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DATA MOVEMENT IN ODD-EVEN MERGING*

ROBERT SEDGEWICKf

Abstract. A complete analysis is given of the number of exchanges used by the well-known Batcher’s
odd-even merging (and sorting) networks. Batcher’s method involves a fixed sequence of "compare-
exchange" operations, so the number of comparisons required is easy to compute, but the problem of
determining how many comparisons result in exchanges has not been successfully attacked before. New
results are derived in this paper giving accurate formulas for the worst-case and average values of this
quantity.

The worst-case analysis leads to the unexpected result that, asymptotically, the ratio of exchanges to
comparisons approaches 1, although convergence to this asymptotic maximum is very slow.

The average-case analysis shows that, asymptotically, only 41- of the comparators are involved in
exchanges. The method used to derive this result can, in principle be used to get any asymptotic accuracy.
The derivation involves principles of the theory of complex functions; in particular, properties of the
F-function and the generalized Riemann ’-function are integral to the solution. Intermediate results in the
analysis may be applicable to the average-case analysis of other merging methods, and the final portion of
the derivation illustrates the utility of the "gamma function" method of asymptotic analysis.

Key words. analysis of algorithms, odd-even merge, merging networks, merge-exchange sort, sorting
networks, gamma function, zeta function

1. Introduction. Suppose that we have two sorted arrays B[1],..., B[N] and
C[1], , C[N] which we wish to merge into a single sorted array A[1], , A[2N],
The straightforward algorithm

i:=]:=I;B[N+I] C[N+l]:=oo;
loop for k := 1, 2,..., 2N:

if B[i]<e[]] then A[k]:=B[i]; i:=i+1
else A[k] := C[]]; ]:=]+1

repeat

has been shown to be the "best possible" way to solve this problem (see [13, p. 199])
in that it requires the minimum number of comparisons between keys, not counting
the sentinel keys. However, this method may not be appropriate if, for example, we
wish to build hardware to do the merging, since it requires space for the output array
and its comparison sequence depends on the arrangement of the input.

The "odd-even" merge introduced by K. E. Batcher in 1964 [3], [4] is a well-
known method for merging in place with a fixed comparison sequence. To satisfy the
in place condition we assume that the first sorted input array is stored in the odd
positions A[I], A[3], , A[2N- 1] of the output array, and the second sorted input
array is stored in the even positions A[2], A[4], , A[2N] of the output array. Such
files are called 2-ordered, and merging is equivalent to sorting 2-ordered files. Then
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240 ROBERT SEDGEWICK

Batcher’s method may be implemented as follows:

loop for ]:= 1, 2,...,N"
if A[2j- 1] > A[2]] then A[2j- 1] := A[2]];

repeat;
loop for := 2 , 2 -, 1"

loop for ] := 1, 2, , N-"if A[2]]>A[2] +2- 1] then A[2]]:= :A[2j +2- 1];
repeat;

repeat;

In this program, notice that the only statements which actually operate on the data are
the "compare-exchange" statements of the form

if A[2/] > A[2j + 28 1] then A[2j]: :A[2j + 28-1];
and these are performed in the same order regardless of the input. Because of this, it is
convenient to describe the algorithm as a merging network as in Fig. 1, which shows
the algorithm operating on a typical 2-ordered file of sixteen numbers. The numbers
move from left to right, encountering "compare-exchange" modules on the way. Each
module exchanges its inputs, if necessary, to make the larger number appear on the
lower line after passing. (Modules which actually perform exchanges are boxed in
Fig. 1.) The networks for N 1, 2, 4, 8, and 16 are shown in Fig. 2. Notice that the
networks are composed of stages (an initial stage plus one for each value of 8) within
which all of the compare-exchanges can be overlapped. This makes Batcher’s
algorithm particularly useful when parallelism is available.

Figure 3 shows the networks for N 1, 2, 4, 8 and 16 with the comparators
arranged somewhat differently to illustrate why the method is called the "odd-even"
merge. First the "odd" members of the input files (A[1], A[5], A[9],. and A[2],
A[6], A[10],...) are merged, and, independently, the "even" members of the input
files (A[3], A[7], A[ll],. and A[4], A[8], A[12],...) are merged. After this, it
turns out that a single stage of compare-exchange modules connecting A[2] with A[3],
A[4] with A[5], A[6] with A[7], etc., will complete the sort. Batcher gave a complete
inductive proof that his method is valid, using this approach [2] (see also Knuth [13,
pp. 224-225]). Knuth gives another proof [13, exercise 5.2.2-10] which we shall
examine in some detail below.

To determine the running time of a program, we need to be able to determine the
frequency of execution of each of its instructions. In the program above, these

FIG. 1.2-sorting a file of 16 elements.
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DATA MOVEMENT IN ODD-EVEN MERGING 241

N 2
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.I

FIG. 2. Odd-even merging (2-sorting) networks.

].

N 2

N 4

N 16

FIG. 3. Odd-even merging networks ,(alternate arrangement).
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242 ROBERT SEDGEWICK

frequencies can be determined from N, the number of items in each file to be merged,
and the following three quantities:

Amthe number of stages,
B--the number of exchanges, and
C--the number of comparisons.

More precisely, A is the number of times a new value is assigned to 8, C is the number
of times the tests "A[2j- 1]> A[2j]" and "A[2]]> A[2 +2- 1]" are performed
and B is the number of times these tests are successful.

The values of A and C are clearly independent of the input distribution. They do
depend on the number of elements being merged, and we will write Ar and Cr to
denote their values for an N xN merge. On inspection of the program, we see that

AN [lgN] +1 (lg N log2 N)

and, counting the number of times the loop index ] changes, we have

C’ N + E (N- 2’)
Jig N] >k

which evaluates to

(1) CN=N([lgN] + 1)-2 r’m + 1.

The number of comparisons is of order (N log N) so Batcher’s merging algorithm
cannot compare with the straightforward O(N) algorithm on a serial computer.
However, if parallelism is available, the comparisons on each stage can be performed
independently, and the merge can be completed in [lg N] + 1 parallel stages. Also,
R. W. Floyd [13, p. 230] has shown that any merging method which can be represen-
ted as a network must use at least 1/2 N lg N + O(N) comparators to 2-sort N elements,
so Batcher’s method is, in this sense, nearly optimal.

The value of B does depend on the input distribution, and the subject of this
paper is the analysis of the maximum and average values of this quantity when a
random 2-ordered file is sorted. This is listed as an open problem b Knuth [13, p.
135]. The practical importance of this problem may be limited, since the method is
best suited to a parallel implementation, and exchanges might not significantly affect
the running time of a truly parallel implementation. However, it is essential to know
the value of/ for serial implementations, and, as we shall see, the analysis of B is of
some theoretical interest. Our understanding of Batcher’s method is incomplete
without an understanding of how often it does exchanges. Moreover, the methods and
results of the analysis may be applicable to the study of other algorithms.

To deal with the number of exchanges, it is useful to examine Knuth’s alternate
proof that the odd-even merge is valid. The proof is based on a natural cor-
respondence between 2-ordered files of 2N elements and paths connecting opposite
corners of N xN lattice diagrams. An example of this correspondence is shown in
Fig. 4. Starting at the upper left corner, we form a path whose kth segment goes down
if the kth smallest element is an odd position in the file, and to the right if the kth
smallest element is in an, even position in the file. We shall denote the lattice point
reached after steps down and ] steps to the right by (i,/’). The path must end up at
(N, N) since there are N even positions and N odd positions, and the correspondence
is clearly unique. One can think of the final sorted file as a chain with 2N links, and the
path as the unique arrangement of the chain adhered at the upper left corner with
each link vertical if the corresponding element is in an odd position in the file and
horizontal if the corresponding element is in an even position in the file.
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DATA MOVEMENT IN ODD-EVEN MERGING 243

The sorted array corresponds to the diagonal path through the lattice whose first
segment is vertical (the dotted line in Fig. 4), and the merging process consists of
transformations from an arbitrary path to that particular path. As mentioned above,
Batcher’s method can be divided into [lg N] + 1 stages of independent compare-
exchange operations. The proof that the odd-even merge is valid consists of showing
that the stages correspond to "folding" (interchanging horizontal and vertical) the
path about certain diagonals in the lattice diagram.

For example, the first stage, which compare-exchanges A[2] with All], then A[4]
with A[3], then A[6] with A[5], etc., corresponds to folding the path about the main
diagonal. To show this, we first note that any path can be divided into sections which
are either "high" (totally above the diagonal)or "low" (on or below the diagonal).
(The path in Fig. 4 consists of a low section followed by a high section.) Now, the fth
comparison in the first stage results in an exchange if and only if the fth horizontal
path segment (which corresponds to A[2]]) appears before the ]th vertical path
segment (which corresponds to A[2j-1]). But this can happen if and only if both
segments are above the diagonal. Therefore, all elements represented by high path
sections are involved in exchanges and no elements represented by low sections are
involved in exchanges. After the exchanges, low sections are unchanged, and
horizontal and vertical are interchanged in high sections, making them low. In other
words, the whole path is reflected down about the diagonal.

The first stage folds down about the main diagonal, ensuring that the path falls
below the main diagonal, and successive stages fold up about the diagonal 8 units
below the main diagonal, ensuring that the path falls in a "band" between that
diagonal and the main diagonal. After the stage when 8 1 the path must coincide
with the main diagonal, and the corresponding permutation is sorted. Figure 5 shows
the sample 2-ordered permutation in Fig. 4 being sorted. Shaded areas are the areas
within which the path is guaranteed to fall, and each stage "folds" the shaded area in
the middle. The reader may wish to check the correspondence and the proof by seeing
that successive paths in Fig. 5 correspond to successive permutations in Fig. 1. (In
particular, note that there are no exchanges on the third stage, and the path is
unchanged.)

This proof that Batcher’s method is valid also gives us an easy way to count the
number of exchanges used to sort any particular 2-ordered permutation. First, we
notice that if any segment on the path is on the main diagonal, then the element
corresponding to it will not be involved in any exchanges during the sort (since it is in a

08
i0 24 26 34 35

44

88 89

95

99

FIG. 4. Lattice path .for 2-ordered permutation of Fig. 1.
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244 ROBERT SEDGEWICK

i::..

"::!:!:::!li:i:i,:ii:i:::::::::::::::::::::::::

FIG. 5. Sorting Fig. 4.

"low" section for the first stage, and a "high" section for successive stages). If any
segment on the path is on the diagonal one below the main diagonal, then the
corresponding element must be involved in exactly one exchange (on the last stage).
By following the "fording" process backwards in this way, we can assign a weight to
each segment in the lattice which counts the number of exchanges the corresponding
element will be involved in, if the path includes that segment. This process is illus-
trated, for N 4, in Fig. 6.

Now, for any path through the lattice, if we sum the weights of its segments and
divide by two (since each exchange involves two elements), we get the total number of
exchanges used to sort the corresponding 2-ordered permutation. In fact, the sum of
the weights of a path’s vertical segments must equal the sum of the weights of its
horizontal segments, and both sums count the number of exchanges. From Fig. 7,
which has only vertical weights, we see that the example in Fig. 4 takes 12 exchanges,
which agrees with our count in Fig. 1. From now on, we shall consider only vertical
weights.
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DATA MOVEMENT IN ODD-EVEN MERGING 245

FIG. 6. Assigning weights to the lattice.

Continuing as in Fig. 6, the pattern of weights for general N is clear. First, we
notice that all of the weights can-be determined from the weights down the left edge.
Since the folding is done along parallel diagonals, weights along diagonals are
constant: if we denote the weight of the vertical segment from (i, ) to (i + 1, j) by
f(i, j), then we have

f(i-j, 0) if _-> j,
() f(i,

f(O,j-i) if i<-j.

But from the first stage (the last "unfold")we know that

(3) f(O, ] + 1)= f(], 0)+ 1

and from the other stages we can write down an algorithmic definition of f(i, 0):

(4)

f(O, 0):= O; i:= I;
loop"

loop for j’= i- 1 step -i until O: f(i, 0): f(j, 0)+ i; i’=i + 1 repeat;
repeat;

In other words, in order to write down the values of f(i, 0) for all i, first write down
"0"; then repeatedly apply the following procedure: append to the string of numbers
already written down the same string, but in reverse order, with each number incre-
mented by 1. The value of f(i, 0) is the ith number written.

This function, which is central to the study of data movement in Batcher’s
method, has a number of interesting properties. Since we shall be using it extensively,
it will be convenient to drop the second argument and work with a more mathematical
recursive definition"

f(o)=o,
(5)

f(2" +/)=f(2"- 1-/)+ 1, n >-0, O<=j <2".

FIG. 7. Vertical weights for N 8.
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DATA MOVEMENT IN ODD-EVEN MERGING 247

From this definition, we can explicitly evaluate the function for some arguments. For
example, taking/" 2n- 1, we find that f(2n- 1)= 1 for n -> 1; then taking/" 0 gives
f(2)=2 for n->0 and taking /’=2"-1 gives [(3.2"-1)=2 for n>-2. For other
arguments, things are more complicated. However, there is a simple interpretation
based on the binary representation of the argument. The binary representation of
2"- 1-/" (0-<_/’< 2n) is the "ones’ complement" of the binary representation of 2" +
(change O’s to l’s and l’s to O’s; then ignore leading zeros). Therefore, for example,
f(999)=f(lllllOOll12)=f(llO00)+ 1 f(111)+ 2 f(0)+ 3 3. The value off(k)
for all k is exactly the number of times the binary representation of k changes parity.
Figure 8 gives the value of f(k) for 0 =< k < 32 along with a graph of the function and
values for F(k)=Yo<_i<kf(j) (the area under the curve) and Vf(k)=-f(k)-f(k 1)
(the slope), which we shall have use for later.

2. The worst case. To find the maximum number of exchanges that Batcher’s
algorithm will require, we can use the lattice diagram directly. The maximum number
of exchanges is just the maximum possible weight of a path in the lattice diagram.
Figure 9 shows the paths of highest weight for N 2, 4, 8, 16.

A cursory inspection of Fig. 9 could lead to the conjecture that, at least for
N 2", the worst case might be the unique path through the lattice which contains the
highest weights. Unfortunately, the situation is more complicated than this, as illus-
trated in Fig. 10 for N 32. However, it does turn out that we need to examine only a
few paths. Consider the paths through the lattice defined, for each integer k, as
follows: proceed right along the top until encountering the first line with weight k.
Then proceed down and to the right (along the diagonal of lines with weight k). After
reaching the right edge of the lattice, proceed down to the corner. Figure 11 illustrates
these paths, which we shall refer to as major diagonals, for N 32. (Note that the last
major diagonal is the unique path containing the highest weights.)

LEMMA. The path of highest weight through the lattice must be one of the major
diagonals.

Proof. Clearly, for any path with segments below the main diagonal (the first
major diagonal), there is a path of higher weight whose segments are all on or above

N 2 I

N 4

N 8

2 2

1 2 3

2

i 2 3 2 3

i 2 3 2

1 2 3

1 2

4 3 2

3 4

3 4

3 2 3

i 2 3 2

i 2

1 2

i

i 2 3 2 3 4 3 2 3 4 5 4 3 4 3 2

i 2 3 2 3 4 3 2 3 4 4 3 4 3

i 2 3 2 3 4 3 2 3 4 4 4

i 2 3 2 4 2 4 4 3

i 2 2 3 4 2 3 4 4

I 2 3 2 3 4 2 3 4

i 2 2 3 4 3 2 4

i 2 3 2 4 2 3

i 2 2 3 4 2

N 16 i 2 3 2 3 4 3

i 3 2 3 4

i 2 2

i 2 2

i 2

1 2

i

FIG. 9. Worst-case lattice paths.
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248 ROBERT SEDGEWICK

12 32343234 434323454565434543432

1232343234543432345456543454343

4343234545654345434I 2 3 2 3 4 3 2 4 -I
12323432345434323454565434543

1232343234543432345456543454

123234323454343234545654345

12 32 3432 3454 34 32 345 456 434

1 2 3 2 3 4 3 2 3 4

__
3 4 3 2 3 4 4 5 6 4 3

123234323454343234545654

12323432345434323454565

12 32 3432 345 43432 345 456

123234323454343234545

12 32 3432 345 43432 345 4

1232343234543432345

12 32 3432 345 43432 34

12 32 3432 345 43432 3

N 32 12 32 3432 34543432

123234323454343

12323432345434

1232343234543

123234323454

12323432345

1232343234

123234323

12323432

1232343

1’23234

12323

1232

.].23

12

1

Fit3.10. Worst-case path not containing highest weights.

the main diagonal. Now, for any such path, consider the rightmost major diagonal
which it crosses (has a segment in common with). The path must contain, sometime
after the crossing, all of the weights which the major diagonal has on its vertical
segment. None of the remaining weights can be higher than those on the major
diagonal, because a higher weight would imply that the path crosses a major diagonal
farther to the right. Therefore, for every path through the lattice, we can find a major
diagonal whose weight is at least as high.

Our problem is now reduced to finding the weights of all the major diagonal
paths, and the maximum of these. To do so, we need to define

f-(k) {smallest j for which/(])= k}

and

F(k)= E f(j).
Oj<k
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123 4 6

123 4 6

123 4 6

123 4 $ 6

123 4 6

123 0 6

123 4 6 4

123 4 65

123 4 6

123 4 4,
____

t_,

123 4 4

123 6 3

123 4 4

123 4 3

123 4 54

123 4 3

123 4 2

123

123 3

12 3

12 323 32 34543432 3454565434543432

N 32

FIG. 11. Major diagonals.

The (k + 1)st major diagonal path has N-f-l(k) segments along the diagonal, with
weights (k+l), and f-l(k) segments along the right edge, with total weight
F(f-(k))+f-(k). Therefore, if we let w(k) denote the total weight of the (k + 1)st
major diagonal path, then

w(k)= F(f-(k))+f-(k)+ (k + 1)(N-f-(k))
=(k + 1)N+F(f-(k))+kf-(k),

and we need to derive explicit expressions for f-(k) and F(f-(k)).
A recurrence for f-l(k) follows immediately from the way that the function f(k)

"reflects" between powers of two. From (5) it is easy to prove by induction the
difference between f-t(k- 1) and 2k-l- 1 must be the same as the difference between
2k- and f-(k). (Also see Fig. 8.) In other words,

2u.- l_f-(k 1) f-(k)- 2’-.
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250 ROBERT SEDGEWICK

Multiplying by (-1)k and telescoping, we find that

E (-2) E
O]--k O--jk

which leads, after the two geometric sums are evaluated, to the result

1 )(6) f-(k)=7(2+2 (-1 -3).
O

As expected, these are all the numbers (0, 1, 2, 5, 10, 21, .) whose binary represen-
tations alternate between 0 and 1. These numbers change parity most often, and so
have the highest values of f(k).

The calculation of F(f-l(k)) is more complicated. First, we can set up a recur-
rence similar to the one which defines f(k). Suppose that 2"-1< k <= 2". We separate
off the first 2"-1 terms of the sum and then apply the recurrence for f(k) to the
remaining terms:

2 f(J)+ Y’. f(k)
O--<j<2 2.-<__]<k

F(2"-1)+ Y f(2"-l+j)
O<__j<k-2

F(2"-1) + E (f(2"-1-1-i)+ 1)
0_</’<k_2

F(k)=

F(2"-1)+ f(j)+k-2"-1

2n-k</<2

=2F(2"-l)-F(2"-k)+k-2"-1 for 2"-1<k=<2".

In particular, if we take k 2", then the formula becomes F(2")= 2F(2"-1)+ 2"-1,
which telescopes immediately to the solution

F(2")= n2"-1"

Substituting this value, we find that

(7) F(k)=-F(2"-k)+(n-2)2"-l+k for 2"-1<k=<2".

As before, the form of this recurrence clearly suggests that the value of F(k) depends
on the binary representation of k (and the dependence is much more complicated than
for f(k)). Fortunately, the points f-l(k) at which we need to evaluate the function
have a simple binary representation. We can get an explicit formula for F(f-l(k)) by
noticing from the ones’ complement of the binary representation that 2k -f-l(k)- 1
f-l(k- 1), so F(2k-f-l(k))=F(2k-f-l(k)- 1)+f(2k--f-l(k) 1)=F(f-l(k 1))+
f(f-(k 1))= F(f-a(k 1))+ k- 1, and, since 2k-1 <f-(k)<- 2, the recurrence (7)
becomes

F(f-l(k)) -F(f-l(k- 1))- (k 1)+(k-2)2k-1 +f-l(k).
This recurrence, after both sides are multiplied by (-1)k, telescopes into a summation
(note that F(f-(0)) F(0)= 0):

(-1)kF(f-l(k)) Y, (y-i)(-1)-1"- Y, (j-2)(-2)i-1+ Y f-l(j)(-1).
lNj<=k l<=j<--k lNjNk

After substituting for f(]), we are left with a number of elementary sums: they can all
be evaluated using the well-known identities for Y’,oik X" and Y’,o_i=k Jx (see, for
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DATA MOVEMENT IN ODD-EVEN MERGING 251

example, Knuth [12, exercise 1.2.3-16])with the result

(8) F(f-(k)) 8((3k 1)2+- 9k -(3k

Comparing this with the formula F(2") n2"-, we find that both are of the form
F(N)= 1/2N lg N O(N). In fact, it is possible to prove by induction that this does
hold for all N, but the linear term is a complicated function of the binary represen-
tation of N.

Substituting these values for f-(k) and F(f-(k)) into the formula given above
for the total weight of the (k + 1)st major diagonal path, we get the expression

1 (2t+2w(k)=(k+l)N+ ((3k-1)Z’+l-9k-(3k-Z)(-1)’)---dk -(-1)k-3)
(9)

1
(k + 1)N-((3k + 1)2’ (-1)k).

This function is clearly increasing for small k and decreasing for large k. The maxi-
mum number of exchanges required by Batcher’s algorithm is the maximum value of
the function. Note that the total weight of the last major diagonal is N lg N + O(N).
The following theorem shows that the proper choice of k leads to a path of much
higher weight.

lTHEOREM 1 Let denote the maximum number of exchanges required when
Batcher’s odd-even merge is applied to a 2-ordered file of 2N elements. Then

1
k’=(k’+l)N-((3 +1)2 -(-1)’)

where k’ is the largest integer satisfying ((3k’ + 4)2’-1-(-1)")-< N. Asymptotically,

B N lg N-N lg lg N + O(N).

Proof. Following the discussion above, the lemma says that we need only consider
the major diagonals. We have"

Bax= max (w(k)),
O<=k<_k

where k" is the index of the last major diagonal (the largest integer satisfying f(k")<=
N). To calculate this maximum, consider the difference

1
w(k)- w(k- 1)= N-((3k + 4)2k-- 2(-1)).

The function w(k) increases as long as this difference is positive, then decreases when
the difference is negative. Clearly the maximum is w(k’), where k’ is the largest
integer for which the difference is positive. To complete the proof, it is
necessary to show that this maximum is realizable, i.e. that f-X(k’)<=N. This is
easily verified: we have N >_--((3k’+4)Z’-1-Z(--1)’)=-(-}(3k’+4)Z’-1--}(-1)k’)->
(2’’+2 (- 1)’- 3) f-(k’).

To find an asymptotic estimate of how the maximum grows with N, we start with
the inequalities which define k’:

1(3k,+4)2’- 2 1
k’

,, 2 ),,.-(-1)k’--<N<(3 +7)2 +(-1
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252 ROBERT SEDGEWICK

After ignoring the (-1)k’ factors (the inequalities still hold without them), if we
multiply by 3, take logs (base 2) and solve for k’, we get an inverted form of this
formula:

(3N-2) (k’ +7) (3N+2)(4)g -lg <k’<lg -lg k’+ 5 +1.

These inequalities can now be iterated to give

lg(3N-)-lg(lg(3N+)-lg(k’+)+ 1+37-)

Now both sides reduce to the same asymptotic expression; we must have

k’ lg 3N lg lg 3N + O(1)

lg N- lg lg N + O(1)
maxand substituting this into the formula for leads to the stated asymptotic esti-

mate.
The easiest way to actually compute B for any practical value of N is to use a

table, since k’ takes on relatively few values for realistic N. Table 1 gives the values of
B for the inflection points N" numbers of the form (( k+4)2 -2(-1)).
Between the kth and (k + 1)st inflection points the function is linear in N with slope
(k + 1). Therefore, to compute Ba for arbitrary N, find the largest k for which
N < N, call it k, and set
such a computation for N 2, 0 N n N 20.

TABLE
Inflection points for the worst case.

rmax/,,
k N =((3k +4)2k-1-2(-1)k) B; CNu ON /t-,N

1 1 1 1.0000
2 2 3 3 1.0000
3 6 15 17 .8823
4 14 47 55 .8545
5 34 147 175 .8400
6 78 411 497 .8270
7 178 1,111 1,347 .8248
8 398 2,871 3,469 .8276
9 882 7,227 8,679 .8327
10 1,934 17,747 21,161 .8387
11 4,210 42,783 50,749 .8430
12 9,102 101,487 120,147 .8447
13 19,570 237,571 280,353 .8474
14 41,870 549,771 646,255 .8507
15 89,202 1,259,751 1,474.565 .8543
16 189,326 2,861,735 3,335,241 .8580
17 400,498 6,451,659 7,485,673 .8619
18 844,686 14,447,043 16,689,831 .8656
19 1,776,754 32,156,335 36,991,437 .8692
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DATA MOVEMENT IN ODD-EVEN MERGING 253

TABLE 2
The worst case at inflection points ]:or the number of comparators.

k’ Bv CN BVax/cN

2
4
8

16
32
64
128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536
131,072
262,144
524,288

1,048,576

1
2 3 3
2 9 9
3 23 25
4 57 65
4 137 161
5 327 385
6 761 897
7 1,735 2,049
8 3,897 4,609
9 8,647 10,241

10 19,001 22,529
10 41,529 49,153
114 90,567 106,497
12 196,153 229,377
13 422,343 491,521
14 904,761 1,049,477
15 1,929,671 2,228,225
16 4,099,641 4,71,593
17 8,679,879 9,961,473
18 18,320,953 20,971,521

.0000

.0000

.0000

.92O0

.8769

.8509

.8493

.8484

.8468

.8455

.8444

.8434

.8449

.8504

.8552

.8593

.8621

.8660

.8668

.8713

.8736

147
B

65

2 6 8 14 16

FIG. 12. Number o]’ comparators and maximum number o] exchanges.
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254 ROBERT SEDGEWICK

Also given in Tables 1 and 2 is another quantity of interest: the percentage of
comparators that perform exchanges in the worst case (the ratio BaX/fN). The
graphs of CN and Bv are both piecewise linear, with slope incrementing by 1 at each
inflection point. This is illustrated in Fig. 12, for small N, where the effect is most
pronounced. Both curves are therefore concave upwards, so they are closest together
at the inflection points for Cu (numbers of the form 2n) and farthest apart at the

1inflection points for ON Tables 1 and 2 therefore show that the ratio is between
82% and 87% for all but very small and very large values of N. As N the ratio
(slowly) approaches 1, which follows from a simple asymptotic calculation:

BaX/CN
N lg N-N lg lg N + O(N)

N lg N + O(N)

(lb) (1 lglgN 1 1

=1
lglgN (1)gulgN i

The value of N must be truly astronomical for the ratio to be close to 1.

3. The average case. The lattice diagram correspondence of 1 leads to an
expression for BN, the average number of comparisons taken by Batcher’s method to
sort a random 2-ordered file of 2N elements. The derivation is long, and conveniently
divides into two parts. First, we shall perform some manipulations which are some-
what independent of our particular weight function f(j). and so lead to results
applicable to the analysis of other properties of 2-ordered permutations (or other
merging algorithms). The second part of the derivation uses complex analysis and
some particular properties of f(f), and leads to a method for computing Bn to any
desired asymptotic accuracy.

One way to determine Bu, using the lattice diagram correspondence, would be to

2N) paths through the lattice sum them, and divide byfind the weight of each of the
N

2N) An alternate way is to find the number of paths which pass through each
N

vertical line in the lattice, multiply by the weight, sum over all vertical lines, and then

""(2/v) In 1, we defined the weight of the vertical segment from (i, j)todivide by
N

(i + 1, j) to be f(i, f) and derived some simple properties of this function. Now, the

number of paths from (0 0)to (i,/’) is clearly (i +/’) and the number of paths from

(i + 1 )to (N, N)is (2N-i-f- 1)N-f
so the total number of paths which pass through

the vertical segment from (i,/’) to (i + 1,/’) is the product of these two binomial
coefficients. Therefore,

2N) Bu E E(11)
N O<=i<N OjN

f(i,f)(i+if)(2N-i-f-1).N-i

This can be transformed into an expression involving the single argument weight
function defined in (5) because of the symmetries which are available. The first step is
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DATA MOVEMENT IN ODD-EVEN MERGING 255

to split the sum on : ., Y’. f(i,f)(i+])(2N-i-’-1)
o<-i<r o-<_ii N-/"

+ Y’. f(i,j)(i+J)(2N-i-j-l)
o_i<v i<_lV N-j

If we change/" to i-j in the first term and change/" to +j + 1 and then to N- 1 in
the second term, the terms can be recombined:

(2N) ](N )N B2v= ., Y f(i,i-j)(2i-j 2 2i+j-1
o_<i<2vo<-i<=i \ / -i + j

o=<i<2v o-<i_-<i N-i- 1 i-j /

o-<r2 o-Y" (f(i, -/’) +f(N 1 i, g +/’))
\ ] / g 1

Now, equations (2) and (3) in 1 tell us that f(i, -])= f(j, 0) and f(N- 1 i, N- +
]) f(0, ] + 1)= (], 0)+ 1. Adopting the shorthand f(j, 0)- f(j), we have

(2N)Br= (2f(])+l)(2i-](2N 2i+]-1)N o_i<r oii \ i-/" -i- 1

Interchanging the order of summation and changing to +] gives

(2N)B= (2f(])+l)(2i+])(2N-2i-]-l).N o---i<N N-i 1 1

The inner sum remaining in this expression was studied as far back as 1902 by Jensen
[9], who gave an identity which implies that

2i+] 2N-2i-]-1 .,
\N-i-i-l]N-i-i- 1

(see also Gould and Kauck) [8] or Knuth [12, exercise 1.2.6-28] for more general
versions of this identity). This particular sum can be simplified even further, by
applying the addition formula for binomial coefficients to set up a recurrence relation
describing, an alternate form of the sum. Denoting the sum by $, we have

(
o \N- -/" 1]

(=o\\N-i-]-i +\N-i-]-2]] 2

2N-I-i’ ( 2N-l-i 2i_

1 1 1(2N)
which telescopes to give the. alternate

2N
This implies that $r So+ +

N-j-1
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256 ROBERT SEDGEWICK

form

(12) /(2i+j)2N-2i-j-1)=/( N-i-j-X 0k<N_,(2)
When substituted into our formula for Br, this leads to the following result:

THEOREM 2. For any assignment of weights to an N N lattice satisfying f(i, j)=
f(i-],O) for i>-j, f(i,j)=f(O,j-i) ]’or f<-i and f(0, j+l)=f(f, 0)+l, the average
weight of a path through the lattice is

2N

B= Y.
k (2)

------(2F(k)+k)

where F(k)= Yoi<k f(J) with f(j)=-f(], 0).
Proof. From the discussion above, we have

N 0_</<N O<=k<N-i

which can be transformed into the stated result by changing k to N-k and inter-
changing the order of summation.

To proceed further, we need to examine the functions f(k) and F(k) in much
more detail.

Digressing slightly, we can now easily compute the average number of inversions
in a 2-ordered permutation as an example of the use of Theorem 2. (An inversion is an
index pair (i,/’) satisfying <f and A[i] > A[j].) The lattice diagram correspondence
and the initial expression (11) for Br above are taken from Knuth’s treatment of this
problem [13, pp. 86-88 and exercises 5.2.1-12, 14, 15]. Knuth shows that the number
of inversions in a 2-ordered permutation is equal to the area between its path in the
lattice and the main diagonal. (Proof: changing t__ to --q below the diagonal or
-1 to k__ above the diagonal reduces the number of inversions by one and reduces the
area by one unit.) The permutation in Fig. 4 has 12 inversions. The appropriate
assignment of weights to the lattice is to take f(i, j)= li--]1. This function satisfies (2)

and (3), and we have f(k)= k and F(k) (). Then from the theorem we find that the

average number of inversions must be

2N

Ek.
k_->l (2N)N

This sum can be easily evaluated by writingD
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DATA MOVEMENT IN ODD-EVEN MERGING 257

and applying the identity Y’k____>l
\/W--k. +\22N- These calculations lead to

the result

N22N-2

for the average number of inversions in a 2-ordered permutation of’2N elements.
(This checks with Knuth’s result, but his derivation depends on particular properties
of f(k)= k.) Knuth suggests that such a simple answer deserves a simple derivation;
perhaps a direct combinatorial derivation of Theorem 2 could be devised. In any case,
the weight function f(k) for Batcher’s method is much more complicated than f(k)= k
(we don’t even have a closed formula for it), and our problem will involve much more
analysis.

Theorem 2 does lead to an easy way to compute BN for all practical values of N.
Expanding the binomial coefficients in their factorial representations, we find that

BN= E (2F(k)+k) 1-I
N-j

1-<_k-<_N 0<=i<k N +j + 1"

From this representation, we can see that the exact value of BN can be computed in
O(N) steps, as follows:

(13)

product := 1; sum := 0;
loop for 1 =< k =< N:

product := product,(N k + 1)/(N + k);
sum := sum + (2*F(k)+ k)*product;

repeat;

This program assumes that F(k) has been precomputed and stored in an array
F(1 :N), say by using (4) to compute f(k) and then passing through the array once
more to compute F(k). This requirement for N memory cells can be removed by
computing F(k) incrementally within the loop. [We have F(k)=F(k-1)+f(k-1),
and f(k) can be computed from f(k- 1) by looking at the binary representations of
(k- 1) and k. The binary representation of k is obtained from the binary represen-
tation of k- 1 by changing the rightmost 0 to 1 and all the l’s to its right to O’s. (All
numbers are assumed to have 0 as the leftmost digit.) This will increment by 1 the
number of times the binary representation changes parity (the value of f) if the bit to
the left of the rightmost 0 in (k-1)2 is 0; otherwise it will decrement f by 1.
Therefore, we need only test this one bit: this can be done by performing an
"exclusive or" of (k 1)2 with (k)2, adding 1, then "and"ing the result with (k 1)2 (or
(k)2). If the result is 0, then f(k) f(k 1) + 1, otherwise f(k) f(k 1)- 1. The
program can be further improved because the terms become very, very small as k gets
large. If we put in a test to leave the loop when the terms to be added become smaller
than the smallest representable number in our computer, then it turns out that the
loop is iterated only about O(//) times for large N (we shall see why later). Thus
exact values of Br can be computed very quickly.

D
ow

nl
oa

de
d 

04
/1

0/
21

 to
 1

28
.1

12
.1

39
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



258 ROBERT SEDGEWICK

TABLE 3
Average number of exchanges (exact).

N BN
BN-(1/4)NlgN

.500 .50000000
2 1.333 .41666667
4 3.600 .40000000
8 9.131 .39141414

16 22.221 .38881721
32 52.370 .38657069
64 120.735 .38647725
128 273.339 .38546127
256 610.795 .38591836
512 1,349.217 .38519013

1,024 2,955.039 .38578023
2,048 6,420.731 .38512273
4,096 13,868.014 .38574580
8,192 29,778.788 .38510590

16,384 63,663.918 .38573720
32,768 135,499.012 .38510170
65,536 287,423.532 .38573505
131,072 607,531.912 .38510065
262,144 1,280,765.989 .38573451
524,288 2,692,271.510 .38510038

1,048,576 5,647,351.813 .38573438

Table 3 shows exact values of BN for N 2n, computed in this way. By taking
differences in this table, it is quickly discovered that these numbers grow with N lg N,
and the coefficient is apparently 1/4. Subtracting 1/4N lg N from Brv and dividing by N
gives the third column, which leads to the immediate conjecture that

1
BN-N lg N +.385N

at least for N 2n. In fact, a quick calculation with (13) proves that this formula is
accurate to within 0.1% for 27-<N<-22 (and to within 1% for 2<N<27). From a
practical standpoint, we are done, since we can accurately calculate BN for any
realistic value of N. From a theoretical standpoint, this answer is somewhat unsatis-
factory, and the rest of the paper will be devoted to an analytic verification of this
result. It turns out that precise formulas for BN can be derived to any desired
asymptotic accuracy; in particular, the coefficient of the linear term can be expressed
in terms of classical mathematical functions. The derivation is an interesting example
of a difficult type of asymptotic analysis, and it uncovers some interesting aspects of
the. structure of Batcher’s method.

It will be convenient to begin by using the addition formula for binomial
coefficients to transform the equation in Theorem 2 for BN into a sum involving Vf(k),
which is simpler to work with than F(k). First, just as in the derivation for the number

(2N) 1 (2NN)of inversions, we can perform the summation "k>l N-k
k =-N which
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DATA MOVEMENT IN ODD-EVEN MERGING 259

leaves

When both sides are divided by 4u, this recurrence telescopes to a sum, and leads to
the formulation

1 4N 1
2 --7- 2 .i Vf(k)+(14) Bv

2 2N li<r 4 k_l N.

We shall now concentrate on evaluating the inner sum

(15) bi 2 Vf(k).

After we have derived an asymptotic expression for bj, we shall easily be able to deal
with Br.

Formulas of this type (involving a sum over the lower index of a binomial
coefficient) appear relatively frequently in combinatorial analysis and the analysis of
algorithms. We have already seen one example, counting inversions in a 2-ordered
permutation. Knuth [13] gives several other specific examples which arise in the
analysis of algorithms" bubble sort, digital searching, and radix exchange sort. Paths in
a lattice may also be used to model other combinatorial problems, such as tree
enumeration and the classical ballot problem, and formulas similar to Theorem 2 arise
in the analysis. The method that we shall use is called, the "gamma-function" method
and is attributed by Knuth to N. G. de Bruijn. A derivation using the method is
outlined in a paper on tree enumeration by de Bruijn, Knuth and S. O. Rice [5], and a
similar description may be found in Knuth [13, pp. 132-134]. However, it will be
useful to present the method in some detail here because our function Tf(k) is more
complicated than the corresponding functions for the prior derivations.

One goal in an asymptotic derivation is to use methods which could, at least in
principle, yield an answer good to any given asymptotic accuracy. We shall be content
to get a formula for Br good to within O(/logN); we are most interested in
the coefficients of the N log N and linear terms. It turns out that it is sufficient to get b.
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260 ROBERT SEDGEWICK

with O(j-1/2) to achieve this accuracy. In both cases, the methods can yield better
asymptotic accuracy, if desired.

The first step in evaluating bi is to use Stirling’s approximation to replace the
binomial coefficients with an exponential. Stirling’s approximation says that

lnn!= n+ In n n + ln x/-+ O()
Applying this to the binomial coefficients in b., we have

(] 2_/’k)/(2/)= exp {2 lnj!-ln (j+k)!-ln (j- k)!}

1 (] + (In (/" + k)+ In (/" k))=exp 2(]+ In/’-

() 1 1, )}-k(ln(j+k)-ln(j-k))+O +O(f;k)+O(] k

Now, the O(1/(]+k)) and O(1/(]-k)) terms render this approximation useless
unless the value of k is restricted in some way. In this case, the appropriate restriction
is to take Ikl <_]1/2+ for some small positive constant e >0 (the reason for this will
become apparent below). With this restriction, we can replace O(1/(]+k)) and
O(1/(]-k)) by 0(1/]). Also, we get the asymptotic expansions

t k2 k 3

In (j + k)= In j + +-O(j4-2)
1 2/.2 3/.3

and

k k2 k 3

ln(j-k)=lnj
j 2j2 3ka+O(j4-2) forlkl<-j1//.

Substituting these and simplifying, we find that several terms cancel, leaving

(
(16) e + 0(/4e )) for Ikl--<

This estimate can be used in our expression for bi because the terms for [k[ _-> fl/2+e are
negligibly small. We have

(.[2___Jk)<(.[_{/2+e) forlkl>]"l/:+e,

so (16) implies that

(
(17)

-j k _:.e (1 + 0(/4e-1)) for Ikl >fl/2+e

and this is O(j-m) for all m > 0. Now, we can split the sum for bi into two parts and
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DATA MOVEMENT IN ODD-EVEN MERGING 261

apply (16) and (17) to replace the binomial coefficients with an exponential (recall that
IVf(k)[-- 1):

(18) Y e-ka/S(1 q- O(/4e-1)) Vf(k) + O(je -s’’)
lk]I/2+e

Z e-k2/s Vf(k)(1 + O(/4e-1)).

The terms for which the estimate (16) is not valid are exponentially small, as is e-’/;
therefore it doesn’t matter which we use in the "tail" of the sum.

If we had a simple expression for Vf(k) we could proceed to get an asymptotic
expression for b by applying the Euler-MacLaurin summation formula to approxi-
mate the sum with an integral, then do the integration. For example, we could apply
the methods of the previous paragraph to the formula for BN in Theorem 2 to get the
asymptotic formula

BN E e-kalN(2F(k)+k)(l +O(N4e-)),
kl

and from equation (7) it is easy to prove that F(k)= 1/2k lg k +O(k) so that the
Euler-MacLaurin summation gives the approximation

BN I1 e-X2/N(x lg X + (O(x))(1 + 0(N4-1)) dx

which, after the substitution x2/n, leads to the well-known "exponential integral"
function (see [1]), with the result

1
BN -N lg N + O(N).

This method cannot be extended to find the coefficient of N, since the precise equation
for F(k) is quite complicated and depends on the binary value of k. Similarly, a simple
equation for Vf(k) is not available, and we need to resort to more advanced tech-
niques to get an accurate estimate for bs (and, eventually, BN).

The "gamma-function" method that we shall use to evaluate bs makes use of the
residue theorem from the theory of functions of a complex variable. Knopp [10], [11]
is the classical text on the theory of functions, and is an excellent introduction to the
subject of complex analysis. Other aspects of complex analysis and properties of the
two special functions that we use, the gamma (F) function and Riemann’s zeta (sr)
function, may be found in Whittaker and Watson [15]. And we shall make use of a
number of identities from Abramowitz and Stegun [1] and some other references
noted below. The idea is to express e-k/s as an integral in the complex plane involving
the F-function, then interchange the order of integration and summation. Although
we don’t have a simple closed formula for Tf(k), we will be able to express the
resulting complex series involving Vf(k) in terms of classical analytic functions. This is
the key to the analysis, for then the integral can be evaluated by finding residues
within an appropriate contour of integration.
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-X +iY

-X -iY

+ iY

-1-iY

FIG. 13. Contour of integration ]:or F-function identity.

We begin with the identity

1 fl
l+ic

r(z)r dz.(19) e
2rri -io

This is the so-called Mellin transform of e-’ [7], a special case of Fourier inversion.
We may prove this also directly from the residue theorem using the contour of
integration Rxy shown in Fig. 13, and letting X and Y c. The function F(z)r has
simple poles at z =-k, k 0, 1, 2,... with residue rk(--1)k/k!, SO the value of the
integral along Rxy is o<__k<x(--r)k/k! which becomes e as X- oo. The integral in
(19) is the integral along the right boundary of Rxy’, the integrals along the other
boundaries vanish as X, Y oo because the F-function becomes exponentially small
on them. (We shall skip the precise bounds here because they may b.e found in Knuth
[13, p. 132] and we shall be doing similar calculations later.) Applying this identity to
our formula (18)for bj, we have

1 fl+ioo (_)-zF(z) dz(l+O(j4-l))bi klE Vf(k)i.,a_ioo
1 f

1+ioo Vf(k
r(z)j ’. "k2z dz(l+O(j4e- )).

2i 1- kl

(The reader may wish to check that the interchange of summation and integration is
justified here because of absolute convergence.)

In order to proceed further we need to know the properties of the function
Ek>__I Vf(k)/k z. Remarkably, this function can be expressed in terms of the general-
ized Riemann (Hurwitz) (-function. Figure 14 shows the values of Vf(k) broken up in
a way that displays the pattern: the values for odd k go in the sequence 1, -1, 1,
-1,. .; if those are removed, the odd values in the remaining sequence are 1, -1, 1,
-1,. .; if those are removed, the odd values in the remaining sequence are 1, -1, 1,
-1, ..; etc. (Proof: For m > 0, the numbers m 2n+2 + 2 and m 2"+2 + 2" 1 differ
only in their last (n + 1) bits, so from the interpretation that f(k) is the number of
parity changes in the binary representation of k, we .must have Vf(m. 2"+2+ 2")=
V/(2") 1 for all m, n ->_ 0. (See discussion following (5).) A similar argument shows
that Vf(m’2n+2+3"2)=Vf(3"2n)=-i for all m,n>-_O.) In terms of complex
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functions this means that

1 1 )(11_ 1 1 1 )
Both of these series can be expressed in terms of classical functions of complex
variables. The second is a simple geometric series"

1 1
(2k) =k =11/2--------’-7 2---’kO _0

The first factor involves the generalized Riemann ’-function, which is defined, for
Re (z)> 1, by the equation

1
((z, ,Zg>=0 (n + a)"

Of course, we shall need to deal with the analytic continuation of this function, which
is defined for all z except z 1, where there is a simple pole with residue 1. (The
classical reference for properties of the r-function is Titchmarsh [14], though Whit-
taker and Watson [15] also have a full treatment, and Edwards [6] gives a nice
historical perspective.) In terms of this function, we have

1(-1) 1 E -+ E (2k)(2k+1)=2 (4k+1) k_>-a k_->ak_O kO

2 1 2-14-7’(z, )- .-2z r(z, 1).

(It is customary to drop the second argument in r(z, 1) and refer to it simply as r(z);
this is the function originally studied by Riemann.) Therefore, we have found that

Vf(k) 2r(z, 1/4)
((z).(20) Y’.

>=1 k 2(2 1)

It is the existence of this simple formula which makes the gamma-function method
applicable to this problem. (Functions of this form are well-known in analytic number
theory as Dirichlet series, and many techniques have been developed for dealing with
them. See, for example, [2].)

Substituting, we have

1 [
l+ieo /2’(2z, 1/4)

b]--i al_io
r(z)iZ\ --- 1) -’(2z)) dz(1 +O(/4 1)).

To evaluate this integral, we first approximate it by integrating around the contour R
shown in Fig. 15 and letting Y-+oo. As before, as Y-->oo the integral along the
right-hand side of Rr approaches the given integral, and the integrals along the top,
bottom and left can be bounded by using well-known bounds on the F and " functions.
We have

(21)

which follows from Stirling’s approximation (see, for example, [1, eq. 6.1.45]), and

(22) Isr(x + iy, a)l O([yl-) for x ->_-1

(see, for example, Whittaker and Watson [15, p. 276]). Therefore, the integrals along
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-1/2-iY

+iY

-iY

FIG. 15. Contour of integral for final integral.

the top and bottom lines of Ry are

O(e-=’vl/2I_ f’ly]3/Z-Xdx)
1/2

which is exponentially small and vanishes very quickly as Y- c. The integral along
the left line of Rv is

so that we now have

(23)
1 IR (2((2z, 1/4)

b/. / F(z)/’z\ 4z(4z- 1) ((2z)) dz(1 +0(j4-1))+0(]-1/2).

The value of the integral is the sum of the residues within Ry.

The only singularities within Ry are contributed by F(z) and 1/(4z 1): the
function F(z) has a simple pole at z 0 with residue 1, and 1/(4 1) has simple poles
at z 2k.a’i/ln 4 for k 0, + 1, +2,. with residue l/In 4. (Both sr(2z, 1/4) and ((2z)
have simple poles with residue 1 at z 1/2, but they cancel out.) There is therefore a
double pole at z 0 and we need to use Laurent series expansions to find the residue
there. We have

r(z)
r(z+l) lexp{_yz+O(z2)} 1

v+O(z),
Z Z Z

In/"
I =e =l+zln]+O(z2),
1 In (1/4)

4z-e -1 zln4+O(z2),

1 1 1 1 1
4z--i=ezln4----=Z ln4+(z ln4)2/2+O(z3)-z ln4 2

-O(z),

1) 1 ())r(2z, +z(2 In F -In (2or) + O(z2),

and

1
((2z)= -+ O(z).
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266 owr SEDGEWICK

The expansion for F(z) is well known (see Abramowitz and Stegun [1, eq. 6.1.33]),
and the next three expansions are elementary. The expansions for the st-functions,
which are crucial to the derivation, follow directly from Whittaker and Watson [15, p.
271] where it is shown that ((0, a)= -a and (’(0, a)= In F(a)- 1/2 In (27r). Multiply-
ing these series together, we find that

(4z(4-1) ) (1,. )(14z2((2z, 1/4)
’(2z) In j 3’r(z)j ;+ +O(z)

ln2
(24)

1 1/1 ,/ 1
4z 2 ln--- +- , lg j

z 41n2 4

1 r(1/4) )-lg+O(z)
4 2zr

r(1/4)2]+lg
27r ]

+O(1)"

This gives the residue at z 0 (the coefficient of 1/z).
To this we must add the residue at the other poles of 1/(4z- 1). The effect of

these other terms is small (but not insignificant), and we shall encapsulate them in a
single term,

e (j)=1-0 F
\ In 4 ]

kTri/ln4
_
4krd )

( ( (2krri ))krci] ik.i/ln2(1
Y 2Re F 1--] ln2In 2 k_>l

Y, (:k COS (kTr lg j)-r/k sin (kTr lg j)),
k_>_l

where

In 2
(kTri (2kTri 1

F
\i-/

(\-i- -) =- + 1.

To finish the evaluation of our b. and Bu we need to estimate the F and ( functions at
these points along the imaginary axis. The F-function is easy to bound from Stirling’s
approximation (see Edwards [5, 6.3]), and the (-function can be estimated by writing

1 1
r(z,a)= 2 ,k+a,Z

+
O-<k< e (k +a )z,

and then applying Euler-MacLaurin summation to the second sum, for appropriate K.
(These manipulations are valid for Re z > 1 only, but the resulting formulas are valid
for all z, by analytic continuation--see Edwards [6, 6.4] for details.) Table 4 shows
the values of sCk and r/k for k 1, 2, 3 computed in this way. The values get exceed-
ingly small for larger k, as can be verified from the bounds (21) and (22).

Adding all the residues, we have, from (23):
1 r(1/4)2 1 Y t-e(j)+o(j-’/2).(25) b=lgj+lg 2 4 41n2

This leads to our final result.
THEORZM 3. The average number ofexchanges used by Batcher’s odd-even merge

for a random 2-ordered file of 2N elements is

1 y+21 r(1/4)
BN=-NlgN+ lg

2rr 4 41n2
t- 6 (N)) N + 0(v/- log N),

where 6(N) is a periodic function of log N, with 6(4N)= 6(N), ]6(N)[ < .000490, and
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DATA MOVEMENT IN ODD-EVEN MERGING 267

8(2").000317(-1)". (The constant

F(1/4)a 1 3, + 2
lg4

27r 4 41n2

has the approximate value .385417224.)
Proof. From the discussion above, we need only substitute our result (25) for b.

into our equation (14) for BN and perform the summation. We have

1 4N (2/)1
2 4j, ( lg j +lg-Br 2 2N l=’<s

1r(a/4)a 1 Y J- :(f)q- O(f-1/2) q--N.2r 4 41n2

The terms not involving j are easily taken care of, since it is trivial to prove by
induction that

(Direct proof:

1 4u

f_., 1(2/) o<_-<(-1)(-1/2’j/ =(_1)_ (-3/2’=N_1] (NN--1/2)I =4-’N \(2N-N-11’]
O<=i<N

for supporting identities, see Knuth [12].)
For the other terms, we can remove the binomial coefficients with Stirling’s

approximation, as in the derivation of (16). We have

(2/) 1 4N
t- o(y-3/2) and x[r,-N+ O(N-/2).

4 x/-l1" (2NN)
TABLE 4

Values of constants in the asymptotic expansion for the
average number of exchanges.

2 (k’n’i] /2k’tril
k -t-iqk l-n-F \ln 2/Srl )

.003704670+ .002500177+
2 .000001560+ -.000000832-
3 .000000001- .000000002+

F(41-) 3.6256099082+

1.4426950408+
In 2

=0.5772156649+

"rr 3.1415926535+
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268 ROBERT SEDGEWlCK

Therefore the O(j-1/2) term sums to 0(/ log N), and

2 ,-- h y dy + 0

1N lgN_
1

2 in :2N + O

Here the second step follows from Euler-MacLaurin summation (see, for example,
Knuth [13, p. 110]) and the third step from the substitution x y2.

We have proved that

1 (r(1/4)
2 1 /+ 2

B =-N lg N + lg-
2- 4 41n2 6(N)) N + 0(/- log N);

it remains to evaluate the oscillatory term

1 4N (ili’)E (i).N6(N)
2 2N

After substituting for e (j), we proceed in the same way as we did for the lg/" term. The
result of using Stirling’s approximation on the binomial coefficients and Euler-
MacLaurin summation on the resulting sums is

These integrals are elementary; the substitutions x y2, then 27rk lg y, transform
them into standard integrals (for example, Abramowitz and Stegun [1, eqs. 4.3.136,
4.3.137]) with the eventual result

6(N)= Y. O’k

k>=X + 1
(k(O’k COS (rrk lg N)+sin (rrk lg N))

r/k (Ok sin (rrk lg N)- cos (rrk lg N)))

where erk is (ln 2)/(2rrk). From this formula, we see that 8(N) has the stated
properties. With the aid of Table 4, we can easily compute the values

(26)
o"k6(22")= Y (O’k(k + ).000317000...
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270 ROBERT SEDGEWICK

and

(27) 6(22.+)= (_1) o-
k>____l o’+1 (O’kk + rig) --.000317082" .

Finally, since the function a sin x + b cos x has the extreme values + n/a 2 + b2, we have
the extreme values

[a(N)l < E cr 4(sCok + ,k): + (sc rtkO’k) .000490177
k_-> O’ + 1

From Theorem 3 we see that, asymptotically, only 1/4 of the comparators in
Batcher’s merge are involved in exchanges, on the average. The analytic result for the
coefficient of the linear term given in Theorem 3 matches the exact computed value
(Table 3) to six decimal places.

In principle we could extend the methods used to get any desired accuracy
whatsoever. This would mainly involve carrying the asymptotic series expansions
further, which gets very complicated in the applications of Euler-MacLaurin sum-
mation. Also, the left boundary has to be moved left for sharper asymptotic accuracy
in (23). Each negative integer enclosed contributes another simple pole from the F
function.

Figure 16 shows a graph of the coefficient of the linear term from Theorem 3,

F(1/4)a 1 3’+2lg I- 8(N),
2rr 4 41n2

together with the true values of (BN-1/4N lgN)/N, computed with (13). The upper
curve is the actual values, and the lower curve is the asymptotic estimate. The
difference between the curves is reflected in the O(/log N) term in Theorem 3. The
curves get very close for large N.

4. Sorting. Any merging method may be extended into a sorting method with the
following recursive procedure: To sort a file of N elements, use the method to
independently sort the odd elements and the even elements of the file, thus producing
a 2-ordered file of N elements. Then apply the merging method. Figure 17 shows the
sorting network resulting from applying this procedure to Batcher’s odd-even merge.
If merge stages are overlapped, the sort can be accomplished in 1/2[lg N] ([lg N] + 1)
independent stages. Knuth gives a formula describing the number of comparators
required [13, exercise 5.2.2-15]; it depends heavily on the binary representation of N.
For simplicity, we shall assume throughout this section that N 2". The number of
comparators required is then described by the relation (see (1))

C=- 2C--, + (n 1)2"-1+ 1

which telescopes, after division by 2", to the solution

1 1
(28) C*N N(lg N)Z-N lg N +N- 1, N 2".

Again, this method cannot compete with known O(N log N) sorting methods on
serial computers, but it might do well if parallelism is available.
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DATA MOVEMENT IN ODD-EVEN MERGING 271

The average number of exchanges required can be calculated from a similar
recurrence, using Theorem 3, since the odd and even elements are sorted indepen-
dently. If

F(1/4)2 1 y +2
=lg

2rr 4 41n2

we have the following expression for the average number of exchanges:

(1 )B.=2B*.-I+ (n-1)+a+8(2"-1) 2"-l+O(x/logN).

Iterating this recurrence (applying the same recurrence to B*u/2), we get

(1 3 -2) -1)) + O(V log N).B> 4B2"-- + n + 26 -+ 6(2" + 6(2" 2"-1

If we define 6"(2")-= 6(2"-2)+ 8(2"-1), then we know that 8*(2")= 8*(2"-2) as in
Theorem 3. Our recurrence then telescopes when divided by 2" to the solution

B-2"= (1 316, )o_<_i-<_,/2Y (n-2])+a-+ (2") +O(1)

-na 1( 18, )-1-+ a-g+ (2") n+O(1)

or, in terms of N:

(29) B} N(lg N)2+ a -+ (N) N lg N + O(N), N 2".

The value of 1/2(a--) is about .130208... which is the value of the coefficient of the
N lg N term to six places, since we know from (26) and (27) that 18*(N)I < 10-6.

In the same way, we could find from Theorem 1 that, asymptotically, all of the
comparators could be involved in exchanges in the worst case. However, this asymp-
totic maximum is approached even more slowly than for the merging method, since
the recursive nature of the sorting method guarantees that many small files will be
merged.

x merges 2 x 2 merges 4 x 4 merges

FIG. 17. Odd-even sorting network.

8 x 8 merge
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5. Conclusion. In this paper, we have derived formulas which accurately describe
the number of exchanges involved in Batcher’s odd-even merge, both on the average
and in the worst case. This completes our understanding of Batcher’s method, which is
of some theoretical importance as a near-optimal nonadaptive method, and of some
practical importance when parallelism is available.

The main results are the exact formulas for the worst case and the average given
in Theorems 1 and 3. These lead to asymptotic statements that, as N o, about of
the comparators do exchanges on the average and nearly all of them do exchanges in
the worst case.

We have emphasized the methods of analysis, as well as the results, because they
may have more general applicability. In particular, Theorem 2 could be of use in the
analysis of other merging problems and other combinatorial problems which can be
modeled with paths in a lattice. Also, the problem of determining the average number
of exchanges has provided an excellent example of the application of de Bruijn’s
"gamma-function" method of asymptotic analysis.

Acknowledgments. I had thought this problem hopelessly difficult until Dave
Notkin brought its details to my attention in a classroom project.

Note. The kind of asymptotic analysis that we used in determining the average
number of exchanges has recently been used to solve yet another problem: determin-
ing the average number of registers needed to evaluate arithmetic expressions. See the
recent reports by P. Flajolet, J. C. Raoult and J. Vuillemin, On the average number of
registers required for evaluating arithmetic expressions, Proc. 18th Symp. on Foun-
dations of Computer Science, Providence, RI; and by R. Kemp, The average number
of registers needed to evaluate a binary tree optimally, Saarbriicken University Report
A 77104, Saarbriicken, Germany.
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