 

Lemma 6. The recovery algorithm correctly finds I. 

Proof" Clearly f < l ~ j and i t < l + c  ~ i or else 

the algorithm would have terminated earlier. Since 
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i ~ j (mod c) and i - -  i ~ =~ j -7 jr, we have j~ ~. i t 

(rood c). Proceeding forward in synchronization from 

j, and i ~ will lead to the first duplicate value. | 

It is possible to design faster recovery igrocedures 

for many situations. For example, c could be found by 

applying "divide and conquer" to the prime decom- 

position of i - -  j ,  and l could be found by a bi- 

nary search procedure. However, the recovery time 

is heavily dominated by the cycle detection time, 

so such sophisticated implementations might not be 

worth the effort. 

4. WORST CASE ANALYSIS 

The algorithms of the previous section can provide 

an efficient solution to the cycle problem if the 

parameter g is chosen intelligently. In this section, 

we shall analyze the running time of the algorithms 

to find the best choice of g. We shall concentrate 

on choosing a value of g which minimizes the worst 

case running time. 

To begin, we need to add up all the costs in- 

volved when the algorithms are run to produce the 

solution (l, c) to a particular instance (f, z) of the 

cycle problem. 

Theorem 2. In the worst case, the running time of 

the cycle detection algorithm is 

M t / +  + ruM log 2 4x/2n 
M 

The additional time required to find the values of l 

and c is at most 

•  (39 + I )  
n M t / +  ts. 

Proof." For the cycle detection algorithm, the first 

term follows immediately from Lemma 4, since bn 
could be as large as 2n/M.  For the second term, 

we need to count t,, for each elemcnt remaining in 

TAB k E (for its insertion) and 2t,, for elements entered 

in TABLE and subsequently removed in purge. The 
algorithm eithcr performs log 2 b,, + 1 purges and 

finishes with a half full TABLE for a totM cost of 

t,,( ~ M + M(log. 2 b~-q- 1)), or else it performs log 2 bn 

purges and finishes with a TABLE which is more 

than half full, for a total worst case cost of t , (M + 
M log 2 bn). The given bound follows fi'om Lemma 

4 as above. Note that the worst case is achieved for 

infinitely many values of I and c. 

In the recovery algorithm, gb function evaluations 

could be required to find c, mid 2~b function evalua- 

tions may be needed to find 1, with an additional 

b function evaluations and 1 table search needed to 

find fJ'(x). The final value of b is either bnn or 2bn, 
and is therefore bounded by 4n/M. | 

To find the value of g which minimizes the total 

running time, we would like to set the derivative 

with respect to g of the expression for the total from 

Theorem 2 to zero and solve for g. However, there is 

a subtle difficulty involved because we also have the 

constraint that ~ must divide M/2.  (As an extreme 

example, suppose that M / 2  is prime.) To make it 

possible to find a reasonable value of e, we shall 

introduce the further restriction that M should be a 

power of two. 

Theorem 3. If M is a power of  two, then the total 

running time of the algorithms to solve the cycle 

problem will be less than 

if g is chosen to be the closest power of two to 

x/ (M + 4)t / ldt: .  

Proof." It follows immediately from minimizing the 

total of the running times given in Theorem 2 that 

the given choice of g minimizes the total running 

time to 

which implies the stated result, since t/ is assumed 

constant. The asymptotic result is not affccted by 
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restricting g to be a power of two, which insures that 

it divides M/2.  | 

Note, in particular, that a balanced tree implemen- 

tation will have t~ --= O(Iog M), and an address cal- 

culation (hashing) method could have t.~ = O(1). In 

both cases, the w()rst case running time will approach 

nt/ as M gets large. For the typical case where 

I + c ~ - >  M,  the algorithms can be made to run 

in very nearly optimal time by increasing M. 

5. CONCLUDING REMARKS 

We have dealt exclusively with algorithms with 

good worst case performance for solving a particular 

instance of the cycle problem on an unknown func- 

tion. The problem is also interesting under other 

variations of the model. 

If we take the function to be random in some 

sense, then we can talk about an average case measure 

of complexity. R. W. Floyd has pointed out that 

studying the probabalistic structure of random func- 

tions over D could lead to savings on the average. 

For example, l is relatively large in this case, so it 

may not be worthwhile to save or lookup values at 

the beginning. 

Another variation is to consider the case where 

the cost of computing fJ(x) is t I, independent of j 

and z. The algorithms of this paper will work in this 

case, with a worst case running time (corresponding 

to Theorem 3) of O(nt.t/M ). There may exist algo- 

rithms customized for this variant which could achieve 

better performance. 

In general, the domain D can be partitioned by 

f into disjoint sets with the property that all points 

in each set lead to the same cycle. Properties of  the 

cycle structure (i.e. the number of sets, their sizes, or 

the sizes of the cycles) can bc found by solving the 

cycle problem on all points of D. The algorithms of 

this paper can bc adapted to avoid rctravcrsing long 

cycles by maintaining versions of TABLE for each 

cycle. 

It is possible to generalize the problem of finding 

cycles in the following way. As before, we are given 

a unary function f ,  only now we allow the domain 

of f to be infinite. We suppose that we are also 

given a binary predicate P on D × D. The problem 

is to find the smallest n for which there exists an 

I < n such that P(f '(x),  ft(x)). In the absence of 

any further information, it is easy to show that this 

problem requires (~) evaluations of  P .  However, i f P  

is preserved by f, that is, P(a, b) implies P(f(a), f(b)), 
then the algorithms of this paper can be made to run 

in time n(tf--t-O(tp)), where tp is the time nceded to 

evaluate P.  If we extend the domain D to be infinite, 

then the cycle will still be detected if one exists. It 

is interesting to note that the algorithms of [1] and 

[2] simply do not work for this problem. 

It remains an open question whether an algo- 

rithm exists for the cycle problem which uses a finite 

amount of memory and an optimal number of func- 

tion evaluations. 
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