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Abstract

It is a common misconception that the number 2 exists. This startling belief has
permeated through society since numbers were first discovered, and is still held by
mathematical amateurs and professionals alike. We correct this enormous error and,
along the way, give the correct definition of prime numbers, the correct statement of
the prime number theorem, and disprove a theorem of Euclid.

1 Introduction
Imagine that the number 2 does not exist. That is, the natural numbers now look like this:

{1, 3, 4, . . . }.

Consider the natural number 4, which surely still exists. Before, we could factor 4 as
4 = 2 · 2 and trivially as 4 = 4 · 1. Now, since 2 does not exist, we are left with only
4 = 4 · 1. Under any reasonable definition, 4 is now prime. The number 4 is not the only
new prime. It is joined by 6, 8, 10, and many others. We obtain a collection of new primes,
which we call 2-removed primes. The first few are listed in Table 1.

This 2-removed number system has various interesting properties. None, however,
are particular to the number 2, and happen just as easily if we imagine that any particular
prime does not exist. We call the resulting number systems the p-removed number systems.
The remainder of this paper is dedicated to exploring these properties, in particular the p-
removed primes that arise. First, we shall give a formal definition and a more convenient
characterization.
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Definition 1 (p-removed primes). Let p be a prime number. A natural number m > p is a
p-removed prime if and only if every nontrivial positive integer factorization ofm includes
a p. That is, for every sequence of positive integers {dk}nk=1 such that m = d1d2 · · · dn
and 1 < dk < m, at least one dk must equal p. A natural number m > p is a p-removed
composite provided that it is not a p-removed prime.

Note that p2 and p3 are always p-removed primes. Table 1 suggests that all powers of
2 are p-removed primes, but this is not the case, since 16 = 4 · 4 and 32 = 8 · 4 are both
2-removed composites. This generalizes into the following useful lemma.

Table 1: First few 2-removed primes
n prime? 2-removed prime?
1
3 X X
4 X
5 X X
6 X
7 X X
8 X
9

10 X
11 X X
12
13 X X
14 X

Lemma 1. If p is a prime number, then pk is a p-removed composite for every integer
k ≥ 4.

Proof. Every integer k ≥ 4 can be expressed as k = 2n + 3m for nonnegative integers n
and m. Thus, pk = p2n+3m = (p2)n(p3)m.

Theorem 1. A positive integer k > p is a p-removed prime if and only if one of the
following conditions hold:

1. k is prime;

2. k = pq, where q is a prime; or

3. k = p3.
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(Note that this theorem lets us classify the “regular primes” as the 1-removed primes.)

Proof. Let k be a positive integer greater than p. If k is prime, then no nontrivial factor-
ization exists. If k = pq for some prime q, then its only nontrivial factorization includes a
p. If k = p3, then the only nontrivial factorizations are k = (p2)p and k = p · p · p, all of
which require p. Thus k is a p-removed prime if any of the three conditions hold.

Inversely, suppose that none of the three conditions hold for some positive integer m.
By (1), m has at least two prime factors. If m has exactly two prime factors, then m is
factored nontrivially without p by (2). If m has at least three prime factors, write

m = p1p2p3 · · · pn

for some sequence of primes {pk}. If exactly one of these primes are p, say p1 = p, then

m = (pp2)p3 · · · pn

is a nontrivial factorization without p. Likewise, if exactly two factors are p, say p1 =
p2 = p, then

m = p2p3 · · · pn
is a suitable nontrivial factorization. If three or more factors are p, then

m = pxy

for some integers x ≥ 3 and y ≥ 1, where p is not a factor of y. If y = 1, condition
(3) implies that x > 3, and Lemma 1 shows that m is p-removed composite. If y > 1,
then this is a nontrivial factorization without p. In all cases, m is not a p-removed prime,
proving the converse.

Theorem 1 gives us a more convenient test for p-removed primality. If we were to use
Definition 1 as a criterion, we would need to generate every possible nontrivial factoriza-
tion of a number. Under Theorem 1 it suffices to compute just the prime factorization, for
which many efficient computer implementations exist.

2 Frequency and density of p-removed primes
Table 1 suggests that 2-removed primes occur at a much higher rate than the old primes.
As we progress through the natural numbers, does this rate slow down and begin to match
the rate of the old primes, or do the 2-removed primes keep up their pace? Table 1 is
insufficient to answer this question, but the pattern established in Theorem 1 gives us the
tools we need for asymptotic and density analysis.
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Figure 1: Comparison of prime distributions.

Definition 2. The prime counting function π(x) gives the number of primes less than or
equal to x. The p-removed prime counting function πp(x) gives the number of p-removed
primes less than or equal to x.

For example,

π2(1) = 0

π2(3) = 1

π2(14) = 10.

Definition 3. Let A be a subset of N, and set pn = |A ∩ [1, n]|/n. The natural density of
A is lim pn if this limit exists.

For example, any finite set has natural density zero. The set of all even numbers has
natural density 1/2. The prime number theorem shows that the primes themselves have
natural density zero.

Theorem 1 lets us implement πp efficiently on a computer. In Figure 1, we have plotted
both π(x) and π2(x) for comparison. This figure provides evidence that 2-removed primes
occur more frequently than regular primes. We can obtain more analytic results by using
Theorem 1 to relate πp(x) to π(x).
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Theorem 2. For any real x, the p-removed prime counting function satisfies

πp(x) = (π(x)− π(p))[x > p] + π

(
x

p

)
+ [x ≥ p3]. (1)

The brackets are Iverson brackets: for any statement P , [P ] = 1 if P is true, and [P ] = 0
if P is false.

Proof. The three terms in the sum correspond directly to the three conditions of Theo-
rem 1. For instance, the second term comes from the number of prime multiples of p in
[1, x]. The cardinality of this set is

|{pq : pq ≤ x, q prime}| = |{q : q ≤ x/p, q prime}| = π(x/p).

The remaining terms are verified similarly.

If we divide both sides of (1) by π(x), we obtain

πp(x)

π(x)
=

(
1− π(p)

π(x)

)
[x > p] +

π(x/p)

π(x)
+

[x ≥ p3]

π(x)
. (2)

As x → ∞, the first term tends to 1 and the third term tends to 0. The prime number
theorem states that limx→∞ π(x)/(x/ lnx) = 1, which implies

lim
x→∞

π(x/p)

π(x)
=

1

p
.

Applying this to (2) yields

lim
x→∞

πp(x)

π(x)
= 1 +

1

p
.

These remarks justify the following theorem.

Theorem 3. The p-removed primes add roughly a factor of 1/p more primes. That is,

πp(x) ∼
(
1 +

1

p

)
π(x).

The error of this approximation is π(x/p)− π(x)/p+O(1).

To test this approximation, note that π(1000) = 168, so (1 + .5)π(1000) = 252. This
is off by about ten, since π2(1000) = 263. There are sharper estimates for π(x) that we
could use to improve our πp(x) approximation. See [1] for a brief overview.
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To derive the error, note that Theorem 2 implies

πp(x)− π(x) = ([x > p]− 1)π(x)− π(p)[x > p] + π(x/p) + [x ≥ p3]

= π(x/p)− [x ≤ p]π(x)− π(p)[x > p] + [x ≥ p3].

Every term except π(x/p) is constant for large x, and therefore O(1). Thus

πp(x)− π(x) = π(x/p) +O(1).

Subtracting π(x)/p yields the result.

Theorem 4. The p-removed primes have natural density zero.

Proof. By Theorem 3,

πp(n)

n
=
π(n) + π(n/p)

n
+O(n−1)

≤ 2π(n)

n
+O(n−1).

In the limit, the first term vanishes by the prime number theorem, and the second term
obviously vanishes.

3 Anti-properties of p-removed primes
While the p-removed primes are in the same spirit as the primes, they do not enjoy many of
the primes’ familiar properties. By removing a single “building block” we have irrevocably
altered the structure of the primes. As examples, below are two well-known elementary
properties of primes.

Theorem (Euclid’s Lemma). If a prime p divides ab, then p divides one of a or b.

Theorem (Unique Factorization). Every natural number can be uniquely factored into a
product of primes (up to the order of the factors).

There are trivial counterexamples to both theorems in the p-removed primes. For Eu-
clid’s lemma, let q be the prime after p. Then p2 (a p-removed prime) divides p2q2 =
(pq)(pq), but it does not divide pq. For unique factorization, note that

(p3)2 = p6 = (p2)3,

so p6 can be factored into a product of p-removed primes in two different ways.
There are likely other properties that fail to hold, but these two are the most common.
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Figure 2: Comparison of twin-prime density.

4 Conclusion
Outside of our basic analysis, there are still questions to be answered about the p-removed
primes:

• How badly does unique factorization fail in the p-removed primes? That is, given an
integer k > p, how many ways can we express k as a product of p-removed primes?

• The definition of a p-removed prime generalizes readily to more than one prime.
Imagine, for instance, the {p, q}-removed primes. What happens to the frequency
analysis in this case? Are counterexamples as trivial to construct for theorems re-
lated to the regular primes?

• Are there infinitely many p-removed twin primes? For example, there are infinitely
many 2-removed twin primes iff there are infinitely many twin primes. The p = 3
case is already not so obvious. We have plotted the number of twin-primes and
3-removed twin-primes up to 1000 in Figure 2.

However, now seems like a suitable place to stop.
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