
SPY—A program to monitor OS/360

by R. SEDGEWICK, R. STONE, and J. W. McDONALD

Western Electric Engineering Research Center
Princeton, New Jersey

INTRODUCTION

I t is generally agreed that one of the major problems
facing the manufacturers of large scale computer
systems today is the problem of measuring the per­
formance of a computer in conjunction with the operat­
ing system which drives it. This problem is under con­
sideration for operating systems currently in the design
and implementation stages through studies on: (i) the
establishment of reasonable criteria under which
performance can be measured; (ii) means of actually
making the measurements; and (iii) ways of using the
information obtained to optimize the performance of
the system under the established criteria for a par­
ticular user's environment.

For existing operating systems the problem is some­
what different, especially in cases where it is not feasi­
ble to make any changes to the operating system itself.
First, extracting information from the system is a
non-trivial problem under the constraint that the
system cannot be modified. Second, the information
obtained is little more than academic unless it reflects
inefficiencies in the system caused by the environment
of user jobs being processed, as optimization can only
be effected by restructuring this environment or by
setting parameters to direct the system to operate ac­
cording to the environment.

A related problem that has arisen with the advent of
time-sharing and multiprogramming systems is that
of monitoring system execution. This is an important
area of research for two reasons: First, one charac­
teristic of many existing operating systems is that they
just cannot function without a fair amount of operator
intervention, and the operator must know exactly
how the resources of the system are being utilized in
order to carry out his job effectively. Second, situations
often arise in a multiprogramming or time-sharing en­
vironment in which it is not altogether clear exactly
what action is being taken by the system. The ability
to observe the performance of such a system in opera­

tion is of importance to systems programmers and
managers to enable them to more effectively "tune" the
system and watch the local effects of any changes
made. This ability can also be of value to users of a
machine—the typical user has no concept of his im­
pact on the operating system, and a certain amount of
awareness can enable him to better appreciate how
incorrect estimates of his system resource requirements
can affect the entire user community.

A considerable amount of work has been done in the
general area of system performance measurement in
the past, and a wide variety of approaches to the
problem are represented.4- 5>u In general, however, they
can be roughly categorized into three classes: theoreti­
cal studies (simulations and statistical work); hard­
ware monitoring devices; and software data gathering
techniques.

The theoretical studies2 •M0 generally focus on the
much broader problem of improvement of operating
system design so that maximum efficiency can be
provided under very carefully thought out criteria.
The process is to make use of thorough statistical
analyses in conjunction with generalized computer
system models to develop a coherent theory which
clearly defines (and generally suggests solutions to)
basic problems in operating system design related to
overall system performance. This work is invaluable
to the system designer, and is a fundamental step in
the development of future computer systems, but it
is in many cases not directly applicable to the problems
associated with existing systems, especially when the
point of view is taken that the internal mechanism of
the system must be viewed essentially as a fixed entity.

Hardware measurement3,6 is accomplished through
the use of an independent set of instruments which have
the capability of sensing, decoding, and recording
selected electronic signals in the system being measured.
This approach to the problem has the decided advan­
tage that the measurement device can be used indis­
criminately with little effect on normal system opera-

119

120 Fall Joint Computer Conference, 1970

tions—a voluminous amount of data can be obtained
on the operation of the system in its natural state.
The danger, of course, exists that a good deal of extra­
neous data could be obtained—the amount of useful
data is dependent on the sophistication of the inter­
face to the host computer and the amount of flexibility
in the measurement device itself. (An example of a
very flexible device can be found in the SNUPER
COMPUTER3 project, where an auxiliary computer,
which can be programmed to accept or reject available
data, is used as a measurement device.) The main
disadvantage in the use of hardware techniques is that
it is often difficult to correlate the data being gathered
with the software being run on the machine or the
software representing the internals of the operating
system. The data gathered often shows very clearly
how effectively the hardware is being utilized, but
aside from reconfiguring the hardware it is in general
not clear what steps could be taken to improve upon
the observed results.

Software measurement techniques9,12 generally con­
sist of data gathering programs which run while a
system is in normal operation, and reduction pro­
cedures which extract useful measurements from the
large volume of data thus obtained. The differences in
implementation can be found in the types of events
monitored, the rate at which they are monitored, and
the algorithms used in the data reduction process.
There are many different schools of thought in all of
these areas—one obvious reason is that measurement
of an operating system is quite dependent on the struc­
ture of that system. Not only are the data gathering
techniques a direct function of the system being
studied, but also significant events in one system are
quite different from significant events in another. The
principal difficulty with software measurement is that
the measurement procedures themselves utilize some
percentage of the resources of the system—every ef­
fort must be made to minimize this percentage.

When considering software measurement techniques,
one must make a clear distinction between measuring
the operation of a system from within and observing
it from the outside. One feature common to most
existing system measurement programs is that they
are being developed by people who have the luxury
of being able to work with the internals of the system
being measured. This allows them to facilitate some­
what the process of extracting information from the
system, and to provide very accurate measurements
of relevant system events. This type of observation
from within can be done at many levels—the most
desirable method is to provide for insertion of "hooks"
in the system early in the design process, and allow
for a workable interface between the measurement
procedures and the operating system, so that the system

can be made responsive to the measurements obtained.
(An example of such a system is the XDS Sigma 5/7
BTM system.7) However, the point must again be
emphasized that in many cases the operating system
must be viewed as an unalterable product of the manu­
facturer: Measurement must be done by merely looking
at the internals; and optimization can only be effected
by rearranging the environment in which the system
operates.

There is far less work in the literature on the subject
of dynamically monitoring system execution. Although
some capabilities in this area are necessarily provided
in most operating systems, a major obstacle is that
output is normally done on a typewriter-like console—
the state of a multiprogramming or time-sharing system
changes far too quickly for such a device. A graphic
display is a much more appropriate device for dynamic
monitoring for at least two reasons: First, all changes
in the system can be recorded, allowing the observer
to choose those he may consider significant as he
watches the system in operation. Secondly, inter­
actions within the system can be easily observed be­
cause all information is presented simultaneously—
the effect of an activity in any part of the system can
be seen in other sections, as it develops. This type
of global view of the dynamics of the system would
not be possible on anything other than a graphic
display. An excellent example of work in this area is
the GDM system at Project MAC,1 which provides
dynamic displays of a very flexible format allowing
observation of the operation of the MULTICS time­
sharing system.

The subject of this discussion, the SPY project,
represents one approach to this dual problem of mea­
suring and monitoring operating systems for an existing
multiprogramming system—a version of IBM's operat­
ing system, OS/360. A system was developed which
presents information concerning the jobs being pro­
cessed by the operating system, the direct access devices
connected to the computer, and the state of the Sys­
tem/360 CPU. Data is in general gathered through
software techniques, but a facility for rudimentary
hardware monitoring is also employed. The informa­
tion is displayed dynamically and in real time on a
graphic display unit and selectively saved on paper
tape for later analysis. No modification whatsoever to
OS/360 is involved, and a negligible amount of over­
head is incurred, so that the system can be used to
analyze and observe the operation of OS/360 in day-
to-day operations.

Concepts and definition of terms

The version of OS/360 to be analyzed was MVT
(Multiprogramming with a Variable number of Tasks),

SPY 121

and any further discussion of our implementation of
a monitor would be impossible without the use of
some of the terminology and concepts related to OS/
360, MVT, and the System/360 hardware. The intent
of this section is to provide a rudimentary explanation
of the most basic terms.

IBM defines multiprogramming as "a general term
that expresses use of a computing system to fulfill two
or more different requirements concurrently."14 In
general "requirements" are defined in terms of tasks,
where a task is the smallest independent unit of work
for the processor. In multiprogramming, the effect
is as though all tasks in the machine at one time were
running asynchronously. Tasks can be system tasks
(readers, writers, schedulers, etc.) or user tasks. The
users of the system generally submit their work to the
system in terms of jobs, the individual parts of which
are broken off as tasks by the system.

The computer resources are those parts of the hard­
ware that can be allocated to individual tasks. The
resources about which we will be concerned will be
core storage, the central processing unit, and disk
(direct access) storage—all of which will be referred
to together in this paper as the resources.

A volume for the purposes of this discussion will be
a single disk pack and a unit will be the disk drive upon
which the volumes can be individually mounted.

The wait light is one of five lights on the console of
the 360/50 which are meant to indicate the "state"
of the machine. In normal operations, when it is off,
the CPU is in the process of executing an instruction,
and when it is on, the CPU is waiting, generally for
some I/O activity.

Hardware configuration

The specific system being analyzed was running on
a IBM System 360 Model 50 with 512K bytes of core
with an eight drive 2314 direct access storage facility,
plus various other peripheral equipment. During de­
velopment, a 1024K byte 2361 LCS unit and a second
2314 with four drives were added. The monitor system
was implemented on this machine and on a PDP-9
with 8K of core equipped with a Graphic-II Display
Unit. Communications between the two machines was
done via a Parallel Data Adapter (PDA) connected
to a 2701 Data Adapter Unit on the 360 and to a
specially designed interface on the PDP-9, In addition,
the PDP-9 has the hardware capability of monitoring
the state of the wait light on the S/360.

I t is fully realized that this is a somewhat peculiar
hardware configuration, and some effort is being ex­
pended to modify the system to allow it to be run on
more standard configurations. The only equipment

OPERATOR'S
CONSOLE

IBM
360/50

5I2K0MLCS)

2701
W/PDA

2314
DIRECT
ACCESS I
WAIT
LIGHT

POA
INTERFACE

PUNCHED
PAPER TAPE

PDP-9
8K

GRAPHICS I
DISPLAY
UNIT

Figure 1—Hardware configuration

absolutely essential is an S/360 Model 30 or higher and
some suitable output device—the above equipment
was chosen for use simply because of its availability.

Softivare structure

The final system consists basically of two software
packages: one in the 360/50, which takes samples on
selected information within OS/360, accumulates
statistics, and sends information to the PDP-9 at
selected intervals; and one in the PDP-9, Which re­
ceives the information, independently monitors the
wait light, formats all of the information for display,
and produces a hard copy record of the important
statistics.

The emphasis in implementation of the programs
on the 360 was in modularity, and the final system
consists of a set of assembly language subroutines. The
modules comprising the OS/360 interface portion of
the program were debugged in PL-/I, so that use could
be made of the powerful I /O and error correcting
facilities of the higher-level language. Working modules
were then translated into PL/360 to gain the advan­
tages of high speed and low storage requirements im­
plicit in assembly language level programs. This method
resulted in the production of efficient code quickly,
as the advantages of both levels of programming were
made use of, and there was little effort in conversion
due to the structural similarity of the languages. The
transmission and central control modules of the system
were written and debugged in assembly language,
simply because the tasks to be performed required
low-level interfaces to the system.

122 Fall Joint Computer Conference, 1970

All of the PDP-9 software for SPY was written and
debugged in assembly language on the PDP-9, chiefly
because of the lack of any workable higher-level lan­
guage, and because of the necessity for low-level inter­
faces to the special purpose I /O devices (the PDA
and the wait light).

GENERAL DESCRIPTION OF INFORMATION
RETURNED

The principal output of the SPY system is a dy­
namically changing graphic display consisting of a
wide variety of information relating to the operation
of the 360/50 and OS/360. The display is divided into
four sections (see Figure 2): one containing specific
information concerning the jobs being processed; one
showing the utilization of the direct access devices
(on which the system is heavily dependent); one con­
taining running averages of selected summary informa­
tion (the information used in system measurement);
and one containing a continually recycling graph
showing the percentage of CPU utilization. All of the
information is updated dynamically as the events it
reflects occur, under the constraints outlined in the
section below on timing and sampling.

Also output is a punched paper tape containing the
data reflected in the summary statistics as well as
some data retained from the samples of the wait light.

Figure 2—Graphical output from SPY

Identification information is also included, so that a
large amount of data can be collected over large periods
of time and analyzed statistically to aid in drawing
some general conclusions on overall system perfor­
mance.

Timing and sampling

Most of the activity in the SPY system is regulated
by a set of three basic timed intervals. In the S/360,
these are maintained with the use of the standard
task timing facility (STIMER), which allows the
system to operate by taking control of the CPU only
for a very short time at the end of each interval and
relinquishing it during the interval. I t is recognized
that this practice of relying on the operating system
to do the timing may be somewhat unsafe, since ir­
regularities in the timing algorithms of the operating
system could lead to irregularities in the data gathered.
However, the PDP-9 utilizes a hardware clock for its
timing, so that it is able to ensure accurate timing
and program synchronization—the STIMER facility
is relied upon solely to relinquish control for real
time intervals and has proven adequate for this pur­
pose.

So that the system could be made useful as both a
measurement and a monitoring tool, two intervals
were needed for timings during the execution of SPY.
First, a "transmission interval," which represents the
time between transmissions to the PDP-9, and hence
the time between changes in the graphical display.
A second interval needed is the "sampling interval"
or time between the accumulation of samples on the
S/360.

A lower bound on the choosing of a transmission
interval was set by the ability of the eye to follow
changes in the information presented, and an upper
bound resulted from the fact that selection of long
intervals resulted in the missing of changes in the
system. A reasonable compromise between these two
limits appeared to be ten seconds.

The selection of a sampling interval was governed
by the need to have a statistically significant number
of samples, while not spending so much time sampling
that performance might be degraded on smaller or
slower systems. The choice of one second resulted in
an acceptable number of samples and an extremely
low overhead.

Sampling of the wait light in the PDP-9 represents
measurement and monitoring of the S/360 hardware
rather than the OS/360 software, so that different
criteria are used in the timing. The most significant
point is that it was considered necessary to sample

SPY 123

the state of the wait light as often as possible—this
is done every 1/60 of a second, which is the granularity
of the standard clock on the PDP-9. An intermediate
average is computed for display purposes every 5/6
of a second, and a final average retained before the
graph is recycled. The aim was to produce a dynamically
changing graph which moves fast enough so as not to
seem frustratingly slow to the observer, and slow
enough so that the data displayed is in some way
significant.

In addition, it wTas necessary to define a third in­
terval, a "statistics gathering interval," at the end of
which the measurement data is output on hard copy
for later analysis. The length of this interval is dic­
tated by the amount of data that needs to be saved,
and the rate at which it is being accumulated. In the
current implementation of the system, a value of two
hundred seconds is used. (This value wras chosen for
convenience only, as it represents the amount of time
it takes the wait light graph to complete one cycle.)

Scheduled jobs and tasks

The information given in this section of the display
allows monitoring of the various user jobs and system
tasks that have been selected for execution by the
operating system. There is one entry for each such
task, and for each entry, the following information is
given:

(i) An identification of the entry (the job name,
step name, and procedure name),

(ii) "FROM" and "TO" addresses indicating the
locations in main core assigned the program
by the operating system,

(iii) The amount of core requested by the program
(and the amount given it by the operating
system—this number is equal to the difference
of the "FROM" and "TO" addresses),

(iv) The amount of core actually being used by the
program (in general very different from the
amount requested).

UNIT
I 30
131
132
133
134
135
136
I 37

CNT
25
0
27
I I
0
0
0
0

VOL-ID
I I I I I I
000001
000002
000003
000004
000005
000006
000000

DCB
I
0
3
3
I
0
0
0

USE|

o !
4
3
I

Figure 4—Typical direct access device information

(v) The time remaining in the time interval al­
lotted the program step by the operating sys­
tem. Changes in this number reflect the relative
CPU utilization of each job.

This information presents a true "picture" ol the
condition of the machine in relation to the jobs being
processed—allowing continuous monitoring of the
treatment of the various jobs by the operating system,
and the use (or misuse) of the system by the various
jobs. Figure 3 shows a "snapshot" of this section of the
display during normal system operations.

Direct access device utilization

This area of the display contains information con­
cerned with the direct access devices attached to the
system. For each direct access unit, five pieces of in­
formation are displayed:

(i) The unit number identifying the disk drive,
(ii) The volume name of the disk pack currently

mounted on that unit.
(iii) A measure of the number of potential users of

the unit. (The number of DD cards pointing to
that unit.)

(iv) A measure of the number of users actually using
the unit. (The number of open DCBs pointing
to the unit.)

(v) A number from 0 to 100 representing the per-
FRn°rH H*. Anl USE ™E centage of time the user of the unit changes.

054 090 60 60 466 (A measure of contention on the unit.)
090 0D6 70 70 470 •
0D6 126 80 80 473 I
5C2 5D0 14 io | With this information one is able to monitor and
5DE 600 34 28......!.-.!.• gather statistics on the operation of the direct access

— ' devices and their utilization by both the users and the
operating system itself. This is very useful because one
characteristic of OS/360 is that, in general, effective

Figure 3—Typical job and task information operation of the system is dependent on effective

NUCLEUS
J0B2
JOB 3
JOB 4
WTRLCS
SPY
MASTER

EXECUTE
EXECUTE
EXECUTE
00E
SPY
SCHEDULER

124 Fall Joint Computer Conference, 1970

operation of the direct access devices. Figure 4 shows
the information typically displayed in this section, (the
CNT field is the number described in (v) above—
the other fields are self-explanatory).

Global information

This section of the display contains most of the
information used in system measurement. Although
it is expected that this section will be expanded in the
near future, in the current implementation of SPY
it contains summary information concerning the non-
system tasks. This information is also useful in mon­
itoring the system, so it is presented on the display
as both instantaneous data (the values determined in
the sample at the end of the transmission interval),
and cumulative data (averages of the values sampled
since the beginning of the statistics gathering interval).
The following is the data presented:

(i) The average number of jobs in execution (this
is a much smaller number than the number of
tasks displayed in the section described above—
a job can occupy core but not be eligible for
execution). This is clearly a very important
global measure for a multiprogramming system,
as it can be taken to more or less reflect the hard­
ware and software capabilities of the system
to run multiple jobs.

(ii) The "average region size" of all of the jobs
currently in execution (corresponding to the
"amount of core requested" above). This number
is an indication of the amount of core given to
the users of the system after the space for the
operating system and space lost due to frag­
mentation have been subtracted.

(iii) The average amount of core being used by the
jobs in execution (corresponding to the "amount
of core used" above). This number, when com­
pared to the average region size, shows the
ability of the programs to estimate their core
resource requirements.

Figure 5—Wait light graph

This information is used in both system monitoring
and system measurement to observe the effectiveness
of the OS/360 implementation of multiprogramming,
the appropriateness of the system parameters that have
been selected for the installation, and whether or not
the user community is utilizing the system effectively.

CPU utilization (ivait light)

The wait light portion of the display consists of a
graph on the Graphic-II Display, the X-axis of which
is time, and the Y-axis of which is the percentage of
time the "wait" light on the 360 is off (i.e., the computer
is active).

The result is a dynamic display indicating the de­
gree of activity of the CPU of the S/360 (see Figure
5). Although this information could lead to incorrect
conclusions if taken as an absolute measure, this graph
has proven very effective, taken in conjunction with
the other information displayed, in giving an observer
a feel for the load on the CPU at any time.

PROGRAM STRUCTURE

860 program structure

As mentioned above, the 360 program is modular
in design and can essentially be divided into three
major logical sections: a control program, a transmis­
sion package, and an information retrieval package.
The control program maintains the three defined sam­
pling intervals and calls the other sections accordingly.
The transmission section formats the data for trans­
mission and graphical display and does the actual
transmission. The information retrieval package (the
OS/360 interface) gathers specified data from the
internal workings of the operating system, does the
sampling, and puts the data into character format. As
required by the design goals, no modification what­
soever is made to OS/360.

This is possible due to the fact that OS/360's data
space consists of a series of tables chained together in a
complex queue structure.13 Information about individual
tasks in the system is determined by searching the task
queue and weeding out the tasks which are active
(those tasks which have no "daughter" task on the
linked list). Information stored about each task in­
cludes its name, core location, core requested, and
whether it is a system task. Time information for a
task is found from its "mother" task, and actual core
utilization is determined by adding the various parts
of its region that have not been actually used.

SPY 125

Direct access information is determined by a list
of the locations of the status data about the units. This
data yields the currently mounted disk pack, whether
a mount is in progress, active users, and potential
users. In addition, it is possible to trace chains back­
ward to determine the name of the last user, and hence
status information is built up concerning the degree
of contention.

PDP-9 program structure

The major goal in the development of the PDP-9
program was to produce a clean, readable display,
while at the same time acting as a I /O device slaved
to the S/360. Functions to be performed were: the
reception and display of all the data accumulated by
the S/360 programs; the maintenance and display
of the wait light graph; and the production of the
punched paper tape output. The program gives highest
priority to processing related to receiving data from
the S/360—at no time does the 360 have to wait for
the PDP-9 to accept a transmitted message. If this
were allowed to occur, the integrity of the sampling
times would be compromised more than necessary.

The main control portion of the program sets up the
initial display, initializes the PDA to accept messages
from the 360, and sits in a tight loop: awaiting a signal
from the PDA handling routine indicating that a com­
plete message has been received; and sampling and
maintaining a count on the state of the wait light.
At the expiration of every 5/6 second interval, the
wait light count is converted into the commands neces­
sary to update the wait light graph, and the main loop
reentered. When a message from the 360 arrives, a
message decoder determines which information was
received and rebuilds the portion of the display which
is to be updated. If the message received contained

CONTROL|

TRANSMISSION PACKAGE]

2260
DEVICE
HANDLER

PDA
DEVICE
HANDLER

STATISTICS
ACCUMULATION

SUMMARY CORE

|OS/360 INTERFACEl

_, J ^
IDISK
INFO

CONSOLE
MAINTENANC

ICONTROLI

I r

RECEIVE

l

WAIT LIGHT
HANDLER

1
DISPLAY
CONTROL

-\ PAPER TAPE
OUTPUT

Figure 6—Software structure

the final average information, an output routine formats
and punches out the paper tape hard copy. Upon
completion of message processing, the PDA is reini­
tialized for input and the main loop reentered.

COMMUNICATIONS

Introduction to equipment

As mentioned above, the communications link used
by the SPY system is a high-speed Parallel Data Adap­
ter interfaced to the IBM 2701. It should be pointed
out that transmission at this rate (180,000 bytes/sec) is
not crucial to the operation of the system—much slower
rates would probably be sufficient. On the other hand,
the adapter is almost a hard wire connection between
the computers and as such does not require sophis­
ticated low-level programming or extensive error
diagnostic routines. The use of the PDA was simply
a case of utilizing the most convenient communications
device.

Conventions

The communications conventions are rather simple
and straightforward—conversation between computers
is kept at a minimum and is essentially in one direction
with the PDP-9 acting as the receiver and the 360/50
as the transmitter. Acknowledgment of reception is
contained and diagnosed within the hardware and the
channel of the PDA so that the customary acknowl­
edgment transmission is unnecessary.

The transmission buffers are of a constant length—
2048 bytes. The data are preceded by a one byte code
describing which type of data format is being sent. All
information to be displayed is sent in PDP-9 Graphic-
II display code (two 7-bit ASCII characters packed
in the low order 14 bits of each 18 bit word) with con­
trol characters that determine the physical position
on the screen where the data is to be displayed. The
"global" information is transmitted in 8 bit ASCII—
this is done to make easier the task of producing the
punched paper tape. (In future versions of SPY, all
character translation will be done in the PDP-9, to
reduce overhead on the S/360.)

Transmittal (S/360 program)

The Parallel Data Adapter is a non-supported device
under OS/360, and the I /O routines were therefore
written at the lowest level allowed users by the system
(EXCP—EXecute Channel Program). This has the

126 Fall Joint Computer Conference, 1970

additional benefit of keeping core requirements at a
minimum.

The PDA is OPENed as an output device once for
every run of the program. For every message to be
transmitted, the appropriate code conversion is per­
formed (input to the transmission package is EBCDIC),
a test made to ensure that the previous transmission
was successfully completed, and the EXCP macro
issued to direct the system to begin transmission.

Reception (PDP-9 program)

Communications on the PDP-9 is done at the hard­
ware I/O level, with the use of a standard routine
developed along with the PDA which does the actual
READ into PDP-9 core and sets the various hardware
flags to notify the 2701 of proper reception. The main
PDP-9 program is notified of the reception of a com­
plete message via a simple "event variable."

INPUT-OUTPUT INTERFACES

Graphic-II display

All information presented by the SPY system is
displayed on the Graphic-II display unit, a general
purpose display driven by the PDP-9. The display
processor generates pictures from a "buffer program"
in the PDP-9 core which defines displays in terms of
point, line, and character information. The PDP-9
program builds and maintains the buffer program
and directs the display interface in presenting and
regenerating the display.

With the exception of the wait light graph, all of the
information presented is in character form, and this
information, along with positioning information, is
put into the display buffer by the PDP-9 program.
The wait light graph is produced by dynamically
modifying the display buffer to define small vectors
which trace out the percentages measured.

The wait light

The hardware interface to the S/360 wait light con­
sists of an actual hardware connection from the physi­
cal wait light socket on the 360 console to the PDP-9,
and an interface on the PDP-9 allowing the state of the
light to be tested with a single machine language in­
struction (S360W—Skip on 360 Wait light).

Operator's Console

It was also deemed necessary to include in SPY an
interface to the S/360 operator's console, so that a
mechanism could be provided to allow modification
of some of SPY's internal parameters at execution
time. In addition, the facility was included to allowr

the operator to request any of the information provided
by SPY for output on the console.

The I /O function is performed by sending a request
for information to the console (WTOR), resulting in
a console message to which the operator can reply
at any later time. Rather than waiting for this response
from the operator, SPY interrogates OS/360 at the
end of every one second sampling interval to determine
whether the operator has sent a message. When a mes­
sage is sent, SPY simulates the occurrence of the end
of the transmission-interval, but routes the transmis­
sion to the operators console instead of the PDP-9.

Planned additions

Now that a working system has been developed and
has proved useful, one direction for future research
will be to explore the possibilities of incorporating less
expensive display devices into the system, for the
purpose of allowing SPY to be generated and used on
any System 360 for a modest cost. Since most of the
information presented is in character form, this is only
a matter of acquiring the hardware and programming
new "transmission" packages. The first newr device to
be included in this way will probably be an IBM 2265
Display Station, or some similar device. It should be
pointed out that a major drawback in such a system
will be the loss of the wait light graph, although ways
of providing some type of replacement for this are also
being researched. In general, the emphasis in future
development will be on complete generality and modu­
larity in relation to I /O devices. Another area that will
have to be researched for versions of the system without
the PDP-9 will be in statistics gathering and production
of hard-copy results. The development of programs
on the S/360 which will save data (either on disks or
magnetic tape) is under consideration, but still under
the basic constraint of minimizing overhead on the
S/360.

A separate area of future work will be in researching
ways of making maximum utilization of the hardware
currently being used, and developing more special
purpose hardware to expand the capabilities of the
system. As of this writing, this has already been begun
in the implementation of a high-resolution (down to
40 microseconds) clock in the PDP-9 to allow extremely

SPY 127

accurate wait light sampling, and an expansion of the
wait light interface to allow other lights on the 360
console to be monitored.

APPLICATIONS OF THE SYSTEM

Analysis of OS/860 operation

Over the past several months, SPY has been used
to aid in analyzing the performance of the 360/50 with
MVT, and the following conclusions have been reached
concerning the operation of this particular computer
facility and the impact of SPY upon operations.

The most serious effect of running a highly variable
job stream (i.e., jobs with widely differing resource
requirements) in a multiprogramming environment
on a computer with no virtual memory capabilities is
"core fragmentation." The core fragmentation problem
can be defined as the situation that exists when all of
the core resources of the machine are not being utilized
because of the fact that the available core is not con­
tiguous. This situation was observed to be most detri­
mental to system performance.

In addition, two problems were observed in relation
to the direct access devices: First, contention was found
to be serious on those devices needed by all the users
(i.e., the output spool device). Secondly, a problem was
observed in the apparent non-reenterability of the
device allocation routine in cases where a new volume
is required.

In the area of user impact on the operation of the
system, the most harmful thing observed was over-
estimation of the core resource—-ranging from 50 per­
cent to 150 percent. The difference between the amount
estimated and the amount used is a totally wasted
productive resource. In addition, a similar problem
was noticed in the use of the direct access devices—
users would have the system allocate devices for their
use, and then never use them—another wasted re­
source.

The general conclusion reached was that resources
were being underutilized—not only due to possible
system inefficiencies (the operating system generated
for this particular machine possibly was not completely
tailored to the workload being studied), but also due
to some lack of understanding on the part of the user
community of the effects (and requirements) of multi­
programming.

Viewing multiprogramming

A motion picture film has been made from the out­
put display of SPY showing a carefully selected job

stream. This film has become an extremely valuable
tutorial aid in demonstrating multiprogramming to
the unsophisticated. To the more knowledgeable, it
presents a real look at the actual occurrence of prob­
lems in a running computer, and the reasons that cause
such a system to fall below the ideal maximum effi­
ciency.

The film begins with a clear system with only SPY
present, and then adds a single program and the system
tasks necessary for that program. Slowly, the capability
for more programs is added until a three job system is
achieved. As jobs move in and out of execution, prob­
lems of core fragmentation, contention, unused core,
and unused disks are observed.

The technique of using a movie, while not changing
the amount of information presented, has allowed that
information to be presented to persons outside the
immediate environment, and has permitted the dis­
play of a controlled selection of jobs with a wide range
of characteristics.

CONCLUSION

The SPY system has proven invaluable not only as
a means of measuring the performance of a computing
system but also as a tutorial aid in the theory of multi­
programming.

The statistics gathering capability, as expected,
proved to be vital to the functions of "tuning" a system
and validating hardware and software changes. Al­
though the measurements retained for analysis in this
first version of the system were rather coarse, they did
bring to light some fundamental problems in the use
of the operating system, and led to some action being
taken towards system optimization.

The monitoring capability proved to be very valu­
able in giving many observers a true feel for how the
operating system works. In addition, the availability
of operator information was often useful and showed
much potential, depending on the types of jobs being
run at an installation, and thus the degree of operator
control over jobs entering the system.

The two major design goals were clearly met: no
modification whatsoever was made to OS/360 in any
of the software development; and it was at all times
clear that the effects of SPY upon the operation of the
system are negligible. I t utilizes less than 1 percent
of the CPU time, occupies only 14K of core storage,
and uses no secondary storage units.

One extension of the work presented in this paper
will be the use of SPY to aid in more serious statistical
studies on the operation of computing systems. Now
that a means has been developed to extract salient

128 Fall Joint Computer Conference, 1970

information from the system, a serious developmental
effort can be expended towards expanding the system
to produce data which can be used in more valid and
meaningful statistical tests on system performance.

In conjunction with this work it is hoped that not
only can the capabilities provided by the system be
generalized, but also the applicability of the system
can be extended. It is felt that this project has shown
such a system to be an effective tool in any computing
environment, and it is hoped that this experience can
be expanded upon by the implementation of the system
at other S/360 installations.

REFERENCES

1 J M GROCHOW
Real-time graphic display of time-sharing system operating
characteristics
AFIPS Conference Proceedings Fall Joint Computer
Conference Volume 35 pp 379-386 1969

2 G ESTRIN L KLEINROCK
Measures, models, and measurements for time-shared
computer utilities
Proceedings ACM National Meeting pp 85-95 1967

3 G ESTRIN et al
SNUPER COMPUTER—A computer in instrumentation
automation
AFIPS Conference Proceedings Spring Joint Computer
Conference Volume 30 pp 645-656 1967

4 P CALINGAERT
System performance evaluation: Survey and appraisal
CACM Volume 10 No 1 pp 12-18 January 1967

5 R A ARBUCKLE
Computer analysis and thruput evaluation
Computers and Automation Volume 15 No 1 pp 12-15
January 1966

6 F D SCHULMAN
Hardware measurement device for IBM system/360
timesharing evaluation
Proceedings ACM National Meeting pp 103-109 1967

7 J E SHEMER D W HEYING
Performance modeling and empirical measurements in a
system designed for batch and time-sharing users
AFIPS Conference Proceedings Fall Joint Computer
Conference Volume 35 pp 17-26 1969

8 T B PINKERTON
Performance modeling in a time-shared system
CACM Volume 12 No 11 pp 608-610 November 1969

9 H N CONTRELL A L ELLISON
Multiprogramming system performance measurement and
analysis
AFIPS Conference Proceedings Spring Joint Computer
Conference Volume 32 pp 213-2211968

10 A L SCHERR
An anlysis of time-shared computer systems
Research Monograph No 36 MIT Press Cambridge
Massachusetts 1967

11 T HASTINGS etal
Conversational system performance and measurement
DECUS Proceedings Fall Symposium pp 191-201 1969

12 W R DENISTON
SIPE: a TSS/360 software measurement technique
Procedings 24th National ACM Conference 1969

13 IBM System/360 Operating System: System control blocks
IBM Corporation White Plains NY Form C28-6628

14 IBM System/360 Operating System: Concepts and facilities
IBM Corporation White Plains NY Form C28-6535 1968

