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INTRODUCTION 

Over thirty algorithms have been pub- 
lished during the past twenty years for 
generating by computer all N! permuta- 
tions of N elements. This problem is a 
nontrivial example of the use of computers 
in combinatorial mathematics, and it is 
interesting to study because a number of 
different approaches can be compared. 
Surveys of the field have been published 
previously in 1960 by D. H. Lehmer [26] 
and in 1970-71 by R. J. Ord-Smith [29, 30]. 
A new look at the problem is appropriate 
at  this time because several new algo- 
rithms have been proposed in the inter- 
vening years. 

Permutation generation has a long and 
distinguished history. It was actually one 
of the first nontrivial nonnumeric prob- 
lems to be attacked by computer. In 1956, 
C. Tompkins wrote a paper [44] describing 
a number of practical areas 'where permu- 
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tation generation was being used to solve 
problems. Most of the problems that he 
described are now handled with more so- 
phisticated techniques, but  the paper stim- 
ulated interest in permutation generation 
by computer  per  se. The  problem is simply 
stated, but  not easily solved, and is often 
used as an example in programming and 
correctness. (See, for example, [6]). 

The study of the various methods that  
have been proposed for permutation gener- 
ation is still very instructive today because 
together they illustrate nicely the rela- 
tionship between counting, recursion, and 
iteration. These are fundamental concepts 
in computer science, and it is useful to 
have a rather simple example which illus- 
trates so well the relationships between 
them. We shall see that  algorithms which 
seem to differ markedly have essentially 
the same structure when expressed in a 
modern language and subjected to simple 
program transformations. Many readers 
may find it surprising to discover that  
~'top-down" (recursive) and '~bettom-up" 
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(iterative) design approaches can lead to 
the same program. 

Permutation generation methods not 
only illustrate programming issues in 
high-level (procedural) languages; they 
also illustrate implementation issues in 
low-level (assembly) languages. In this pa- 
per, we shall try to find the fastest possible 
way to generate permutations by com- 
puter. To do so, we will need to consider 
some program "optimization" methods (to 
get good implementations) and some 
mathematical analyses (to determine 
which implementation is best). It turns out 
that  on most computers we can generate 
each permutation at only slightly more 
than the cost of two store instructions. 

In dealing with such a problem, we must 
be aware of the inherent limitations. 
Without computers, few individuals had 
the patience to record all 5040 permuta- 
tions of 7 elements, let alone all 40320 
permutations of 8 elements, or all 362880 
permutations of 9 elements. Computers 

help, but not as much as one might think. 
Table 1 shows the values of N! for N -< 17 
along with the time that would be taken 
by a permutation generation program that  
produces a new permutation each micro- 
second. For N > 25, the time required is 
far greater than the age of the earth! 

For many practical applications, the 
sheer magnitude of N! has led to the devel- 
opment of "combinatorial search" proce- 
dures which are far more efficient than 
permutation enumeration. Techniques 
such as mathematical programming and 
backtracking are used regularly to solve 
optimization problems in industrial situa- 
tions, and have led to the resolution of 
several hard problems in combinatorial 
mathematics (notably the four-color prob- 
lem). Full t reatment  of these methods 
would be beyond the scope of this p a p e r -  
they are mentioned here to emphasize 
that, in practice, there are usually alter- 
natives to the "brute-force" method of gen- 
erating permutations. We will see one ex- 
ample of how permutation generation can 
sometimes be greatly improved with a 
backtracking technique. 

In the few applications that  remain 
where permutation generation is really re- 
quired, it usually doesn't matter  much 
which generation method is used, since 
the cost of processing the permutations far 

T A B L E  1. APPROXIMATE TIME NEEDED TO GENERATE 
ALL PERMUTATIONS OF N (1 /zsec pe r  p e r m u t a t i o n )  

N NI  T i m e  

1 1 
2 2 
3 6 
4 24 
5 120 
6 720 
7 5040 
8 40320 
9 362880 

10 3628800 
11 39916800 
12 479001600 
13 6227020800 
14 87178291200 
15 1307674368000 
16 20922789888000 
17 355689428096000 

3 seconds  
40 seconds  

8 m i n u t e s  
2 h o u r s  
1 day  
2 weeks  
8 m o n t h s  

10 y e a r s  
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exceeds the cost of generating them. For 
example, to evaluate the performance of 
an operating system, we might want  to try 
all different permutations of a fLxed set of 
tasks for processing, but  most of our time 
would be spent simulating the processing, 
not generating the permutations. The 
same is usually true in the study of combi- 
natorial properties of permutations, or in 
the analysis of sorting methods. In such 
applications, it can sometimes be worth- 
while to generate "random" permutations 
to get results for a typical case. We shall 
examine a few methods for doing so in this 
paper. 

In short, the fastest possible permuta- 
tion method is of limited importance in 
practice. There is nearly always a better 
way to proceed, and if there is not, the 
problem becomes really hopeless when N 
is increased only a little. 

Nevertheless, permutation generation 
provides a very instructive exercise in the 
implementation and analysis of algo- 
rithms. The problem has received a great 
deal of attention in the literature, and the 
techniques that we learn in the process of 
carefully comparing these interesting al- 
gorithms can later be applied to the per- 
haps more mundane problems that we face 
from day to day. 

We shall begin with simple algorithms 
that  generate permutations of an array by 
successively exchanging elements; these 
algorithms all have a common control 
structure described in Section 1. We then 
will study a few older algorithms, includ- 
ing some based on elementary operations 
other than exchanges, in the framework of 
this same control structure (Section 2). Fi- 
nally, we shall treat the issues involved in 
the implementation, analysis, and "opti- 
mization" of the best of the algorithms 
(Section 3). 

1. METHODS BASED ON EXCHANGES 

A natural way to permute an array of 
elements on a computer is to exchange two 
of its elements. The fastest permutation 
algorithms operate in this way: All N! per- 
mutations of N elements are produced by a 
sequence of N ! - 1  exchanges. We shall use 
the notation 

P[1]:=:P[2] 

to mean "exchange the contents of array 
elements P[1] and P[2]". This instruction 
gives both arrangements of the elements 
P[1], P[2] (i.e., the arrangement before the 
exchange and the one after). For N = 3, 
several different sequences of five ex- 
changes can be used to generate all six 
permutations, for example 

P[1] =:P[2] 
P[2]:=:P[3] 
P[1] =:P[2] 
P[2]-=:P[3] 
P[1]:=-P[2]. 

If the initial contents of P[1] P[2] P[3] are 
A B C, then these five exchanges will pro- 
duce the permutations B A C, B C A, 
C B A , C  A B, a n d A  C B. 

It will be convenient to work with a 
more compact representation describing 
these exchange sequences. We can think of 
the elements as passing through "permu- 
tation networks" which produce all the 
permutations. The networks are com- 
prised of "exchange modules" such as that  
shown in Diagram 1 which is itself the 

DIAGRAM 1 

permutation network for N = 2. The net- 
work of Diagram 2 implements the ex- 
change sequence given above for N = 3. 
The elements pass from right to left, and a 
new permutation is available after each 
exchange. Of course, we must be sure that  
the internal permutations generated are 
distinct. For N = 3 there are 35 = 243 
possible networks with five exchange mod- 
ules, but  only the twelve shown in Fig. 1 
are "legal" (produce sequences of distinct 
permutations). We shall most often repre- 
sent networks as in Fig. 1, namely drawn 
vertically, with elements passing from top 
to bottom, and with the permutation se- 

:I I 
DIAGRAM 2. 
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~ABC ~ABC ABC 
BAC ACB 'CBA 
BCA BCA --'CAB 
CBA BAC 'BAC 
CAB CAB 'BCA 
ACB CBA ACB 

~ A B C ~ A BC ~A B C 
BAC ACB CBA 
BCA BCA CAB 
ACB CBA ACB 
CAB CAB BCA 
CBA BAC BAC 

~ABC ~ABC ABC 
BAC ACB ~ CBA 
CAB CAB BCA 
ACB CBA ACB 
BCA BCA ~ CAB 
CBA BAC BAC 

~ A B C ~ A B C ~A BC 
BAC ACB CBA 
CAB CAB BCA 
CBA BAC BAC 
BCA BCA CAB 
ACB CBA ACB 

FIGURE 1. Legal permuta t ion  networks for three  
elements.  

quences that  are generated explicitly writ- 
ten out on the right. 

It is easy to see that  for larger N there 
will be large numbers of legal networks. 
The methods that  we shall now examine 
will show how to systematically construct 
networks for arbitrary N. Of course, we 
are most interested in networks with a 
sufficiently simple structure that  their ex- 
change sequences can be conveniently im- 
plemented on a computer. 

Recursive Methods 

We begin by studying a class of permuta- 
tion generation methods that  are very sim- 
ple when expressed as recursive programs. 
To generate all permutations of 
PIll,  • • • ,PIN], we repeat N times the step: 
"first generate all permutations of 
P[1],- • • ,P[N-1], then exchange P[N] with 
one of the elements P[1],. . . ,P[N-1]". As 
this is repeated, a new value is put into 
P[N] each time. The various methods dif- 
fer in their approaches to f'filing P[N] with 
the N original elements. 

The first and seventh networks in Fig. 1 
operate according to this discipline. Recur- 

A C D A--A D--D B 

o ciEB o-VA ^ 
D ~ G ~  3. 

sively, we can build up networks for four 
elements from one of these. For example, 
using four copies of the f'Lrst network in 
Fig. 1, we can build a network for N = 4, 
as shown in Diagram 3. This network fills 
P[4] with the values D, C, B, A in de- 
creasing alphabetic order (and we could 
clearly build many similar networks 
which fill P[4] with the values in other 
orders). 

The corresponding network for five ele- 
ments, shown in Diagram 4, is more com- 
plicated. (The empty boxes denote the net- 
work of Diagram 3 for four elements). To 
get the desired decreasing sequence in 
P[5], we must exchange it successively 
with P[3], P[1], P[3], P[1] in-between gen- 
erating all permutations of P[1] , . . .  ,P[4]. 

In general, we can generate all permu- 
tations of N elements with the following 
recursive procedure: 

Algori thm 1. 
procedure permutations (N); 

begin c: = 1; 
loop: 

if  N > 2  then  permutatmns(N-1) 
endif; 

while c<N: 
P[B [N,c]]:=:P[N]; 
c:=c+l 

repeat  
end; 

This program uses the looping control con- 
struct loop • • • while • • • repeat which is 
described by D. E. Knuth  [23]. Statements 
between loop and repeat are iterated: 
when the while condition fails, the loop is 
exited. If the while were placed immedi- 
ately following the loop, then the state- 
ment would be like a normal ALGOL while. 
In fact, Algorithm 1 might be imple- 
mented with a simpler construct like for 

~ ~-c--c J ~E~EJ ~^ ^' 
c~ 

E E ~ D  D ~ C  C B ^ 

DIAO~M 4. 
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c:=1 until  N do . ' -  were it not for the 
need to test the control counter c within 
the loop. The array B[N,c] is an index 
table which tells where the desired value 
of P[N] is after P[1],. • • ,P[N-1] have been 
run through all permutations for the cth 
time. 

We still need to specify how to compute 
B[N,c]. For each value of N we could spec- 
ify any one of (N- l ) !  sequences in which 
to fill P[N], so there are a total of 
( N - 1 ) ! ( N - 2 ) ! ( N - 3 ) ! .  • • 3!2!1! different ta- 
bles B[N,c] which will cause Algorithm 1 
to properly generate allN! permutations of 
P[1], • . .  ,P[N]. 

One possibility is to precompute BIN,c] 
by hand (since we know that  N is small), 
continuing as in the example above. If  we 
adopt the rule that  P[N] should be filled 
with elements in decreasing order of their 
original index, then the network in Dia- 
gram 4 tells us that  B[5,c] should be 1,3,1,3 
for c = 1,2,3,4. ForN = 6 we proceed in the 
same way: if we start  wi thA B C D E F, 
then the l~Lrst N = 5 subnetwork leaves the 
elements in the order C D E B A F, so 
that  B[6,1] must be 3 to get the E into P[6], 
leaving C D F B A E. The second N = 5 
subnetwork then leaves F B A D C E, so 
that  B[6,2] must be 4 to get the D into P[6], 
etc. Table 2 is the full table for N <- 12 
generated this way; we could generate per- 
mutations with Algorithm 1 by storing 
these N ( N -  1) indices. 

There is no reason to insist that  P[N] 
should be filled with elements in decreas- 
ing order. We could proceed as above to 
build a table which fills P[N] in any order 
we choose. One reason for doing so would 
be to try to avoid having to store the table: 
there are at least two known versions of 

TABLE 2. I_~EX TA~LE B[N, c] FOa AJP,_,oRrrHM 1 

N 

2 1 
3 1 1  
4 1 2 3  
5 3 1 3  1 
6 3 4 3  2 3  
7 5 3 1 5 3  
8 5 2 7 2 1  
9 7 1 5 5 3  

1 0 7 8 1 6 5  
1 1 9 7 5 3 1  
1 2 9 6 3 1 0 9  

1 
2 3  
3 7 1  
4 9 2 3  
9 7 5 3  
4 3 8 9  

1 
2 3  

this method in which the indices can be 
easily computed and it is not necessary to 
precompute the index table. 

The fLrst of these methods was one of the 
earliest permutation generation algo- 
ri thms to be published, by M. B. Wells in 
1960 [47]. As modified by J. Boothroyd in 
1965 [1, 2], Wells' algorithm amounts to 
using 

/ ~ - c  i fN  is even and c> 2 
t~N,c] 

- 1 otherwise, 

or, in Algorithm 1, replacing 
P[B[N,c  ]]:=:P[N] by 

if (N even) and (c>2) 
then P[N]:=:P[N-c] 
else P[N]:=:P[N-1]  endif 

It is rather remarkable that  such a simple 
method should work properly. Wells gives 
a complete formal proof in his paper, but 
many readers may be content to check the 
method for all practical values of N by 
constructing the networks as shown in the 
example above. The complete networks for 
N = 2,3,4 are shown in Fig. 2. 

In a short paper that  has gone virtually 
unnoticed, B.R. Heap [16] pointed out sev- 
eral of the ideas above and described a 
method even simpler than Wells'. (It is not 
clear whether Heap was influenced by 
Wells or Boothroyd, since he gives no ref- 
erences.) Heap's method is to use 

B(N,c)=( I f iN  is odd 

l f Y  is even, 

or, in Algorithm 1, to replace 
P[B[N,c]]:=:P[N] by 

i f N  odd then P[N]:=:P[1] else P[N]:=:P[c] endif 

Heap gave no formal proof that  his method 
works, but a proof similar to Wells' will 
show that  the method works for all N. 
(The reader may find it instructive to ver- 
ify that  the method works for practical 
values of N (as Heap did) by proceeding as 
we did when constructing the index table 
above.) Figure 3 shows that  the networks 
for N = 2,3,4 are the same as for Algo- 
r i thm 1 with the precomputed index table, 
but that  the network for N = 5, shown in 
Diagram 5, differs. (The empty boxes de- 
note the network for N = 4 from Fig. 3.) 
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N=4 

ABCD 

BACD 

BCAD 

CBAD 

CABD 

ACBD 

AB ACDB 

BA CADB 

C DA B 

DCAB 

DAC B 

A DC B 

ADBC 
A BC 

DA BC 
BAC 

DBAC 
BCA 

BDAC 
CBA 

CAB BADC 

ACB ADBC 

CBDA 

BCDA 

BDCA 

-- DBCA 

DCBA 

CDBA 

=2,3,4. 

N=2 

H 

N= 

4j 

FIGURE 2. Wells' algorithm for N 

Neither Wells nor Heap gave recursive 
formulations of their methods, although 
Boothroyd [1] later gave a recursive imple- 
mentation of his version of Wells' method. 
Although Wells and Heap undoubtedly ar- 
rived at their nonrecursive programs di- 
rectly, it is instructive here to derive a 
nonrecursive version of Algorithm 1 by 
systematically removing the recursion. 

The standard method for implementing 
a recursive procedure is to maintain a 
stack with the parameters and local varia- 
bles for each invocation of the procedure. 
The simple structure of Algorithm 1 
makes it more convenient to maintain an 
array c [1 ] , . . . , c [N] ,  where c[i] is the 
value of c for the invocation permuta- 
tions(i). Then by decrementing i on a call 
and incrementing i on return, we ensure 
that c[i] always refers to the proper value 
ofc.  Since there is only one recursive call, 
transfer of control is implemented by 
jumping to the beginning on call and 

jumping to the place following the call on 
return. The following program results di- 
rectly when we remove the recursion and 
the loops from Algorithm 1: 

t:=N; 
begtn: c[d:=l; 
loop: if t>2 then t := t -1 ;  go to begtn end[f; 
return: if c[t]>-t then go to extt end[f; 

P[B[c#]]] =:P[t]; 
c[~]:=c[t] + l; 
go to loop; 

extt" if t < N  then t: =t + 1; go to return end[f; 

This program can be simplified by combin- 
ing the instructions at  begin and loop into 
a single loop, and by replacing the single 
go to exit with the code at  exit: 

t :=N+l ;  
loop: loop while t>2: t .= t -1 ;  c[t]:=l repeat; 
return,  i f  c[t]>-z 

then if t < N  then t := t+ l ;  
go to return end[f; 

else P[B[c[t]]] =:Pit]; 
c[~]:=c[t] + l; 
go to loop; 

end[f; 

The program can be transformed further if 
we observe that, after c [N],. • . ,  c [2] are all 
set to 1 (this is the first thing that  the 
program does), we can do the assignment 
c[i]:=l before t:=i+l rather than after 
i :=i-1 without affecting the rest of the 
program. But this means that  the loop 
does nothing but set i to 2 and it can be 
eliminated (except for the initialization),. 
as in this version: 

t:=N; 
loop: c[t]:=l while z>2. t :=t-1  repeat; 

return" [f c[t]>-t 
then if t < N  then c[z]:=l; ~:=t+l; 

go to return end[f; 
else P[B[c[t]]]: =.P[t ]; 

c[d: =c[t] + 1; 
t:=2; 
go to return; 

end[f; 

Finally, since the two go to's in this pro- 
gram refer to the same label, they can be 
replaced with a single loop. • • repeat. The 
formulation 

i:=N; loop: c[~]:=1 while t > 2 : t : = z - 1  repeat; 
loop: 

[f c[t]<l then P[B[c[zJ]]:=:P[z]; 
c[t]:=c[z]+ 1, t:=2; 

else c[t]:=l; t:=t+l; 
end[f; 

while t<-N repeat; 
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N = 2  

B A 

N = 3  

i I 
A B e  

! BA C 

A e B  

BOA 

F I G U R E  3 .  

N = 4  

il 
!l 

ABC D 

BAC D 

C A B D 

A C B D 

B C A D 

C BAD 

DBA C 

B DA C 

A DB C 

DA BC 

BADC 

A BDC 

AC DB 

CADB 

DACB 

A DC B 

C DA B 

DCAB 

DCBA 

C DBA 

B D e  A 

D B CA 

C BDA 

BC DA 

2 ,3 ,4 .  Heap's algorithm for N = 

is attractive because it is symmetric: each 
time through the loop, either c[i] is initial- 
ized and i incremented, or c[i] is incre- 
mented and i initialized. (Note: in a sense, 
we have removed too many go to's, since 
now the program makes a redundant test i 
-< N after setting i: =2 in the then clause. 
This can be avoided in assembly language, 
as shown in Section 3, or it could be han- 
dled with an "event variable" as described 
in [24].) We shall examine the structure of 
this program in detail later. 

The programs above merely generate all 
permutations of P[1],. • • ,P[N]; in order to 
do anything useful, we need to process 
each permutation in some way. The proc- 
essing might involve anything from sim- 
ple counting to a complex simulation. Nor- 

-B B- ~C 

-C C - -D 

~D a ^ 

DIAGRAM 5. 

really, this is done by turning the permu- 
tation generation program into a proce- 
dure which returns a new permutation 
each time it is called. A main program is 
then written to call this procedure N! 
times, and process each permutation. (In 
this form, the permutation generater can 
be kept as a library subprogram.) A more 
efficient way to proceed is to recognize that  
the permutation generation procedure is 
really the "main program" and that  each 
permutation should be processed as it is 
generated. To indicate this clearly in our 
programs, we shall assume a macro called 
process which is to be invoked each time a 
new permutation is ready. In the nonre- 
cursive version of Algorithm 1 above, if we 
put a call to process at the beginning and 
another call to process after the exchange 
statement, then process will be executed 
N! times, once for each permutation. From 
now on, we will explicitly include such 
calls to process in all of our programs. 

The same transformations that  we ap- 
plied to Algorithm 1 yield this nonrecur- 
sive version of Heap's method for generat- 
ing and processing all permutations of 
P[1], • • • ,P[N]: 

Algorithm 2 (Heap) 

~:=N; loop: c[~]:=l while ~>2:~:=~-1 repeat; 
process; 
l oop '  

if c/t] <t 
then i f t  odd then k:=l  else k:=c[t] end[f; 

P[t]:=:P[k]; 
c[l]:=c[t] + l; ~:=2; 
process, 

else c[~]:=l; ~:=~+1 
end[f; 

while I ~ N  repeat; 

This can be a most efficient algorithm 
when implemented properly. In Section 3 
we examine further improvements to this 
algorithm and its implementation. 

Adjacent Exchanges 

Perhaps the most prominent permutation 
enumeration algorithm was formulated in 
1962 by S. M. Johnson [20] and H. F. Trot- 
ter [45], apparently independently. They 
discovered that  it was possible to generate 
all N! permutations of N elements with 
N! -1  exchanges of adjacent elements. 
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A---~ B B B B 

i.!-Ti i ! 
E E ' E E T A  

DL~GRAM 6 

The method is based on the natural  idea 
that  for every permutation of N - 1  ele- 
ments we can generate N permutations of 
N elements by inserting the new element 
into all possible positions. For example, for 
five elements, the first four exchange mod- 
ules in the permutation network are as 
shown in Diagram 6. The next exchange is 
P[1]:=:P[2], which produces a new permu- 
tation of the elements originally in P[2], 
P[3], P[4], P[5] (and which are now in P[1], 
P[2], P[3], P[4]). Following this exchange, 
we bring A back in the other direction, as 
illustrated in Diagram 7. Now we ex- 
change P[3]:=:P[4] to produce the next 
permutation of the last four elements, and 
continue in this manner  until all 4! permu- 
tations of the elements originally in P[2], 
P[3], P[4], P[5] have been generated. The 
network makes five new permutations of 
the five elements for each of these (by 
putting the element originally in P[1] in 
all possible positions), so that  it generates 
a total of 5! permutations. 

Generalizing the description in the last 
paragraph, we can inductively build the 
network for N elements by taking the net- 
work for N - 1  elements and inserting 
chains of N - 1  exchange modules (to sweep 
the first element back and forth) in each 
space between exchange modules. The 
main complication is that  the subnetwork 
for N - 1  elements has to shift back and 
forth between the first N - 1  lines and the 
last N - 1  lines in between sweeps. Figure 
4 shows the networks for N = 2,3,4. The 
modules in boxes identify the subnetwork: 
if, in the network for N,  we connect the 
output lines of one box to the input lines of 
the next, we get the network for N - 1 .  
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BA DC 
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FIGURE 4. Johnson-Tro t t e r  a lgor i thm for N = 2, 
3, 4. 

Continuing the example above, we get the 
full network for N = 5 shown in Figure 5. 
By connecting the boxes in this network, 
we get the network for N = 4. 

To develop a program to exchange ac- 
cording to these networks, we could work 
down from a recursive formulation as in 
the preceding section, but  instead we shall 
take a bottom-up approach. To begin, 
imagine that  each exchange module is la- 
belled with the number  of the network in 
which it first appears. Thus, for N = 2 the 
module would be numbered 2; for N = 3 
the five modules would be labelled 3 3 2 3 3 ;  
for N = 4 the 23 modules are numbered 

4 4 4 3 4 4 4 3 4 4 4 2 4 4 4 3 4 4 4 3 4 4 4 ;  
for N ~ 5 we insert 5 5 5 5 between the 
numbers above, etc. To write a program to 
generate this sequence, we keep a set of 
incrementing counters c[i], 2 < i <- N ,  
which are all initially 1 and which satisfy 
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FIGURE 5 Johnson-Trot ter  a lgori thm for N = 5. 

1 < c[i] <- i. We fmd the highest index i 
whose counter is not exhausted (not yet 
equal to i), output it, increment its 
counter, and reset the counters of the 
larger indices: 

i:=1; loop while i<-N: i:=~+1; c[i]:=l repeat; 
c[1]: =0; 
loop: 

i :=N; 
loop while c[,]=i: c[i]:=l; i : = , - i  repeat; 

while ,>1: 
comment exchange module ~s on level ~ ; 

c[~]:=c[~] + l 
repeat; 

When i becomes 1, the process is com- 
p l e t ed -  the statement c[1] = 0 terminates 
the inner loop in this case. (Again, there 
are simple alternatives to this with "event 
variables" [24], or in assembly language.) 

Now, suppose that  we have a Boolean 
variable d i N ]  which is true if the original 
P[1] is travelling from P[1] down to P[N] 
and false if it is travelling from P[N] up to 
P[1]. Then, when i = N we can replace the 
comment  in the above program by 

if d[N] then k:=c[N] else k :=N-c[N]  endif; 
P[k]:,= :P[k + 1]; 

This will take care of all of the exchanges 
on level N. Similarly, we can proceed by 
introducing a Boolean d [N-1]  for level 
N - 1 ,  etc., but we must  cope with the fact 
that  the elements originally in 
P[2] , . . .  ,PIN] switch between those loca- 
tions and P[1] , . . . ,P [N-1] .  This is han- 
dled by including an offset x which is in- 
cremented by 1 each time a d[i] switches 
from false to true. This leads to: 

A l g o r i t h m  3 (Johnson-Trotter) 
~:=1; 
loop while ~<N: ~:=~+1; c[~]:=l; 

d[i]:= true; repeat; 
c[1]:=0; 
process; 
loop: 

i:=N; x:=0; 
loop while c[~]=~: 

i f  not  d/~] then x:=x+l endif; 
d[i]:= not d/z]; c[d:=l; i .=~- l; 

repeat; 

while i>1: 
if d/~] then k:=c[~]+x 

else k:=~-c[~]+x endif; 
P[k]:=:P[k + 1]; 
process; 
c[i]:=c[i] + l; 

repeat; 

Although Johnson did not present the al- 
gorithm in a programming language, he 
did give a very precise formulation from 
which the above program can be derived. 
Trotter gave an ALC~OL formulation which 
is similar to Algorithm 3. We shall exam- 
ine alternative methods of implementing 
this algorithm later. 

An argument  which is often advanced in 
favor of the Johnson-Trotter algorithm is 
that, since it always exchanges adjacent 
elements, the proc e s s  procedure might be 
simpler for some applications. It might be 
possible to calculate the incremental effect 
of exchanging two elements ra ther  than 
reprocessing the entire permutation. (This 
observation could also apply to Algorithms 
1 and 2, but the cases when they exchange 
nonadjacent elements would have to be 
handled differently.) 

The Johnson-Trotter algorithm is often 
inefficiently formulated [5, 10, 12] because 
it can be easily described in terms of the 
values of elements being permuted, rather  
than their positions. If P[1],. • ", P[N] are 
originally the integers 1 , - . . ,  N, then we 
might try to avoid maintaining the offset x 
by noting that  each exchange simply in- 
volves the smallest integer whose count is 
not yet exhausted. Inefficient implementa- 
tions involve actually searching for this 
smallest integer [5] or maintaining the in- 
verse permutation in order to find it [10]. 
Both of these are far less efficient than the 
simple offset method of mgintaining the 
indices of the elements to be exchanged 
given by Johnson and Trotter, as in Algo- 
r i thm 3. 

Factorial Counting 
A careful reader may have become suspi- 
cious about similarities between Algo- 
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rithms 2 and 3. The similarities become 
striking when we consider an alternate 
implementation of the Johnson-Trotter 
method: 

Algor i t hm  3a (Alternate Johnson-Trotter) 
z" =N; 
loop: c[t]:=l; d/l] :=true;  while l > l :  ~.=~ - 1  repeat; 
process, 
loop: 

i f  c[t] < N  + l - I  
then if  d / d  then k.=c[~]+x 

else k : = N + l - t - c [ t ] + x  endif; 
P[k]: = :P [k + 1]; 
process; 
c[t]:=c[~]+l; ~:=1; x:=0; 
else if not d/t]  then x :=x+l  endif; 

c[z]:=l; ~:=z+l; d[t]:= not d /d ;  
endif; 

while ~-<N repeat; 

This program is the result of two simple 
transformations on Algorithm 3. First, 
change i to N + I - ~  everywhere and rede- 
fme the c and d arrays so that  c[N+l  -~], 
d [N  +1 - i ]  in Algorithm 3 are the same as 
c[i], d[i] in Algorithm 3a. (Thus a refer- 
ence to c[i] in Algorithm 3 becomes 
c [ N + l - i ]  when i is changed to N + I - i ,  
which becomes c[i] in Algorithm 3a.) Sec- 
ond, rearrange the control structure 
around a single outer loop. The condition 
c[i] < N + l - i  in Algorithm 3a is equiva- 
lent to the condition c[i] < i in Algorithm 
3, and beth programs perform the ex- 
change and process the permutation in 
this case. When the counter is exhausted 
(c[i] = N + I - ~  in Algorithm 3a; c[i] = i in 
Algorithm 3), both programs fLx the offset, 
reset the counter, switch the direction, and 
move up a level. 

If we ignore statements involving P, k 
and d, we fmd that  this version of the 
Johnson-Trotter algorithm is identical to 
Heap's method, except that  Algorithm 3a 
compares c[i] w i th  N + I  - i  and Algorithm 
2 compares it with i. (Notice that  Algo- 
r i thm 2 still works properly ff in beth its 
occurrences 2 is replaced by I .) 

To appreciate this similarity more fully, 
let us consider the problem of writing a 
program to generate all N-digit decimal 
numbers: to "count" from 0 to 9 9 . . . 9  = 
10N-1. The algorithm that  we learn in 
grade school is to increment the right-most 

digit which is not 9 and change all the 
nines to its right to zeros. If the digits are 
stored in reverse order in the array 
c[N],c[N - 1], . . .  ,c[2],c[1] (according to 
the way in which we customarily write 
numbers) we get the program 

t :=N, loop c[~]:=O while t > l  l : = ~ - I  repeat; 
loop: 

i f  c[~]<9 then  c[d:=c[t]+ l; z =1 
else c[z]:=O; ~ = z + l  

endif; 
while ~<-N repeat; 

From this program, we see that  our per- 
mutation generation algorithms are con- 
trolled by this simple counting process, but  
in a mixed-radix number system. Where 
in ordinary counting the digits satisfy 0 -< 
c[i] <- 9, in Algorithm 2 they satisfy 1 -< 
c[i] -< i and in Algorithm 3a they satisfy 1 
<- c[i] <- N - i + l .  Figure 6 shows the val- 
ues of c [ 1 ] , . . .  ,c[N] when process is en- 
countered in Algorithms 2 and 3a for N = 
2,3,4. 

Virtually all of the permutation genera- 
tion algorithms that have been proposed 
are based on such "factorial counting" 
schemes. Although they appear in the lit- 
erature in a variety of disguises, they all 
have the same control structure as the 
elementary counting program above. We 
have called methods like Algorithm 2 re- 
cursive because they generate all se- 
quences of c[1] , . . . , c [ i -1]  in-between in- 
crements of c[i] for all i; we shall call 
methods like Algorithm 3 iterative because 
they iterate c[i] through all its values in- 
between increments of c[i + 1], • • .,c[N]. 

Loopless Algorithms 

An idea that  has attracted a good deal of 
attention recently is that  the Johnson- 
Trotter algorithm might be improved by 
removing the inner loop from Algorithm 3. 
This idea was introduced by G. Ehrlich 
[10, 11], and the implementation was re- 
fined by N. Dershowitz [5]. The method is 
also described in some detail by S. Even 
[12]. 

Ehrlich's original implementation was 
complex, but  it is based on a few standard 
programming techniques. The inner loop 
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Using Mgorithm 2 ( r e c ~ l v e ) .  (b) Using M g o -  

in Algorithm 3 has three main purposes: to 
find the highest index whose counter is not 
exhausted, to reset the counters at the 
larger indices, and to compute the offset x. 
The first purpose can be served by main- 
taining an array s[i]  which tells what the 
next value of i should be when c[i] is ex- 
hausted: normally s[i] = i - 1 ,  but when 
c[i] reaches its limit we set s [ i + l ]  to s[i].  
To reset the other counters, we proceed as 
we did when removing the recursion from 
Algorithm 1 and reset them just a l~r  they 
are incremented, rather than waiting un- 
til they are needed. Finally, rather than 
computing a "global" offset x, we can 
maintain an array x[i] giving the current 
offset at level i: when d[i]  switches from 
false to true, we increment x[s[i]].  These 
changes allow us to replace the inner 
"loop. . .repeat" in Algorithm 3 by an 
"ft. • • endif'.  

Algor i thm 3b (Loopless Johnson-Trotter) 
: :=0;  
loop while : < N :  i: = :  + 1; c[d: =1 ; d / d :  =true; 

s[i]:=:-  l; x[i]:=O repeat; 
process; 
loop: 

s[N + I].=N; x / : ] :=0 ;  
i f  c[Q = i then 

if  not d/ i ]  
then x[s[ Q] : =x[s[ Q] +1; endif; 

d/t]: =not  d/d; c[i]: = 1; 
s i t  + 1]: =s[i]; s[i]: = : -  1; 

endff; 
t:=s[N + l ]; 

while :>1: 
if  d /d  then k: =c[~]+x[d 

else k: =:-c[d+x[i]  endif; 
P[k] := :P[k  + 1]; 
process; 
c[Q: =c[d + 1; 

repeat; 

This algorithm differs from those de- 
scribed in [10, 11, 12], which are based on 
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the less efficient implementations of the 
Johnson-Trotter algorithm mentioned 
above. The loopless formulation is pur- 
ported to be an improvement because each 
iteration of the main loop is guaranteed to 
produce a new permutation in a ffLxed 
number of steps. 

However, when organized in this form, 
the unfortunate fact becomes apparent 
that  the loopless Algorithm 3b is slower 
than the normal Algorithm 3. Loopfree im- 
plementation is not an improvement at all! 
This can be shown with very little analysis 
because of the similar structure of the al- 
gorithms. If, for example, we were to count 
the total number of times the statement 
c[i]:=l is executed when each algorithm 
generates all N! permutations, we would 
find that  the answer would be exactly the 
same for the two algorithms. The loopless 
algorithm does not eliminate any such as- 
signments; it just rearranges their order of 
execution. But this simple fact means that  
Algorithm 3b must be slower than Algo- 
r i thm 3, because it not only has to execute 
all of the same instructions the same num- 
ber of times, but it also suffers the over- 
head of maintaining the x and s arrays. 

We have become accustomed to the idea 
that  it is undesirable to have programs 
with loops that  could iterate N times, but 
this is simply not the case with the John- 
son-Trotter method. In fact, the loop iter- 
ates N times only once out of the N! times 
that  it is executed. Most often (N-1  out of 
every N times) it iterates only once. If N 
were very large it would be conceivable 
that  the very few occasions that  the loop 
iterates many times might be inconven- 
ient, but since we know that  N is small, 
there seems to be no advantage whatso- 
ever to the loopless algorithm. 

Ehrlich [10] found his algorithm to run 
"twice as fast" as competing algorithms, 
but this is apparently due entirely to a 
simple coding technique (described in Sec- 
tion 3) which he applied to his algorithm 
and not to the others. 

Another Iterative Method 

In 1976, F. M. Ives [19] published an ex- 
change-based method like the Johnson- 
Trotter method which does represent an 
improvement. For this method, we build 

I I ~ -  ^ :[: __l T 
il[l I : L_: 

DIAGRAM 8 

up the network for N elements from the 
network for N - 2  elements. We begin in 
the same way as in the Johnson-Trotter 
method. For N = 5, the first four ex- 
changes are as shown in Diagram 6. But 
now the next exchange is P[1]:=:P[5], 
which not only produces a new permuta- 
tion of P[1], . . . ,P[4],  but also puts P[5] 
back into its original position. We can per- 
form exactly these five exchanges four 
more times, until, as shown in Diagram 8, 
we get back to the original configuration. 

At this point, P[1] , . . . ,P[4]  have been 
rotated through four permutations, so that  
we have taken care of the case N = 4. If  we 
(inductively) permute three of these ele- 
ments (Ives suggests the middle three) 
then the 20 exchanges above will give us 
20 new permutations, and so forth. (We 
shall later see a method which makes ex- 
clusive use of this idea that  all permuta- 
tions of N elements can be generated by 
rotating and then generating all permuta- 
tions of N - 1  elements.) Figure 7 shows the 
networks for N = 2,3,4; the full network 
for N = 5 is shown in Fig. 8. As before, if 
we connect the boxes in the network for N, 
we get the network for N - 2 .  Note that  the 
exchanges immediately preceding the 
boxes are redundant in that  they do not 
produce new permutations. (The redun- 
dant permutations are identified by paren- 
theses in Fig. 7.) However, there are rela- 
tively few of these and they are a small 
price to pay for the lower overhead in- 
curred by this method. 

In the example above, we knew that  it 
was time to drop down a level and permute 
the middle three elements when all of the 
original elements (but specifically P[1] 
and P[5]) were back in position. If the ele- 
ments being permuted are all distinct, we 
can test for this condition by intially sav- 
ing the values of P[1], • • • ,P[N] in another 
array Q[1],-. .  ,Q[N]: 

Algori thm 4 (Ives) 
~:=N; 
loop: c[~]'=l; Q[~].=P[~], while ~<1. ~ =~-1  repeat;  
process, 
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l oop .  
i f  c[ t]<N + l - t  
t h e n  P[c[t]]: =:P[c[t] + 1] 

c[t]'=c[t]+ l; t : = l ;  

process; 
e l s e  P [ z ] . = : P [ N +  1 - t ] ;  

c[t]: =t ;  

i f  P[N + I - t  ]=Q[N + I - t ]  t h e n  t:=t + l 
e l se  t : = l ;  

process 
endi f ,  

end i f ,  
w h i l e  t < N + l - z  r e pe a t ,  

This program is very similar to Algo- 
r i thms 2 and 3a, but  it doesn't fall immedi-  
ately into the "factorial counting" schemes 
of these programs, because only hal f  of the 
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counters are used. However,  we can use 
counters rather than the test P [ N + I - i ]  = 
Q [ N +  1 - i ] ,  since this  test  a lways succeeds 
after exactly t -  1 sweeps. We are immedi- 
ately led to the implementation:  

Algorithm 4a (Alternate Ives) 
t =N; loop:  c[z]:=l; w h i l e  t > l :  t : = t - 1  repea t ,  
process; 
l o o p  

i f  c [ t ]<N + l - t  
t h e n  i f  t odd  t h e n  P[c[t]]:=:P[c[z]+l] 

e l se  P [ t ] : = : P [ N +  l - t ]  end i f ,  
c[l]'=c[l]+ l,  t : = l ;  

process; 
e l s e  c[z]:=l; t ' = t + l ;  

endi f ,  
w h i l e  t -<N repeat ;  

This method does not  require that  the ele- 
ments  being permuted be distinct,  but  it is 
s l ight ly  less efficient than  Algori thm 4 be- 
cause more count ing has  to be done. 

Ives' a lgorithm is more efficient than  
the  Johnson-Trotter method (compare Al- 
gori thm 4a wi th  Algor i thm 3a) since it 
does not  have to mainta in  the  array d or 
offset x. The alternate  implementat ion  
bears a remarkable resemblance to Heap's 
method (Algorithm 2). Both  of these algo- 
r i thms do little more than factorial count- 
ing. We shall  compare them in Section 3. 

2. OTHER TYPES OF ALGORITHMS 

In this  section we consider a variety of 
algorithms which are not based on simple 
exchanges  between elements .  These algo- 
r i thms general ly  take longer to produce all 
permutat ions  than the  best of the methods  
already described, but  they  ave worthy of 
s tudy for several reasons. For example,  in 
some s i tuations it may  not  be necessary to 
generate  all permutations,  but only  some 
"random" ones. Other algorithms may be 
of practical interest  because they  are based 
on e lementary operations which could be 
as efficient as exchanges  on some com- 
puters.  Also, we consider algorithms that  
generate  the permutat ions  in a particular 
order which is of interest.  All  of the algo- 
r i thms can be cast in terms of the basic 

r ii i[ ii 1,~1 ii ][ 1[ Ira 11 I[ II b I[ II II L,I II II II. Id. ]1 II 1I I~ 
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FIGURE 8 Ives'  a l g o r i t h m  for  N = 5 
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"factorial counting" control structure de- 
scribed above. 

Nested Cycling 

As we saw when we examined Ives' algo- 
rithm, N different permutations of 
P[1],. • • ,P[N] can be obtained by rotating 
the array. In this section, we examine per- 
mutation generation methods which are 
based, solely on this operation. We assume 
that  we have a primitive operation 

rotate(i) 

which does a cyclic left-rotation of the ele- 
ments P[1] , . . . ,P[ i ] .  In other words, ro- 
tate(i) is equivalent to 

t:=P[1]; k:=2; 
loop while k<t: P[k-1]:=P[k] repeat; 
P[i]: =t; 

The network notation for rotate(5) is given 
by Diagram 9. This type of operation can 
be performed very efficiently on some com- 
puters. Of course, it will generally not be 
more efficient than an exchange, since ro- 
tate(2) is equivalent to P[1]:=:P[2]. 

B ~ - - C  

c ~  D 

E-'~ 

DIAGRAM 9. 

The most straightforward way to make 
use of such an operation is a direct recur- 
sive implementation like Algorithm 1: 
procedure permutattons (N); 

begin c:= 1; 
loop: 

if N>2 then permutattons(N-1) 
end[f; 
rotate(N); 

while c<N: 
process; 
C : = c + l  

r e p e a t ;  

end; 

W h e n  the  r e c u r s i o n  is r e m o v e d  f rom t h i s  
p r o g r a m  in  the  w a y  t h a t  r e m o v e d  t he  re- 
cursion from Algorithm 1, we get an old 
algori thm which was discovered by C. 
Tompkins and L. J. Paige in 1956 [44]: 

A l g o r i t h m  5 (Tompkins-Paige) 
i.=N; loop: c[i]=l while t>2 : t := t -1  repeat; 
process; 

loop: 
rotate(i) 
if c[t]<t then c[t]: =c[i]+ 1; i: =2; 

process; 
else c[t]:=l; t :=t+l  

end[f; 
while t<-N repeat; 

This is nothing more than a simple count- 
ing program with rotation added. The ro- 
t a t ion  ne tworks  and p e r m u t a t i o n  se- 
quences generated by this algorithm are 
given in Fig. 9. As in Fig. 7, the parenthes- 
ized permutations are redundant  permuta- 
tions produced in the course of the compu- 
tation, which are not passed through the 
process macro. The algorithm is not as 
inefficient as it may seem,  because most of 
the rotations are short, but  it clearly will 
not compete with the algorithms in Sec- 
tion 1. This method apparently represents 
the earliest at tempt to get a real computer 
to generate permutations as quickly as 
possible. An ALGOL implementation was 
given by Peck and Schrack [33]. 

An interesting feature of the Tompkins- 
Paige method, and the reason it generates 
so many redundant sequences, is that  the 
recursive procedure restores the permuta- 
tion to the order it had upon entry. Pro- 
grams that  work this way are called back- 
track programs [26, 27, 46, 48]. We can 
easily apply the same idea to exchange 
methods like Algorithm 1. For example: 

procedure permutattons(N) ; 
begin c" = 1; 

loop: 
P[N]:=:P[c]; 
if N>2 then permutatmns(N-1)  

else process end[f; 
P[c ]: = :P[N]; 

while c<N: 
C : = C + I  

repeat; 
end; 

A procedure like this was given by C. T. 
Fike [13], who also gave a nonrecursive 
version [37] which is similar to a program 
developed independently by S. Pleszczyfi- 
ski [35]. These programs are clearly less 
efficient than the methods of Section 1, 
which have the same control structure but  
require many fewer exchanges. 

Tompkins was careful to point out that  
it is often possible easily to achieve great 
savings with this type of procedure. Often, 
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proces s  involves selecting a small set of 
permutations satisfying some simple crite- 
ria. In certain cases, once a permutation is 
found not to satisfy the criteria, then the 
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permutations generated by permuting its 
initial elements will not satisfy the crite- 
ria either, so the exchanges and the call 
p e r m u t a t m n s ( N - 1 )  can be skipped. Thus 
large numbers of permutations never need 
be generated. A good backtracking pro- 
gram will eliminate nearly all of the proc- 
essing (see [44] for a good example), and 
such methods are of great importance in 
many practical applications. 

Cycling is a powerful operation, and we 
should expect to find some other methods 
which use it to advantage. In fact, Tomp- 
kins' original paper [44] gives a general 
proof from which several methods can be 
constructed. Remarkably, we can take Al- 
gorithm 5 and switch to the counter sys- 
tem upon which the iterative algorithms 
in Section 2 were based: 

t:=N; loop:  c[t]:=l w h i l e  t > l .  t : = t - 1  repeat; 
process; 
loop: 

rotate(N +1 - t); 
i f c / d < N + l - t  then c[t]:=c[t]+l; t : = l ;  

process; 
else c[t]:=l; t : = t + l  

endif; 
while z-<N repeat, 

Although fewer redundant permutations 
are generated, longer rotations are in- 
volved, and this method is less efficient 
than Algorithm 5. However, this method 
does lend itself to a significant simplifica- 
tion, similar to the one Ives used. The 
condition c[i]  = N + I - t  merely indicates 
that the elements in P[1] ,P[2] , . . . ,  
P [ N + I - i ]  have undergone a full rota- 
t i o n - t h a t  is, P[N+ l - t ]  is back in its orig- 
inal position in the array. This means that 
if we initially set Q[i] = P[i] for 1 -< i <- N,  
then c[ i ]  = N + l - i  is equivalent to 
P [ N + I - i ]  = Q [ N + I - i ] .  But we have now 
removed the only test on c[ i ] ,  and now it is 
not necessary to maintain the counter ar- 
ray at all! Making this simplification, and 
changing t to N + I - i ,  we have an algo- 
rithm proposed by G. Langdon in 1967 [25], 
shown in Fig. 10. 

A l g o r i t h m  6 (Langdon) 

t : = l ;  loop:  Q[I ] :=P[~]  while t < N .  ~ : = t + l  repeat, 
process; 
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loop: 
rotate(t); 
i f  P[z]=Q[t] then t : = N  else t . = t - 1  endif; 
process; 

while t->l repeat; 

This is definitely the most simply ex- 
pressed of our permutation generation al- 
gorithms. If P [ 1 ] , . . . , P [ N ]  are initially 
1 , . . . , N ,  then we can eliminate the ini- 
tialization loop and replace Q[i] by i in the 
main loop. Unfortunately, this algorithm 
runs slowly on most computers -on ly  
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when very fast rotation is available is it 
the method of choice. We shall examine 
the implementation of this algorithm in 
detail in Section 3. 

Lexicographic Algorithms 

A particular ordering of the N! permuta- 
tion of N elements which is of interest is 
"lexicographic", or alphabetical, ordering. 
The lexicographic ordering of the 24 per- 
mutations of A B C D is shown in Fig. 
l la .  "Reverse lexicographic" ordering, the 
result of reading the lexicographic se- 
quence backwards and the permutations 
from right to left, is also of some interest. 
Fig. l lb  shows the reverse lexicographic 
ordering of the 24 permutations of 
A B C D .  

The natural definition of these orderings 
has meant that many algorithms have 
been proposed for lexicographical permu- 
tation generation. Such algorithms are in- 
herently less efficient than the algorithms 
of Section 1, because they must  often use 
more than one exchange to pass from one 
permutation to the next in the sequence 
(e.g., to pass from A C D B to A D B C 
in Fig. l la).  The main practical reason 
that has been advanced in favor of lexico- 
graphic generation is that, in reverse or- 
der, all permutations of P [ 1 ] , . - - , P I N - l ]  
are generated before P[N] is moved. As 
with backtracking, a processing program 
could, for example, skip ( N - l ) !  permuta- 
tions in some instances. However, this 
property is shared by the recursive algo- 
rithms of Section 1 -  in fact, the general 
structure of Algorithm 1 allows P[N] to be 
filled in any arbitrary order, which could 
be even more of an advantage than lexico- 
graphic ordering in some instances. 

Nevertheless, lexicographic generation 
is an interesting problem for which we are 
by now well prepared. We shall begin by 
assuming that P [ 1 ] , . . . P [ N ]  are distinct. 
Otherwise, the problem is quite different, 
since it is usual to produce a lexicographic 
listing with no duplicates (see [3, 9, 39]. 

We shall fmd it convenient to make use 
of another primitive operation, reverse(i). 
This operation inverts the order of the ele- 
ments in P[1], • • • P[i]; thus, reverse(i) is 
equivalent to 
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~:=i; 

loop w h i l e  ~<N+I -~ :  
P[~]:=:P[N+I-~]; ~:=t+l  repeat;  

This operation will not be particularly effi- 
cient on most real computers, unless spe- 
cial hardware is available. However, it 
seems to be inherent  in lexicographic gen- 
eration. 

The furst algorithm that  we shall con- 
sider is based on the idea of producing each 
permutation from its lexicographic prede- 
cessor. Hall and Knuth  [15] found that  the 
method has been rediscovered many times 
since being published in 1812 by Fischer 
and Krause [14]. The ideas involved first 
appear in the modern l i terature in a rudi- 
mentary  form in an algorithm by G. 
Schrack and M. Shimrat  [40]. A full for- 
mulation was given by M. Shen in 1962 
[41, 42], and Phillips [34] gives an "optim- 
ized" implementation. (Dijkstra [6] cites 
the problem as an example to illustrate a 
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"dramatic improvement in the state of the 
art" of computer programming since the 
algorithm is easily expressed in modern 
languages; the fact tha t  the method is over 
160 years old is perhaps a more sobering 
comment on the state of the ar t  of com- 
puter  science.) 

The direct lexicographic successor of the 
permutation 

B A C F H G D E  

is clearly 
B A C F H G E D ,  

but what  is the successor of this permuta- 
tion? After some study, we see that  
H G E D are in their  lexicographically 
highest position, so the next permutat ion 
must begin as B A C G • • -. The answer 
is the lexicographically lowest permuta- 
tion that  begins in this way, or 

B A C G D E F H .  

Similarly, the direct successor of 

H F E D G C A B  

in reverse lexicographic order is 

D E G H F C A B ,  

and its successor is 

E D G H F C A B .  

The algorithm to generate permutations 
in reverse lexicographic order can be 
clearly understood from this example. We 
first scan from lei~ to right to fred the first 
i such that  P[~] > P[ i -1] .  If there is no 
such i, then the elements are in reverse 
order and we terminate the algorithm 
since there is no successor. (For efficiency, 
it is best to make P[N+I]  larger than all 
the other e l e m e n t s - w r i t t e n  P[N+I]  = 
~ - a n d  terminate when i = N + I . )  Other- 
wise, we exchange P[i] with the next-low- 
est element among P [ 1 ] , . . - , P [ i - 1 ]  and 
then reverse P[1],. • • ,P[i-1] .  We have 

Algor i thm 7 (Fischer-Krause) 
P [ N + I ] = ~ ;  
process; 
loop. 

t:=2; loop while P[~]<P[~-I]:  ~:=~+1 repeat; 
while t<N;  

j : = l ;  loop while P[ j ]>P[ i ] : j := j  + 1 repeat;  
P[~]:=:P~]; 
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reverse(~ -1); 
process; 

repeat; 

Like the Tompkins-Paige algorithm, this 
algorithm is not as inefficient as it seems, 
since it is most often scanning and revers- 
ing short strings. 

This seems to be the first example we 
have seen of an algorithm which does not 
rely on ~'factorial counting" for its control 
structure. However, the control structure 
here is overly complex; indeed, factorial 
counters are precisely what  is needed to 
eliminate the inner loops in Algorithm 7. 

A more efficient algorithm can be de- 
rived, as we have done several times be- 
fore, from a recursive formulation. A sim- 
ple recursive procedure to generate the 
permutations of P[1] , . - .  ,P[N] in reverse 
lexicographic order can be quickly devised: 

procedure lexperms(N) ; 
begin c:= 1; 

loop: 
if N > 2  

then  lexperms(N-1)  end[f; 
while c<N: 

P[N]:=:P[c]; 
reverse(N-i ) ;  
c:=c+ l; 

repeat; 
end; 

Removing the recursion precisely as we 
did for Algorithm 1, we get 

A l g o r i t h m  8 (Ord-Smith) 
~:=N; loop c[~].=l; while ~>2:~:=~-1 repeat; 
process; 
loop: 

if  c[l] <~ then P[~ ]:='P[c[l]], reverse(~-l ) , 
c[~]:=c[z]+ l; ~:=2; 
process; 

else c[l]:=l; ~:=~+1 
end[f; 

while ~-<N repeat; 

This algorithm was first presented by R. J. 
Ord-Smith in 1967 [32]. We would not ex- 
pect a priori to have a lexicographic algo- 
r i thm so similar to the normal algorithms, 
but  the recursive formulation makes it ob- 
vious. 

Ord-Smith also developed [31] a 
"pseudo-lexicographic" algorithm which 
consists of replacing P[~]:=:P[c[i]]; re- 
v e r s e ( i - i ) ;  by reverse( i )  in Algorithm 8. 

There seem to be no advantages to this 
method over methods like Algorithm 1. 
Howell [17, 18] gives a lexicographic 
method based on treat ing P[1], • • • ,P[N] as 
a base-N number, counting in base N, and 
rejecting numbers whose digits are not dis- 
tinct. This method is clearly very slow. 

Random Permutations 

I f N  is so large that  we could never hope to 
generate all permutations of N elements, 
it is of interest  to study methods for gener- 
ating ~random" permutations of N ele- 
ments. This is normally done by establish- 
ing some one-to-one correspondence be- 
tween a permutat ion and a random num- 
ber between 0 a n d N ! - l .  (A full t rea tment  
of pseudorandom number generation by 
computer may be found in [22].) 

First, we notice tha t  each number be- 
tween 0 and N ! - 1  can be represented in a 
mixed radix system to correspond to an 
array  c [ N ] , c [ N - 1 ] , .  • • ,c[2] with 0 -< c[i] <- 
~-1 for 2 -< i -< N. For example, 1000 
corresponds to 1 2 1 2 2 0 since 1000 = 6! 
+ 2.5! + 4! + 2.3! + 2.2!. For 0 -< n < N!, 
we have n = c[2].1! + c[3].2! + . . .  + 
c[N].  (N- l ) ! .  This correspondence is easily 
established through standard radix con- 
version algorithms [22, 27, 47]. Alterna- 
tively, we could fill the array by putt ing a 
~'random" number between 0 and i - 1  in 
c[i] for 2 <_ i <_ N .  

Such arrays c [ N ] , c [ N - 1 ] , . . . , c [ 2 ]  can 
clearly be generated by the factorial count- 
ing procedure discussed in Section 1, so 
that  there is an implicit correspondence 
between such arrays and permutations of 
1 2 . . .  N. The algorithms that  we shall 
examine now are based on more explicit 
correspondences. 

The fLrst correspondence has been at- 
tr ibuted to M. Hall, Jr . ,  in 1956 [15], al- 
though it may be even older. In this corre- 
spendence, c[i] is defined to be the number 
of elements to the left of i which are 
smaller than it. Given an array, the fol- 
lowing example shows how to construct 
the corresponding permutation. To fmd 
the permutation of 1 2 • • • 7 correspond- 
ing to 

1 2 1 2 2 0  
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we begin by writing down the first ele- 
ment, 1. Since c [2] = 0, 2 must precede 1, 
o r  

2 1 .  

Similarly, c [3] = 2 means that  3 must be 
preceded by both 2 and 1: 

2 1 3  

Proceeding in this manner, we build up 
the entire permutation as follows: 

2 1 4 3  
2 5 1 4 3  
2 5 6 1 4 3  
2 7 5 6 1 4 3  

In general, if we assume that  c[1] = 0, we 
can construct the permutation P[1] , . . . ,  
P[N] with the program 

v = l ;  
loop. 

J:=~; 
loop whilej>c[~]+l: PO].=P[ j -1] ;  repeat; 
P[c/l]+ 1]:=~; 
i ' =z+ l ;  

while ~-<N repeat; 

This program is not particularly efficient, 
but the correspondence is of theoretic in- 
terest. In a permutation P[1], . . - ,PIN] of 
1,. • • ,N, a pair (i j )  such that  i < j and 
P[i] > P0] is called an inversion. The 
counter array in Hall's correspondence 
counts the number of inversions in the 
corresponding permutation and is called 
an inversion table. Inversion tables are 
helpful combinatorial devices in the study 
of several sorting algorithms (see [23]). 
Another example of the relationship be- 
tween inversion tables and permutation 
generation can be found in [7], where Dijk- 
stra reinvents the Johnson-Trotter method 
using inversion tables. 

D. H. Lehmer [26, 27] describes another 
correspondence that  was def'med by D. N. 
Lehmer as long ago as 1906. To find 
the permutation corresponding to 
1 2 1 2 2 0, we first increment each ele- 
ment by 1 to get 

2 3 2 3 3 1 .  

Now, we write down 1 as before, and for 
i = 2 , . - . , N ,  we increment all numbers 
which are -> c[i] by 1 and write c[i] to the 
left. In this way we generate 

• 1 5 5  

1 
12 

3 1 2  
3 4 1 2  

2 4 5 1 3  
3 2 5 6 1 4  

2 4 3 6 7 1 5  

so that  the permutation 2 4 3 6 7 1 5 cor- 
responds to 1000. In fact, 2 4 3 6 7 1 5 is 
the 1000th permutation of 1,. • • ,7 in lexi- 
cographic order: there are 6! permutations 
before it which begin with 1, then 2.5! 
which begin 2 1 or 2 3, then 4! which be- 
gin 2 4 1, then 2.3! which begin 2 4 3 1 
or 2 4 3 5, and then 2.2! which begin 
2 4  3 6 l o r 2 4 3  65 .  

A much simpler method than the above 
two was apparently first published by R. 
Durstenfeld [8]. (See also [22], p. 125). We 
notice that  P[i] has i - 1  elements preced- 
ing it, so we can use the c array as follows: 

~:=N; 
loop while ~->2: P[~]:=:P[c[l]+l]; ~:=z-1 repeat; 

If we take P[1], .-- ,P[N] to be initially 
1 , . . . , N ,  then the array 1 2 1 2 2 0 cor- 
responds to the permutation 
5 1 4 6 7 3 2. This method involves only 
one scan through the array and is clearly 
more efficient than the above two meth- 
ods. 

We could easily construct a program to 
generate all permutations of 1 2 . . .  N 
by embedding one of the methods de- 
scribed above in a factorial counting con- 
trol structure as defined in Section 1. Such 
a program would clearly be much slower 
than the exchange methods described 
above, because it must  build the entire 
array P[1], .- .  ,P[N] where they do only a 
simple exchange. Coveyou and Sullivan 
[4] give an algorithm that  works this way. 
Another method is given by Robinson [37]. 

3. IMPLEMENTATION AND ANALYSIS 

The analysis involved in comparing a 
number of computer algorithms to perform 
the same task can be very complex. It is 
often necessary not only to look carefully 
at how the algorithms will be imple- 
mented on real computers, but also to 
carry out some complex mathematical 
analysis. Fortunately, these factors pres- 
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ent less difficulty than usual in the case of 
permutation generation. First, since all of 
the algorithms have the same control 
structure, comparisons between many of 
them are immediate, and we need only 
examine a few in detail. Second, the anal- 
ysis involved in determining the total run- 
ning time of the algorithms on real com- 
puters (by counting the total number of 
times each instruction is executed) is not 
difficult, because of the simple counting 
algorithms upon which the programs are 
based. 

If we imagine that  we have an impor- 
tant  application where all N! permuta- 
tions must  be generated as fast as possible, 
it is easy to see that  the programs must  be 
carefully implemented. For example, if we 
are generating, say, every permutation of 
12 elements, then every extraneous in- 
struction in the inner loop of the program 
will make it run at least 8 minutes longer 
on most computers (see Table 1). 

Evidently, from the discussion in Sec- 
tion 1, Heap's method (Algorithm 2) is the 
fastest of the recursive exchange algo- 
rithms examined, and Ives' method (Algo- 
rithm 4) is the fastest of the iterative ex- 
change algorithms. All of the algorithms 
in Section 2 are clearly slower than these 
two, except possibly for Langdon's method 
(Algorithm 6) which may be competitive 
on machines offering a fast rotation capa- 
bility. In order to draw conclusions com- 
paring these three algorithms, we shall 
consider in detail how they can be imple- 
mented in assembly language on real com- 
puters, and we shall analyze exactly how 
long they can be expected to run. 

As we have done with the high-level 
language, we shall use a mythical assem- 
bly language from which programs on real 
computers can be easily implemented. 
(Readers unfamiliar with assembly lan- 
guage should consult [21].) We shall use 
load (LD), stere (ST), add (ADD), subtract 
(SUB), and compare (CMP) instructions 
which have the general form 

LABEL OPCODE REGISTER, OPERAND 
(optional) 

The first operand will always be a sym- 
bolic register name, and the second oper- 
and may be a value, a symbolic register 

name, or an indexed memory reference. 
For example, ADD 1,1 means "increment 
Register I by r'; ADD l,J means "add the 
contents of Register J to Register r'; and 
ADD I,C(J) means "add to Register I the 
contents of the memory location whose ad- 
dress is found by adding the contents of 
Register J to C". In addition, we shall use 
control transfer instructions of the form 

OPCODE LABEL 

namely JMP (unconditional transfer); JL, 
JLE, JE, JGE, JG (conditional transfer ac- 
cording as whether the first operand in the 
last CMP instruction was <, -<, =, ->, > 
than the second); and CALL (subroutine 
call). Other conditional jump instructions 
are of the form 

OPCODE REGISTER, LABEL 

namely JN, JZ, JP (transfer if the specified 
register is negative, zero, positive). Most 
machines have capabilities similar to 
these, and readers should have no diffi- 
culty translating the programs given here 
to particular assembly languages. 

Much of our effort will be directed to- 
wards what is commonly called code opti- 
mization: developing assembly language 
implementations which are as efficient as 
possible. This is, of course, a misnomer: 
while we can usually improve programs, 
we can rarely "optimize" them. A disad- 
vantage of optimization is that it tends to 
greatly complicate a program. Although 
significant savings may be involved, it is 
dangerous to apply optimization tech- 
niques at too early a stage in the develop- 
ment of a program. In particular, we shall 
not consider optimizing until we have a 
good assembly language implementation 
which we have fully analyzed, so that we 
can tell where the improvements will do 
the most good. Knuth [24] presents a fuller 
discussion of these issues. 

Many misleading conclusions have been 
drawn and reported in the literature based 
on empirical performance statistics com- 
paring particular implementations of par- 
ticular algorithms. Empirical testing can 
be valuable in some situations, but, as we 
have seen, the structures of permutation 
generation algorithms are so similar that  
the empirical tests which have been per- 
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formed have really been comparisons of 
compilers, programmers, and computers, 
not of algorithms. We shall see that the 
differences between the best algorithms 
are very subtle, and they will become most 
apparent as we analyze the assembly lan- 
guage programs. Fortunately, the assem- 
bly language implementations aren't 
much longer than the high-level descrip- 
tions. (This turns out to be the case with 
many algorithms.) 

A Recursive Method (Heap) 

We shall begin by looking at the imple- 
mentation of Heap's method. A direct 
"hand compilation" of Algorithm 2 leads 
immediately to Program 1. The right-hand 
side of the program listing simply repeats 
the text of Algorithm 2; each statement is 
attached to its assembly-language equiva- 
lent. 

This direct translation of Algorithm 2 is 
more efficient than most automatic trans- 
lators would produce; it can be further im- 
proved in at least three ways. First, as we 
have already noted in Section 1, the test 
w h i l e  i -< N need not be performed after 
we have set i to 2 (if we assume N > 1), so 
we can replace JMP WHILE in Program 1 
by JMP LOOP. But this unconditional 
jump can be removed from the inner loop 
by moving the three instructions at LOOP 
down in its place (this is called rotating 
the l oop - see  [24]). Second, the test for 
whether i is even or odd can be made more 
efficient by maintaining a separate Regis- 
ter X which is defined to be 1 ff i is even 
and - 1  ff i is odd. (This improvement ap- 
plies to most computers, since few have a 

j u m p  i f  even instruction.) Third, the varia- 
ble k can be eliminated, and some time 
saved, if C(I) is updated before the ex- 

PROGRAM 1. DIRECT IMPLEMENTATION OF HEAP'S METHOD 

LD Z,1 
LD I,N 

INIT ST Z,C(I) 
CMP 1,2 
JLE CALL 
SUB 1,1 
JMP INIT 

CALL CALL PROCESS 
LOOP LD J,C(I) 

CMP J,I 
JE ELSE 

THEN LD T,I 
AND T,1 
JZ T,EVEN 
LD K,1 
JMP EXCH 

EVEN LD K,J 
EXCH LD T,P(I) 

LD T1 ,P(K) 
ST T1 ,P(I) 
ST T,P(K) 
ADD J,1 
ST J,C(I) 
LD 1,2 
CALL PROCESS 
JMP WHILE 

ELSE ST Z,C(I) 
ADD 1,1 

WHILE CMP I,N 
JLE LOOP 

I = N ,  

loop c[1] =1, 

whi le />2  
I =1-1 ,  

repeat, 
process, 
loop 

If c[/] 
then 

if / odd 
then k =1 
else k =c[i] 

endlf, 

P[I] = P[k], 

ch] =cH+l, 
1=2, 
process, 

else c[11"= I ,  
I . = i + I  endlf, 

whlle I-<N 
repeat, 
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change is made, freeing Register J. These 
improvements lead to Program 2. (The 
program uses the instruction LDN X,× 
which simply complements Register X.) 
Notice that  even if we were to precompute 
the index table, as in Algorithm 1, we 
probably would not have a program as effi- 
cient as Program 2. On computers with a 
memory-to-memory move instruction, we 
might gain further efficiency by imple- 
menting the exchange in three instruc- 
tions rather than in four. 

Each instruction in Program 2 is la- 
belled with the number of times it is exe- 
cuted when the program is run to comple- 
tion. These labels are arrived at  through a 
flow analysis which is not difficult for this 
program. For example, CALL PROCESS 
(and the two instructions preceding it) 
must be executed exactly N! times, since 
the program generates all N! permuta- 
tions. The instruction at CALL can be 
reached via JLE CALL (which happens ex- 
actly once) or by falling through from the 

P R O G R A M  2. IMPROVED IMPLEMENTATION OF 
HEAP'S METHOD 

LD Z,1 1 
LD I,N 1 

INIT ST Z,C(I) N - 1  
CMP 1,2 N - 1  
JLE CALL N - 1  
SUB 1,1 N - 1  
JMP INIT N - 1  

THEN ADD J,1 N l - 1  
ST J,C(I) NW-1 
JP X,EXCH Nw-1 
LD J,2 A N 

EXCH LD T,P(I) Nw-1 
LD T1 ,P - I ( J )  NV-1 
ST T1,P(I) N w- 1 
ST T , P - I ( J )  NW-1 

CALL LD 1,2 NI 
LD X,1 NW 
CALL PROCESS Nw 

LOOP LD J,C(I) NI+B~-I 
CMP J,I NI+BN-1 
JL THEN NI+B~-I 

ELSE ST Z,C(I) BN 
LDN X,X B~ 
ADD 1,1 B N 
CMP I,N BN 
JLE LOOP BN 

preceding instruction (which therefore 
must happen N ! - I  times). Some of the 
instruction frequencies are more compli- 
cated (we shall analyze the quantities AN 
and BN in detail below), but all of the 
instructions can be labelled in this manner  
(see [31]). From these frequencies, we can 
calculate the total running time of the pro- 
gram, if we know the time taken by the 
individual instructions. We shall assume 
that  instructions which reference data in 
memory take two time units, while j u m p  
instructions and other instructions which 
do not reference data in memory take one 
time unit. Under this model, the total run- 
ning time of Program 2 is 

19N! + A~ + 10BN + 6N - 20 

time units. These coefficients are typical, 
and a similar exact expression can easily 
be derived for any particular implementa- 
tion on any particular real machine. 

The improvements by which we derived 
Program 2 from Program 1 are applicable 
to most computers, but they are intended 
only as examples of the types of simple 
transformations which can lead to sub- 
stantial improvements when programs are 
implemented. Each of the improvements 
results in one less instruction which is exe- 
cuted N! times, so its effect is significant. 
Such coding tricks should be applied only 
when an algorithm is well understood, and 
then only to the parts of the program 
which are executed most frequently. For 
example, the initialization loop of Pro- 
gram 2 could be rotated for a savings of 
N - 2  time units, but we have not bothered 
with this because the savings is so insig- 
nificant compared with the other improve- 
ments. On the other hand, further im- 
provements within the inner loop will be 
available on many computers. For exam- 
ple, most computers have a richer set of 
loop control instructions than we have 
used: on many machines the last three 
instructions in Program 2 can be imple- 
mented with a single command. In addi- 
tion, we shall examine another, more ad- 
vanced improvement below. 

To properly determine the effectiveness 
of these improvements, we shall first com- 
plete the analysis of Program 2. In order to 
do so, we need to analyze the quantities AN 
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a n d  B N. In the algorithm, A N  is the num- 
ber of times the test i odd succeeds, and BN 
is the number of times the test c[i] = 1 suc- 
ceeds. By considering the recursive struc- 
ture of the algorithm, we quickly find that  
the recurrence relations 

AN = NAN_I + ] '  
N even  

[N - 1  N odd 

and 

BN=NBN- ,  + 1 

hold for N > 1, with A, = B, = 0. These 
recurrences are not difficult to solve. For 
example, dividing both sides of the equa- 
tion for BN by N! we get 

BN BN-, 1 BN-2 1 1 
N w - ( N - l ) !  + N! ( N - 2 ) !  + ~ + N.T 

1 1 1 

. . . . .  25+~+ + ~  
o r  

B N = N  ' E 1 
• 2 ~ N  k l  " 

This can be more simply expressed in 
terms of the base of the natural loga- 
rithms, e, which has the series expansion 
~k~o 1/k!: it is easily verified that  

B N - [N!(e-2)]  

That is, BN is the integer part of the real 
numberN!(e-2) (OrBN = Nl(e-2) + e with 
0 <- E < 1). The recurrences for A N c a n  be 
solved in a similar manner to yield the 
result 

AN = N! ~-, ( -1)~ 2 ~ N  k! - [N! /e] .  

Substituting these into the expression 
above, we find that  the total running time 
of Program 2 is 

(19 + ( l /e)  + 10(e-2))N! + 6N + O(1), 

or about 26.55N! time units. Table 3 shows 
the values of the various quantities in this 
analysis. 

We now have a carefully implemented 
program whose performance we under- 
stand, and it is appropriate to consider 
how the program can be further "optim- 
ized." A standard technique is to identify 
situations that  occur frequently and han- 
die them separately in as efficient a man- 
ner as possible. For example, every other 
exchange performed by Program 2 is sim- 
ply P[1]:=:P[2]. Rather than have the pro- 
gram go all the way through the main loop 
to discover this, incrementing and then 
testing c[2], etc., we can gain efficiency by 
simply replacing i:=2 by i:=3"~rocess; 
P[1]:=:P[2] in Algorithm 2. (For the pur- 
pose of this discussion assume that  there is 
a statement i:=2 following the initializa- 
tion loop in Algorithm 2.) In general, for 
any n > 1, we can replace i:=2 by ~:=n+l; 
process all permutations of  P[1], • • . ,  P[n]. 
This idea was first applied to the permuta- 
tion enumeration problem by Boothroyd 
[2]. For small n, we can quite compactly 
write in-line code to generate all permuta- 
tions of P[1],. • . ,  P[n]. For example, tak- 
ing n = 3 we may simply replace 

CALL LD 1,2 
LD X,1 
CALL PROCESS 

in Program 2 by the code in Program 3, 

TABLE 3. ANALYSIS OF PROGRAM 2 (TN = 19! + AN + IOBN -{- 6IV - 20) 

N N!  AN BN TN 26.55N! 

1 1 0 0 
2 2 0 1 40 56+ 
3 6 2 4 154 159+ 
4 24 8 17 638 637+ 
5 120 44 86 3194 3186 
6 720 264 517 19130 19116 
7 5040 1854 3620 133836 133812 
8 40320 14832 28961 1070550 1070496 
9 362880 133496 260650 9634750 9634454 

10 3628800 1334960 2606501 96347210 96344640 
11 39916800 14684570 28671512 1059818936 1059791040 
12 479001600 176214840 344058145 12717826742 12717492480 
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which efficiently permutes P[1], P[2], P[3]. 
(While only the code that  differs from Pro- 
gram 2 is given here, '<Program 3" refers to 
the entire improved program.) 

The analysis of Program 3 differs only 
slightly from that of Program 2. This is 
fortunate, for it is often difficult to deter- 
mine the exact effect of such major im- 
provements. First, each of the new in- 
structions is clearly executed N!/6 times, 
and each occurrence of N! in Program 2's 
frequencies becomes N!/6 for Program 3; 
thus, the total running time is 

( 5 0 / 6 ) N !  + A ' N  + B ' N  + 6 N  - 20. 

Next, the analysis for AN and BN given 
above still holds, except that  the initial 
conditions are different. We find that  

A'N ' i ~ N  k! = 

and the total rum~Jng time of Program 3 is 
then about 8.88N!. 

By taking larger values of n we can get 
further improvements, but at the cost of 

P R O G R A M  3. OPTIMIZED INNER LOOP FOR 
PROGRAM 2 

CALL LD 1,4 
LD X,1 
CALL PROCESS 
LD T1 ,P(1) 
LD T2,P(2) 
LD T3,P(3) 
ST T1 ,P(2) 
ST T2,P(1) 
CALL PROCESS 
ST T3,P(1) 
ST T2,P(3) 
CALL PROCESS 
ST T1 ,P(1) 
ST T3,P(2) 
CALL PROCESS 
ST T2,P(1) 
ST T1 ,P(3) 
CALL PROCESS 
ST T3,P(1) 
ST T2,P(2) 
CALL PROCESS 

n+3n! lines of code. This is an example of a 
space-time tradeoff where the time saved 
is substantial when n is small, but  the 
space f, o2_sumed becomes substantial when 
n is large. For n = 4, the total running 
time goes down to about 5.88N! and it is 
probably not worthwhile to go further, 
since the best that  we could hope for would 
be 5N! (the cost of two stores and a call). 

On most computers, if Program 2 is "op- 
timized" in the manner of Program 3 with 
n = 4, Heap's method will run faster than 
any other known method. 

An Iterative Method (Ives) 

The structures of Algorithm 2 and Algo- 
r i thm 4 are very similar, so that  a direct 
"hand compilation" of Ives' method looks 
very much like Program 1. By rotating the 
loop and maintaining the value N + l - i  in 
a separate register we get Program 4, an 
improved implementation of Ives' method 
which corresponds to the improved imple- 
mentation of Heap's method in Program 2. 

The total running time of this program 
is 

18N!  + 21D N + 1 0 N  - 25, 

where DN is the number of times i: =i + 1 is 
executed in Algorithm 4. Another quan- 
tity, CN, the number of times the test 
P [ N + I - i ]  = Q [ N + I - i ]  fails, happens to 
cancel out when the total running time is 
computed. These quantities can be ana- 
lyzed in much the same way that  AN and 
BN were analyzed for Program 2: they sat- 
isfy the recurrences 

CN = C~v-2 + ( N - l ) !  - ( N - 2 ) v  

DN = D1v-2 + ( N - 2 ) !  

so that  
CN = ( N - l ) !  - ( N - 2 ) !  + ( N - 3 ) !  - ( N - 4 ) !  + " "  

DN = ( N - 2 ) I  + ( N - 4 ) !  + ( N - 6 ) !  + • • • 

and the total running time of Program 2 is 
18N!  + 2 1 ( N - 2 )  + O ( ( N - 4 ) ! ) ,  

or about 

(18'+ 21 ~N, 
N(N- i) ]-" 

Thus Program 4 is faster than Program 2: 
the improved implementation of Ives' 
method uses less overhead per permuta- 
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P R O G R A M  4 IMPROVED IMPLEMENTATION OF IVES' 

INIT 

THEN 

CALL 

LOOP 

METHOD 

ELSE 

LD I,N 1 
ST I,C(I) N-1  
LD V,P(I) N-1  
ST V,Q(I) N-1  
CMP 1,1 N-1  
JLE CALL N-1  
SUB 1,1 N-1  
JMP INIT N-1  
LD T,P(J) N I -CN- 1 
LD T1 ,P+I(J) NI-CN-1 
ST T1 ,P(J) NI-CN-1 
ST T,P+I(J) NI-C~-I 
ADD J,1 NI-C~,-1 
ST J,C(I) Nt-C~-I 
LD 1,1 N I-C~ 
LD H,N Nw-C~ 
CALL PROCESS NI 
LD J,C(I) Nm+DN-1 
CMP J,H NS+DN-1 
JL THEN NI+DN-1 
LD T,P(I) CN+D,~ 
LD T1 ,P(H) CN+D~ 
ST T1 ,P(I) C,v+D~ 
ST I,C(I) C~+D~ 
CMP T,Q(H) C~+DN 
JNE CALL CN+DN 
ADD 1,1 D~ 
SUB H,1 DN 
CMP I,H DN 
JL LOOP D~ 

tion than the improved implementation of 
Heap's method, mainly because it does less 
counter manipulation. Other iterative 
methods, like the Johnson-Trotter algo- 
ri thm (or the version of Ives' method, Al- 
gorithm 4a, which does not require the 
elements to be distinct), are only slightly 
faster than Heap's method. 

However, the iterative methods cannot 
be optimized quite as completely as we 
were able to improve Heap's method. In 
Algorithm 4 and Program 4, the most fre- 
quent operation is P[c[N]]:=:P[c[N]+I]; 
c[N]:=c[N]+l; all but  1IN of the ex- 
changes are of this type. Therefore, we 
should program this operation separately. 
(This idea was used by Ehrlich [10, 11].) 
Program 4 can be improved by inserting 
the code given in Program 5 directly after 

CALL PROCESS 

• 1 6 1  

(As before, we shall write down only the 
new code, but  make reference to the entire 
optimized program as "Program 5".) In 
this program, Pointer J is kept negative so 
that  we can test it against zero, which can 
be done efficiently on many computers. 
Alternatively, we could sweep in the other 
direction, and have J range from N -  1 to 0. 
Neither of these tricks may be necessary 
on computers with advanced loop control 
instructions. 

To find the total running time of Pro- 
gram 5, it turns out that  we need only 
replace N! by (N-2)!  everywhere in the 
frequencies in Program 4, and then add 
the frequencies of the new instructions. 
The result is 

9N! + 2 ( N - l ) !  + 18(N-2) !  + O( (N-4) ! ) ,  

not quite as fast as the "optimized" version 
of Heap's algorithm (Program 3). For a 
fixed value of N,  we could improve the 
program further by completely unrolling 
the inner loop of Program 5. The second 
through eighth instructions of Program 5 
could be replaced by 

LD T,P+I 
ST T,P 
ST V,P+I 
CALL PROCESS 
LD T,P+2 
ST T,P+I 
ST V,P+2 
CALL PROCESS 
LD T,P+3 
ST T,P+2 
ST V,P+3 
CALL PROCESS 

(This could be done, for example, by a 
macro generator). This reduces the total 
running time to 

7N! + ( N - l ) !  + 18(N-2) !  + O( (N-4 ) ! )  

which is not as fast as the comparable 
highly optimized version of Heap's method 
(with n = 4). 

It is interesting to note that  the optimi- 
zation technique which is appropriate for 
the recursive programs (handling small 
cases separately) is much more effective 
than the optimization technique which is 
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PROGRAM 5 OPTIMIZED INNER LOOP FOR 
PROGRAM 4 

EXLP 

INLP 

CALL PROCESS (N-1)I 
LD J,1-N (N-1)v 
LD T,P+N+I(J) NI-(N-1)I  
ST T,P+N(J) NI-(N-1)v 
ST V,P+N+I(J) NV-(N-1)l 
CALL PROCESS NV-(N-1) I 
ADD J,1 NV-(N-1)~ 
JN J,INLP NI-(N-1)v 
LD T,P+I (N-1)~ 
ST T,P+N (N-1)v 
ST V,P+I (N-1)~ 
CMP T,Q+N (N-1)l 
JNE EXLP (N-1)l 

appropriate for the iterative programs 
(loop unrolling). 

A Cyclic Method (Langdon) 
It is interesting to study Langdon's cyclic 
method (Algorithm 6) in more detail, be- 
cause it can be implemented with only a 
few instructions on many computers. In 
addition, it can be made to run very fast on 
computers with hardware rotation capa- 
bilities. 

To implement Algorithm 6, we shall use 
a new instruction 

MOVE TO, FROM(I) 

which, if Register I contains the number i, 
moves ~ words starting at  Location FROM 
to Location TO. That is, the above instruc- 
tion is equivalent to 

LD J,0 
LOOP T,FROM(J) 

T,TO(J) 
ADD J,1 
CMPJ,I 
JL LOOP 

We shall assume that  memory references 
are overlapped, so that  the instruction 
takes 2i time units. Many computers have 
"block transfer" instructions similar to 
this, although the details of implementa- 
tion vary widely. 

For simplicity, let us further suppose 
that  PI l l , . -  .,P[N] are initially the inte- 
gers 0,1,. • • , N - l ,  so that  we don't have to 
bother with the Q array of Algorithm 6. 

With these assumptions, Langdon's 
method is particularly simple to imple- 
ment, as shown in Program 6. Only eight 
assembly language instructions will suf- 
fice on many computers to generate all 
permutations of {0,1,. • • , N -  1}. 

As we have already noted, however, the 
MOVEs tend to be long, and the method is 
not particularly efficient i fN  is not small. 
Proceeding as we have before, we see that  
EN and FN satisfy 

EN = ~ k! 
l~k'~N--1 

FN= ~ k k ! = ( N + l ) ! -  1 
l ~ k ~ N  

(Here FN is not the frequency of execution 
of the MOVE instruction, but the total num- 
ber of words moved by it.) The total run- 
ning time of Program 6 turns out to be 

N , ( 2 N + 1 0 + 9 ) + ( O ( N - 2 )  ') 

It is faster than Program 2 for N < 8 and 
faster than Program 4 for N < 4, but it is 
much slower for larger N. 

By almost any measure, Program 6 is 
the simplest of the programs and algo- 
ri thms that  we have seen so far. Further- 
more, on most computer systems it will 
run faster than any of the algorithms im- 
plemented in a high-level language. The 
algorithm fueled a controversy of sorts (see 
other references in [25]) when it was first 
introduced, based on just this issue. 

Furthermore, if hardware rotation is 
available, Program 6 may be the method of 
choice. Since (N-1)/N of the rotations are 
of length N, the program may be optimized 
in the manner of Program 5 around a four- 
instruction inner loop (call, rotate, com- 
pare, conditional jump). On some ma- 

PROGRAM 6 IMPLEMENTATION OF LANGDON'S 
METHOD 

THEN 

LOOP 

LD I,N-1 NI 
CALL PROCESS NI 
LD T,P+I NV+E~ 
MOVE P,P+I(I) F~ 
ST T,P+I(I) NV+E~ 
CMP T,I NI+E N 
JNE THEN NI+EN 
SUB 1,1 E~ 
JNZ LOOP E~ 
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chines, the rotate might be performed in, 
say, two time units (for example, if paral- 
lelism were available, or if P were main- 
tained in registers), which would lead to a 
total time of 5N! + O((N-1)!). We have 
only sketched details here because the is- 
sues are so machine-dependent: the ob- 
vious point is that  exotic hardware fea- 
tures can have drastic effects upon the 
choice of algorithm. 

CONCLUSION 

The remarkable similarity of the many 
permutation enumeration algorithms 
which have been published has made it 
possible for us to draw some very definite 
conclusions regarding their performance. 
In Section 1, we saw that the method given 
by Heap is slightly simpler (and therefore 
slightly more efficient) than the methods 
of Wells and Boothroyd, and that the 
method given by Ives is simpler and more 
efficient than the methods of Johnson and 
Trotter (and Ehrlich). In Section 2, we 
found that the cyclic and lexicographic al- 
gorithms will not compete with these, ex- 
cept possibly for Langdon's method, which 
avoids some of the overhead in the control 
structure inherent in the methods. By 
carefully implementing these algorithms 
in Section 3 and applying standard code 
optimization techniques, we found that  
Heap's method will run fastest on most 
computers, since it can be coded so that  
most permutations are generated with 
only two store instructions. 

However, as discussed in the Introduc- 
tion, our accomplishments must be kept in 
perspective. An assembly-language imple- 
mentation such as Program 3 may run 50 
to 100 times faster than the best previously 
published algorithms (in high-level lan- 
guages) on most computer systems, but  
this means merely that  we can now gener- 
ate all permutations of 12 elements in one 
hour of computer time, where before we 
could not get t oN  = 11. On the other hand, 
if we happen to be interested only in all 
permutations of 10 elements, we can now 
get them in only 15 seconds, rather than 15 
minutes. 

The problem of comparing different al- 
gorithms for the same task arises again 

and again in computer science, because 
new algorithms (and new methods of ex- 
pressing algorithms) are constantly being 
developed. Normally, the kind of detailed 
analysis and careful implementation done 
in this paper is reserved for the most im- 
portant algorithms. But permutation gen- 
eration nicely illustrates the important is- 
sues. An appropriate choice between algo- 
rithms for other problems can be made by 
studying their structure, implementation, 
analysis, and %ptimization" as we have 
done for permutation generation. 
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