
T h e C o m p l e x i t y of F i n d i n g P e r i o d s

Robert Sedgewick* Thomas G. Szymanski

Brown University Bell Laboratories
Providence, Rhode Island Murray Hill, New Jersey

Abstract

Given a function f over a finite domain D and an arbitrary starting point z, the sequence

~c, f(z), f (f (x)) , . . , is ultimately periodic. Such sequences typically are used for constructiong

random number generators. The cycle problem is to detemfine the first repeated element fn(~)
in the sequence. Previous algorithms for this problem have required 3n operations. In this

paper we present an algorithm which only requires n (1 - 1 - O (1 / v / M)) steps, if M memory

cells are available to store values of the function. By increasing M, this running time can be

made arbitrarily close to the information-theoretic lower bound on the running time of any

algorithm for the cycle problem. Our treatment is novel in that we explicitly consider the

pertbrmance of the algorithm as a function of the amount of memory available as well as the

relative cost of evaluating f and comparing sequence elements for equality.

1. INTRODUCTION

Suppose that we are given an arbitrary function

f /which maps some finite domain D into D. If we

take an arbitrary element z from D and generate

the infinite sequence fo(,~), f l (z), f2(z), then we

are guaranteed by the "pigeonhole principle" and

the finiteness of D that the sequence becomes cyclic.

That is, for some l and c we have l q--e distinct

values . /°Cz) , f 'Cz) , . . . , , f t+c-ICz) but f t+c(z) -~

ft(z). This implies, in turn. that fi+c(z) = fi(z)
for all i > l. The problem of finding this unique

pair (l, c) will be termed the cycle problem for f and

z. Tile integer c is the cycle length of the sequence,

and l is termed the leader length. Similarly, tlie ele-

ments f~(z), f tWl (z) , . . . , f t + c - I (z) are said to form

the cycle of f on :~ and f°(z), f t (x) , . . . , f t - I (x) are

said to form the leader" of f on x. For notational

* This work was supported in part by the National Science
Foundation. grant number MCS75-23738.

convenience, the number l --{- c of distinct values in

the sequence will be denoted by n.

The cycle problem arises when analyzing the
effectiveness of certain random number generators
that produce successive "random" values by applying

some function to the previous value in the sequence

[1, Section 3.1]. Solving the cycle problem gives
the number of distinct random numbers which are

produced from a given seed. It is often possible to
design functions that'have null leaders and maximum

cycles for all starting values, but such functions may

be difficult to implement correctly, An algorithm
for the cycle problem can be of use in checking

the cl3aractefistics of an unknown random number

generator.

One method for cycle detection has been given

by Floyd [1, Exercise 3.1-7]. The idea is to have two

wlriables taking on the values in sequence, one being

advanced twice as fast as the other, as shown in the

program of Figure 1.

© 1979 ACM 0-89791-003-6/79/0400-074 $00.75
See page ii

74

y~-'--Z~--X;"
repeat

Y ~ f(Y);
y(y(.)):

until y ~-- z ;

Figure 1. Floyd's algorithm.

This algorithm stops with y = fi(x) ~ f2i(z) = z,
where i is the smallest multiple of e which is greater

than or equal t o l . I f l = c.n t - I then a total of
i

6c = 3(n - - 1) function evaluations are performed.

This is particularly objectionable when the cost of

evaluating f is high relative to the cost of comparisons.

Another method, due to Gosper, et. al., was

designed to circumvent the overhead of advancing

two independently operating "copies" of the gener-

ating function as required in Floyd's method. Their

method is to save certain values of the sequence in

a small table and to lookup each new value to see if

it has previously been generated. The table update

rule is to save the ith value generated in TABLE~'],

where j is the number of trailing zeroes in the bi-

nary representation of i. This method can require

as many as I + 2c function evaluations, which, in

the worst case, can be ~n. Moreover, it requires an

equal number of table lookups, which is undesirable

when the cost of comparisons is high relative to the

cost of evaluating .L

These algorithms are suitable for detecting the

existence of a cycle, and the value of c can be

found by proceeding around the cycle one additional

time. Of course, this may be undesirable if c is very

large. Furthermore, neither algorithm has provision

for directly finding l except by starting back at the

initial value.

In this paper, we develop an algorithm that solves

the cycle problem using n (l .q-O(l/v/- l~)) function

evaluations in the worst case, where M is the amount

of memory awtilable for storing gcnerated function

values. The algorithm does O (n / ~ -t- M log ~ r)

memory operations. In Scction 2, it is shown that

any algorithm for the cycle problem requires at least

n fimction evaluations, so the new algorithm can be

made as close to optimal as desired. Our algorithm

is developed in Section 3 in two parts: one algorithm

detects the cycle and a companion algorithm recovers

the values o f / a n d c. The worst case analysis is given

in Section 4. A generalization of the problem and

some concluding remarks are offered in Section 5.

2. A LOWER BOUND

In this section we establish a lower bound on

the complexity of the cycle problem by showing that

any algorithm for the problem must generate each

of the values on the leader and the cycle at least

once. It should be emphasized here that we regard

the function f as a "black box". The only method

for obtaining information about its behavior is by

evaluating f on points of D.

Theorem 1. Let A be an algorithm for the cycle

problem, and let (f, x) be an instance of the cycle

problem with solution (l, c). Then A evaluates f at

• least l ~ c times when run with input (f, x).

Proof." Let yl, ~ , . . . , yi be the sequence of elements

of the domain o f / o n which f is evaluated during

A's execution on (f, x). (Clearly it must generate

at least one value, so we may assume that i > 0

and l + c > I for the rest of the proof.) Since the

only information that A can obtain about a function

is obtained by sampling the value of that function

for various arguments, it must be that any function

agreeing with f on the V'S has the same period and

leader as f .

However, if i ~ l + c it is possible to find a con-

tradiction by constructing a function f which agrees

with f on the y's but wllich has a different leader. To

construct such an], consider the sequence of elements

.l°(x), f ' (x) , . . . , fl+'~--'(a;) which by definition of l

and c, contains l 4- c distinct values. If i ~ l .~- c

then, by the "pigeonhole principle" there exists some

/o, with 0 < / o ~ l n t- c - - I, for which f~'(x) does

not occur among the y's. If I = 0, define] by

75

?(fi°(~:)) = f(x) and 7(z) =: f(z) for z ~4 rio(z).
This function has a leader of 1, not zero. If I > 0,

define .f by](fi"(x)) == x and y(z) = f(z) for z 5¢

fin(x). This function has a leader of O, not greater.

The assumption i <i l + c implies that A could

not have solved the cycle problem, so we must have

i > t + c . I

3. THE ALGORITHM

Theorem 1 says that any algorithm for the cycle

problem must have a lamning time exceeding ntf
where tf is the (assumed constant) time to perform

one evaluation of f . Clearly, an algorithm could be

designed which achieves a running time of ntf-t-
O(n log n) by employing, for example, a balanced

tree scheme to save all the generated elements. Such

an algorithm is unsatisfactory for at least two reasons.

First, it is unrealistic to assume an unlimited supply

of memory. Second, the analysis does not take into

consideration the relative cost of evaluating f and

comparing two domain elements for equality. Let us

therefore construct a framework in which these latter

considerations can be addressed. We shall be par-

ticularly interested in the tradeoff between memory

size and execution time.

Let TABLE be an associative store capable of

storing up to M pairs (y, i) of domain elements and

integers. Both elements of the pair are keys in the

sense that at most one pair can occur in TABLE with a

given first (or second) component. Let t~ be the time

needed to insert or delete a pair from the TABLE, i.e.,

to update the TABLE, and let t~ be the time needed

to search the TABLE for a given key. Depending

on the implementation of TABLE, t,, and t, might

be constants, logarithmic functions of M or even

linear functions of M. (See Section 5.) As mentioned

above, tf is assumed to be a constant, and all other

operations of the algorithm are assumed to be free.

Within this model, we are ready to consider an

efficient algorithm for the cycle problem. The idea

is to limit the number of operations performed on

TABLE by avoiding the store and lookup operations

for most generated fi.mction values. Rather, these

operations will be performed only sufficiently oRen to

guarantee detection of the cycle. To this end, we shall

introduce two parameters, b and g. Figure 2 exhibits

an algorithm which only stores every bth function

value in TABLE and which only does lookups after

every g stores (at which point it does lookups on b

consecutive values).

i ~-- O;
y + - x ;
repeat

if i ~ 0 (rood b) then insert (y, i);
y ~-- f(y);
i4-- i -~- l ;
if i • b (rood gb) then lookup (y, j) ;

until found;

Figure 2. Preliminary version of the algorithm.

Here the procedure lookup sets found to false if y

is not in TABLE, otherwise it sets found to true and

j to the minimum value of j for which (y, j) is in

TABLE. The procedure insert puts (y, i) into TABLE

without checking to see if there is another entry with

y as the first component. The modulus computations

in this program are used for clarity: an actual im-

plementation would use simple counters instead.

The program must halt because once the cycle is

reached, at least one value out of every block of b

consecutive values looked up must be in TABLE. It is

possible for the algorithm to overshoot the point at

which the cycle first returns to itself, but the algorithm

will always detect the cycle before the (n %-gb)th
evaluation o f f . The running time is thus bounded by

t.

It is interesting to note that a dual algorithm can be

developed by interchanging the roles of lookup and

insert in Figure 2. Many of the results of this paper

can be carried through for the dual algorithm as well

(with the roles of b and g interchanged). In fact, for

many search strategies, insert might be implemented

76

by doing a lookup first, so it is ternpting to contemplate

an algorithm which involves only one operation on

TABLE. However, the memory management and the

analysis become quite complicated in this case, and it

is convenient to keep the lookup and insert lhnctions

separated.

We could arrange to have the algorithm spend

virtually all its time doing the (unavoidable) task of

stepping f by choosing b and g suitably, were it not

for the fact that TAB L E will soon fill up. Accordingly,

we introduce the following memory management

mechanism: whenever TABLE gets filled, remove

every other entry from TAB h E, double b and continue.

This has the same effect as restarting the program

from the beginning with the larger value orb, with no

additional function evaluations being rcquii'ed. The

algorithm thus adapts its behavior to the problem at

hand. The final version of the algorithm is shown

in Figure 3. Note that b is now a variable of the

algorithm, while g is still a parameter. We shall See

later how to best choose the value of g.

i ~ 0 ;
y~- -x ;
b ~--- 1;
r n ~ 0 ;
repeat

i f i ~ 0 (m o d b) a n d m = M then
begin

purge (b);
b ~ 2b;
rn ~ m/2;

end;
if i _~ 0 (rood b) then

begin
insert (y, i);
m ~ m - - ~ - l ;

end;
v , - [(u);
i ~ - - i - t - l ;
if i < b (mod g b) the,, lookup (y,j);

mltil found;

Figure 3. The cycle detecting algorithm.

Memory management is conlrollcd with a wlriable

m, which counts the number of items currently in

TABLE, and a procedure purge (b), which removes

all cntries (z, j) with j /b odd fiom TABLE.

This algorithm does not perfbrm cxactly as if the

simple algorithm of Figure 2 had been run from

the bcginning with the final value of b, because of

subtle interactions between the lookup, insert, and

purge procedures. To make the algorithm perform

properly, we need to introduce suitable restrictions

on the choice of g, as shown in the fbllowing lemmas.

Lemlna 1. If M is a multiple of 29, then the value

of i when purge is called satisfies i _~ 0 (rood 2gb)
and i = 2~M for some integer k :~ 0.

Proof: By induction on the number of memory purges,

it is clear that the (H -q- 1)st call to purge happens

with i =: 2kM, and changes b from 2 t: to 2 k+l. That

is, purges occur when i ~ bM. If M is a multiple

of 2g, then bM is certainly a multiple of 2gb. |

Lemma 2. The value of b when lookup is called is

i / M rounded up to the next power of 2.

Proof." As in the proof of Lemma 1, we have b =
2 k+t for 2kM < i ~ 2k-HM. |

Lemma 3. Whenever lookup, insert, and purge are

called during the execution of the cycle detecting

algorithm, we have (if(x), j) G TABLE if and only

i f O ~ j < : i a n d j _ ~ O (m o d b) .

Proof." Obvious by the definition of purge. |

Lemma 4. If M is a multiple of 2g, then the cycle

dctccting algorithm terminates with

n _< i < 2)bn,

where bn is n / M rounded up to the next powcr of

2 (i.e., the value of b when i is n).

Proof: Since we must have i 2> j and f i (x) = fJ (x)
at tem~ination, it is clear fi'om tlie definition of n

that i cannot be less than n. To complete the proof,

we shall show that i .< n-~-(g+2)b,, by contradiction.

Suppose, therefore, that the algorithm is still run-

ning when i becomes n q- (g -t-- 2)b,,. Let ~ be the

77

unique integer such that n < io ~ n + gb,~ and

/o ~ 0 (rood gbn). Then io is the first value of i

past i = n for which file algorithm might attempt to

lookup an entire block of b,, consecutive values. By

Lemma 1,/o is also the first value of i past i = n at

which a memory purge could take place. Two cases

now arise.

I f /o ~ 2kM then Lemma 1 guarantees that a

purge will not occur during the block of b,, lookups

which are performed starting at /o. Since /o ~ n,

the values looked up arc: the same as the bn values

starting at / o - c and, by Lemma 3, one of them

must be in TABLE, so the algorithm must halt with

i ~ /o + b,~ -< n + (g + 1)bn. This contradicts

the assumption that the algorithm is still running at

i -~. n + (g + 2)bn,

I f /o ~ 2 kM then a memory purge will occur

after the lookup for fio(:~). By Lemma 1, we also

know that /o -~- 0 (rood 2gb~). Thus, immediately

after the purge, b -~- 2b,~ and io ~ 0 (mod gb), The
algorithm will therefore proceed to perform Iookups
on 2b,~ values starting at/o. As before, one of these

values must bc in IABt.E, causing the algorithm to

halt with i ~ / o + 2bn ~ n + (g + 2)bn, again in

contradiction to our assumption. |

The condition that M must be a multiple of 2g

provides a convenient bound on the overshoot and is

csscntial for the proper performance of the algorithm.

If this condition does not hold, it is possible to find

l and c for which the algorithm gets caught in a long

loop where each block of lookups misses finding the

cycle because of the previous purge.

These lemmas describe the performance of the

algorithm well enough for us to calculate its worst

case running time. Intuitively, we expect that the

time required should decrease as g and M increase.

A small lookup interval implies frcqucnt lookups but

a short overshoot past the bcginning of the cycle; a

large interval limits the numbcr of lookups but at the

risk of allowing a long overshoot.

Befbre proceeding to the detailed analysis we need

to finish the solution to the problem: determine l

and c once the cycle has been detected.

The cycle detection algorithm halts as soon as it

discovers a pair i > j of integers for which f/(x) =
fJ(z). This implies that j > l and i ~ j (modc) ,

but we need to use our stored TABLE values to find

the exact values of l and c. The variety of possible

situations makes it n,ecessary to design this part of
the algorithm carefully. Figure 4 shows a companion

algorithm to the algorithm of Figure 3 which recovers

the solution (l, c) once the cycle detection algorithm

has terminated.

i t 4---- gb[i/gb] - - gb;
j ' j - (i - it);
if i I > j

then c ~ i - - j ;
else c smaUest c with/ ()

l ~ f +smallest l' with fJ'+t'(x) = fe+e(x);

Figure 4. The recovery algorithm.

In this program, i t points to the beginning of the first

full block of lookups previous to the block containing

i and f is the same distance behind j as i t is behind i.

Since i t =_ 0 (rood gb), we know from Lemma 3 that
fi'(:~) is in TABLE. Although fJ'(x) is not necessarily

stored in TABLE, it can be found by doing a lookup
for f~[J'/bJ(x) and then applying f exactly f (mod b)

times. This takes at most to + 2b,,tf time because the

final value of b is either b,~ or 2bn.

Lemma 5. The recovery algorithm correctly finds e.

Proof" Since f i (x) = fJ(x), we have i ~ j (mode) ,

that is, the cycle size c divides i - j . If i t
j , then i - - j < gb + b < (g + 1)2b,, and the

algorithm proceeds by brute force. If i t > j .

then an entire block of unsuccessful lookups for
r e (x) , . . . , fi,+b,,--I (z) was performed between j and

i, and the cycle must have been traversed only once.

Thus c is exactly i - - j . |

Lemma 6. The recovery algorithm correctly finds I.

Proof" Clearly f < l ~ j and i t < l + c ~ i or else

the algorithm would have terminated earlier. Since

78

i ~ j (mod c) and i - - i ~ =~ j -7 jr, we have j~ ~. i t

(rood c). Proceeding forward in synchronization from

j, and i ~ will lead to the first duplicate value. |

It is possible to design faster recovery igrocedures

for many situations. For example, c could be found by

applying "divide and conquer" to the prime decom-

position of i - - j , and l could be found by a bi-

nary search procedure. However, the recovery time

is heavily dominated by the cycle detection time,

so such sophisticated implementations might not be

worth the effort.

4. WORST CASE ANALYSIS

The algorithms of the previous section can provide

an efficient solution to the cycle problem if the

parameter g is chosen intelligently. In this section,

we shall analyze the running time of the algorithms

to find the best choice of g. We shall concentrate

on choosing a value of g which minimizes the worst

case running time.

To begin, we need to add up all the costs in-

volved when the algorithms are run to produce the

solution (l, c) to a particular instance (f, z) of the

cycle problem.

Theorem 2. In the worst case, the running time of

the cycle detection algorithm is

M t / + + ruM log 2 4x/2n
M

The additional time required to find the values of l

and c is at most

• (39 + I)
n M t / + ts.

Proof." For the cycle detection algorithm, the first

term follows immediately from Lemma 4, since bn
could be as large as 2n/M. For the second term,

we need to count t,, for each elemcnt remaining in

TAB k E (for its insertion) and 2t,, for elements entered

in TABLE and subsequently removed in purge. The
algorithm eithcr performs log 2 b,, + 1 purges and

finishes with a half full TABLE for a totM cost of

t,,(~ M + M(log. 2 b~-q- 1)), or else it performs log 2 bn

purges and finishes with a TABLE which is more

than half full, for a total worst case cost of t , (M +
M log 2 bn). The given bound follows fi'om Lemma

4 as above. Note that the worst case is achieved for

infinitely many values of I and c.

In the recovery algorithm, gb function evaluations

could be required to find c, mid 2~b function evalua-

tions may be needed to find 1, with an additional

b function evaluations and 1 table search needed to

find fJ'(x). The final value of b is either bnn or 2bn,
and is therefore bounded by 4n/M. |

To find the value of g which minimizes the total

running time, we would like to set the derivative

with respect to g of the expression for the total from

Theorem 2 to zero and solve for g. However, there is

a subtle difficulty involved because we also have the

constraint that ~ must divide M/2. (As an extreme

example, suppose that M / 2 is prime.) To make it

possible to find a reasonable value of e, we shall

introduce the further restriction that M should be a

power of two.

Theorem 3. If M is a power of two, then the total

running time of the algorithms to solve the cycle

problem will be less than

if g is chosen to be the closest power of two to

x/ (M + 4)t / ldt: .

Proof." It follows immediately from minimizing the

total of the running times given in Theorem 2 that

the given choice of g minimizes the total running

time to

which implies the stated result, since t/ is assumed

constant. The asymptotic result is not affccted by

79

restricting g to be a power of two, which insures that

it divides M/2. |

Note, in particular, that a balanced tree implemen-

tation will have t~ --= O(Iog M), and an address cal-

culation (hashing) method could have t.~ = O(1). In

both cases, the w()rst case running time will approach

nt/ as M gets large. For the typical case where

I + c ~ - > M, the algorithms can be made to run

in very nearly optimal time by increasing M.

5. CONCLUDING REMARKS

We have dealt exclusively with algorithms with

good worst case performance for solving a particular

instance of the cycle problem on an unknown func-

tion. The problem is also interesting under other

variations of the model.

If we take the function to be random in some

sense, then we can talk about an average case measure

of complexity. R. W. Floyd has pointed out that

studying the probabalistic structure of random func-

tions over D could lead to savings on the average.

For example, l is relatively large in this case, so it

may not be worthwhile to save or lookup values at

the beginning.

Another variation is to consider the case where

the cost of computing fJ(x) is t I, independent of j

and z. The algorithms of this paper will work in this

case, with a worst case running time (corresponding

to Theorem 3) of O(nt.t/M). There may exist algo-

rithms customized for this variant which could achieve

better performance.

In general, the domain D can be partitioned by

f into disjoint sets with the property that all points

in each set lead to the same cycle. Properties of the

cycle structure (i.e. the number of sets, their sizes, or

the sizes of the cycles) can bc found by solving the

cycle problem on all points of D. The algorithms of

this paper can bc adapted to avoid rctravcrsing long

cycles by maintaining versions of TABLE for each

cycle.

It is possible to generalize the problem of finding

cycles in the following way. As before, we are given

a unary function f , only now we allow the domain

of f to be infinite. We suppose that we are also

given a binary predicate P on D × D. The problem

is to find the smallest n for which there exists an

I < n such that P(f '(x), ft(x)). In the absence of

any further information, it is easy to show that this

problem requires (~) evaluations of P . However, i f P

is preserved by f, that is, P(a, b) implies P(f(a), f(b)),
then the algorithms of this paper can be made to run

in time n(tf--t-O(tp)), where tp is the time nceded to

evaluate P. If we extend the domain D to be infinite,

then the cycle will still be detected if one exists. It

is interesting to note that the algorithms of [1] and

[2] simply do not work for this problem.

It remains an open question whether an algo-

rithm exists for the cycle problem which uses a finite

amount of memory and an optimal number of func-

tion evaluations.

.

[11

[21

REFERENCES

Knuth, D. E. Semh~umerical Algorithms, (Vol. 2

of The Art of Computer Programming), Addison-

Wesley, 1969.

Gosper, R., et.al.,"HAKMEM," M.I.T. Artificial

Intelligence Lab Report No. 239, Feb. 1972,

item 132.

80

