Classification of Composition and Interoperation

Johannes Sametinger

Brown University
Department of Computer Science, Box 1910
Providence, RI 02912, USA

78@cs.brown.edu

Johannes Kepler University
CD Laboratory for Software Engineering
A-4040 Linz, Austria

sam@swe.uni-linz.ac.at

Poster Presentation at OOPSLA 96
San Jose, CA, October 1996

1 Introduction

Component-oriented software development is the de-
sign and development of software systems in a com-
positional way, i.e., the creation of a set of compo-
nents that are supposed to work together in some
way. Components are not designed in isolation but
rather are meant to collaborate. Technically speaking,
component-oriented software development is the inte-
gration of computational and compositional aspects of
software development.

The scenario of compositional software reuse is to
build applications by putting high-level components
together. If any required components are not avail-
able, they have to be built out of lower-level compo-
nents. Finally, when even low-level components are
not available, they eventually have to be implemented
in a certain programming language.

2 Software Reuse

Software reuse is the process of creating software sys-
tems from existing software rather than building them
from scratch. Reusable software has many benefits,
for examples see [2, 3].

Object-oriented programming has many benefits for
software reuse. Objects, i.e., classes, can be stored in
repositories and, if properly classified, considerably in-
crease the productivity of software engineers. Unfor-
tunately, many of today’s objects can hardly be com-
bined with each other. Getting information about an
object’s functionality is not sufficient to determine its
reuse value in a certain context. We have to know
characteristics of objects and their kind of interoper-
ation in order to find and select them for reuse.

3 Software Components

In this context we regard objects as reusable soft-
ware components. However, any kind of component
like functions, tools, applications could be considered.
Several attempts have been made to classify software
components. For example, Booch made a division into
three major groups of abstractions, i.e., structures,
tools, and subsystems [1]. Structures are components
that denote objects or classes of objects (abstract data
type). Tools are components that denote algorithmic
abstractions targeted to structures. Finally, subsys-
tems are components that denote logical collections of
cooperating structures and tools.

Wegner provides a classification of software com-
ponents of different languages by using state, inheri-
tance, concurrency and distribution as discriminating
characteristics [5]. This yields to the following compo-
nents: functions and subprograms, packages and mod-
ules, classes with single inheritance, classes with mul-
tiple inheritance, concurrent tasks with shared mem-
ory, distributed concurrent processes, and distributed
sequential processes.

Programming languages provide the most common
form of building reusable software components. Other
means are, for example, the use of visual programming
languages or filters (and pipes) as used with the Unix
operating system.

4 Software Composition

Constructing software systems from software compo-
nents is called software composition. Composable
software has a higher degree of flexibility and reusabil-
ity than monolithic software.

Different languages and environments realize soft-
ware composition to different degrees. They sup-
port different notions of components and composi-
tions. Component-oriented software development re-
quires that we have a selection of reusable components
that are plug-compatible. The higher the granularity
of the components is, the higher the increase in soft-
ware productivity can be.

It is easier to recompose software in order to meet
new requirements instead of modifying a monolithic
creation. Examples of successful application of soft-
ware composition exist in certain domains like user
interfaces, application frameworks, programming en-
vironments, and fourth-generation languages. But a
general model of software composition does not yet
exist [4].

Depending on a component’s interface that is used
for reuse we suggest a classification of composition
into three categories: program interfaces, user inter-
faces, and data interfaces. UNIX pipes and filters pro-
vide an example for components using data interfaces.
Wrappers like pseudo ttys can be used to reuse com-
ponents with command-line user interfaces. Program
interfaces are the most common and flexible means
for reuse. Interfaces range from pure textual to object
models (like CorBA, OPENDoOC, and OLE) and open
platforms, which remain yet to be specified.

5 Software Interoperation

If two components interoperate we have a sending
component (initiating the interoperation) and a re-
ceiving component. The sending component activates
the receiving component; it gives control to this com-
ponent. The receiving component reacts to the con-
trol input; it performs some action and, depending on
synchronous or asynchronous communication, returns
control to the sending component. Some amount of in-
formation is usually passed along with interoperation.
If a more extensive data exchange is needed, compo-
nents may use another component for that purpose.

The receiving component may or may not be known
to the sending component. This has a major influence
on the flexibility of compositions. We denote this with
static and dynamic interoperability. Interconnections
can be between two components (peer-to-peer), to a
fixed set of components (multicast), and to a dynamic
set of components (broadcast). Static interconnections
are peer-to-peer. Dynamic interconnections can be
either peer-to-peer, multicast, or broadcast. The data
component also may or may not be known to both the
sender and receiver of interoperation.

For software reuse it is essential that components
can be composed without having to know each other.
This allows component composition without modify-
ing components. For example, a function calls a, let’s
say, sort function. In order to call a function shellsort
instead, the program text in the calling function has to
be modified. Object-oriented programming provides
flexibility through dynamic binding. A calling object
does not know the receiver of a call. This makes this
object work with a variety of other objects without
being modified.

Component composition is easiest and most flexi-
ble when interconnections among components are not
point-to-point. Reusing components is easy in envi-
ronments where each component can react to events
generated by any other components and create new
events without being aware of any recipients.

6 Posters

The posters show the proposed categories for com-
position and interoperation. Composition categories
are based on interfaces, i.e., program, user, and data
interfaces. Categories of interoperation are based on
control and data integration.

References

[1] Booch G.: Software Objects with Ada: Struc-
tures, Tools, and Subsystems, Benjamin/Cum-
mings Publishing Company, Inc., Menlo Park,
CA, 1987.

[2] Braun Christine: “Reuse,” in Marciniak John
J. (Editor-in-Chief): Encyclopedia of Software

Engineering, Vol. 1, John Wiley & Sons, pp.
1055-1069, 1994.
[3] Krueger Charles W.: “Software reuse,” ACM

Computing Surveys, Vol. 24, pp. 131-83, June

1992.
[4] Nierstrasz Oscar, Meijler Theo Dirk: “Research
Directions in Software Composition,” ACM

Computing Surveys, Vol. 27, No. 2, pp. 262-
264, June 1995.

[5] Wegner Peter: “Capital-Intensive Software
Technology,” in Biggerstaff Ted J., Perlis Alan
J.: Software Reusability, Vol. I: Concepts and
Models, ACM Press, 1989.

